数学必修三--简单随机抽样.教学内容

合集下载

北师大版数学必修三课件:第1章§2 2.1 简单随机抽样

北师大版数学必修三课件:第1章§2 2.1 简单随机抽样

6. 对样本的每一个个体进行调查:
(1)设计调查问卷; (2)发放调查问卷,并回收;
(3)汇总数据,得出结论,写成调查报告.
1.简单随机抽样的概念 一般地,设一个总体的个体数为N,如果通过逐个抽取
的方法从中抽取一个样本,且每次抽取时各个个体被抽到
的概率相等,就称这样的抽样方法为简单随机抽样. 2.简单随机抽样的方法: 抽签法 随机数表法
简单随机抽样的类型
抽签法: 把总体中的个体的代号写在形状、大小相同的签上, 然后将这些签均匀搅拌,每次随机地从中抽取一个(不放 回),然后将签均匀搅拌,再进行下一次抽取.如此下去,
直到抽到预先设定的样本数.
抽签法的步骤:
1. 把总体中的N个个体编号;
2. 准备“抽签”的工具,实施“抽签”;
3. 对样本中每一个个体进行测量或调查.
§2
抽样方法
2.1 简单随机抽样
1. 正确理解随机抽样的概念,掌握抽签法、随机数法的一般步骤. 2. 理解随机抽样的必要性和重要性.
调查的方法:普查、抽样 简单随机抽样
抽样
分层抽样 系统抽样
简单随机抽样: 一般地,设总体含有N个个体,从中逐个不放回地抽 取n个个体作为样本(n≤N) ,如果每次抽取时,每个个体 被抽到的概率都相等,这种抽样方法叫作简单随机抽样. 特点:1、总体的个数有限(较少)
证表中的每个位置上的数字是等可能出现的.
(2)用随机数表进行抽样的步骤:将总体中个体编号;选 定开始的数字;获取样本号码. (3)用随机数表抽取样本,可以任选一个数作为开始,读 数的方向可以向左,也可以向右、向上、向下等等.因此并
不是唯一的. (4)由于随机数表是等概率的,因此利用随机数表抽取样
本保证了个体被抽到的概率是相等的.

人教版高中数学必修三教案2.1简单随机抽样

人教版高中数学必修三教案2.1简单随机抽样

《简单随机抽样》教案教学目标1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.教学重难点教学重点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.教学难点:简单随机抽样的概念,抽签法及随机数法的步骤.教学过程一、情境导入:1.根据国务院的决定,我国于2000年11月1日进行了第五次全国人口普查的登记工作.近千万普查工作人员投入到了艰苦繁重的工作中,结果显示至普查日期为止我国人口总数为129533万.上面的例子是一个统计上的典型事例,它用到了什么统计方法?它有什么优缺点?你有什么其他的办法吗?发表一下你的观点?(答:用到了普查的统计方法;优点是全面准确,缺点是工作量大,在绝大部分的统计案例中无法实现(检查具有破坏性);随机抽查的方法.)2.课本P55阅读你认为在该故事中预测结果出错的原因是什么?(答:所选样本没有代表性.)3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.(为什么?)那么,应当怎样获取样本呢?二、新知探究:一、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二、抽签法和随机数法:三、1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的一般步骤:(1)将总体的个体编号;(2)连续抽签获取样本号码.思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方便吗?解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”2、随机数法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 7533 21 12 34 29 78 64 56 07 82 52 42 07 44 3857 60 86 32 44 09 47 27 96 54 49 17 46 09 6287 35 20 96 43 84 26 34 91 6421 76 33 50 25 83 92 12 06 7612 86 73 58 07 44 39 52 38 7915 51 00 13 42 99 66 02 79 5490 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本.随机数表法的步骤:(1)将总体的个体编号;(2)在随机数表中选择开始数字;(3)读数获取样本号码.思考:结合自己的体会说说随机数法有什么优缺点?解析:相对于抽签法有效地避免了搅拌不均匀的弊端,但读数和计数时容易出错.三、精讲精练:例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;(3)某班45名同学,指定个子最高的5人参加某活动;(4)从20个零件中一次性抽出3个进行质量检测.[解析] 根据简单随机抽样的特点进行判断,考查学生对简单随机抽样的理解;[解] (1)不是简单随机抽样,由于被抽取的样本的总体个数是无限的;(2)不是简单随机抽样,由于它是放回抽样;(3)不是简单随机抽样,因为不是等可能性抽样;(4)不是简单随机抽样,因为不是逐个抽样.[点评]判断所给抽样是不是简单随机抽样,关键是看它们是否符合简单随机抽样的四个特点.[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样的是()A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观报告会结束以后听取观众的意见,要留下32名观众进行座谈B. 从十台冰箱中抽取3台进行质量检验C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480 亩估计全乡农田平均产量例2. 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[解析]简单随机抽样一般采用两种方法:抽签法和随机数表法.[解]解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.[点评](1)抽签法和随机数表法是常见的两种简单的随机抽样方法,具体问题要灵活运用这两种方法.(2)在应用随机数表时,将100个个体编号为00,01,02,…99而非0,1,2,…99,是为了便于使用随机数表.此外,将起始号码选为00而非01,可使100个号码都用两位数字号码表示.[变式训练2]某企业有150名职工,要从中随机的抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.反馈测评:1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生C、样本是40名学生D、样本容量是402、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A、总体B、个体是每一个学生C、总体的一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体a被抽到的可能性是,a在第10次被抽到的可能性是【作业布置】:课后练习2。

新人教版高中数学必修三 第二章统计教案:2.1随机抽样

新人教版高中数学必修三 第二章统计教案:2.1随机抽样

2.1 随机抽样【知识要点】1. 总体、个体、样本、随机抽样等概念的理解a. 总体、个体:我们一般把所考察对象的某一数值指标的全体构成的集合看成总体,构成总体的每一个元素作为个体。

b. 从总体中随机抽取若干个体进行考察,这若干个个体构成的集合叫总体的样本。

c. 每一个个体被抽到的机会是均等的,满足这样的条件的抽样是随机抽样。

2. a. 简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

b. 常用的简单随机抽样方法:(1)抽签法:先把总体中的所有个体(共有N 个)编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,然后将这些号签放在一个容器里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取n次,就得到一个容量为n的样本。

(2)随机数表法:将总体中的个体编号,选定开始的数字,然后获取样本号码。

3.a. 系统抽样:将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一些个体,得到所需要的样本,这样的抽样叫做系统抽样。

b. 系统抽样的步骤:(1)编号(2)分段(3)确定起始个体编号(4)按照事先确定的规则抽取样本。

4. a. 分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样。

b. 分层抽样的操作步骤:(1)将总体按一定标准进行分层(2)计算各层的个体数与总体的个体数的比(3)按各层个体数占总体个体数的比确定各层应抽取的样本容量(4)在每一层进行抽样(可用简单随机抽样或系统抽样)5. 三种抽样方法的比较:简单随机抽样、系统抽样、分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会相等,体现了这些抽样方法的客观性和公平性。

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.1简单随机抽样含解析2。

1随机抽样2.1.1简单随机抽样学习目标核心素养1.理解简单随机抽样的定义、特点及适用范围.(重点)2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点)1.通过抽取样本,培养数据分析素养.2.借助简单随机抽样的定义,培养数学抽象素养。

1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点优点缺点抽签法简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平随机数法操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷1.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是()A.总体是302名学生B.个体是每1名学生C.样本是30名学生D.样本容量是30D[本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]2.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B[在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.]4.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.附表:(第8行~第10行)63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79(第8行)33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54(第9行)57 60 86 32 4409 47 27 96 5449 17 46 09 6290 52 84 77 2708 02 73 43 28(第10行)16,55,19,10,50,12,58,07,44,39[第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95〉59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.]简单随机抽样的概念(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解](1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.错误!1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用【例2】为迎接2022年北京冬奥会,奥委会从报名的北京某高校20名志愿者中选取5人组成冬奥会志愿小组,请用抽签法设计抽样方案.[解](1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.抽签法的应用条件及注意点1一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法。

《简单随机抽样》说课稿课件教学提纲

《简单随机抽样》说课稿课件教学提纲
2.教学目标分析
(1)知识与技能目标:
正确理解随机抽样的概念,掌握抽签法、随机数表法的一 般步骤.
(2)过程与方法目标:
①能够从现实生活或其他学科中提出具有一定价值的统计 问题;
②在解决统计问题的过程中,学会用简单随机抽样的方法 从总体中抽取样本.
(3)情感,态度和价值观目标
通过对现实生活和其他学科中统计问题的提出,体会数学 知识与现实世界及各学科知识之间的联系,认识数学的重要性.
(五)板书设计:
课题:简单随机抽样
一、定义
二、基本方法
一般地,设一个总体含有 (一)抽签法
N个个体,从中逐个不放回地 抽取n个个体作为样本(n≤N) ,如果每次抽取时总体内的各
(1)编号制签 (2)搅拌均匀 (3)逐个不放回取n次
个个体被抽到的机会都相等, (二)随机数表法
就把这种抽样放方法叫做简单 (1)编号
(三)课堂小结: 1. 简单随机抽样及其两种方法 2. 两种方法的操作步骤
设计意图:通过小结使学生们对知识有一个系统的认识,突出重点 ,抓住关键,培养概括能力。
(四)布置作业 课本练习2、3
设计意图:课后作业的布置是为了检验学生对本节课内容的理解和 运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内 容。
《简单随机抽样》说课稿课件
一、教材分析
1.教材所处的地位和作用
“简单随机抽样”是“随机抽样”的基础,“随机抽样” 又是“统计学”的基础,因此,在“统计学”中,“简单随机 抽样”是基础的基础。在初中学生已学过相关概念,如“抽样 ” “总体”、“个体”、“样本”、“样本容量”等,具有 一定基础,新教材把“统计”这部分内容编入必修部分,突出 了统计在日常生活中的作用,体现它在中学数学中的地位。

人教B版高中数学必修三新课标教案简单随机抽样

人教B版高中数学必修三新课标教案简单随机抽样

凡事豫(预)则立,不豫(预)则废。

2.1.1简单随机抽样教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性2.学会用简单随机抽样的方法从总体中抽取样本教学重点:学会用简单随机抽样的方法从总体中抽取样本教学过程:1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体. 把总体中个体的总数叫做总体容量. 为了研究总体的有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

课堂练习:第52页,练习A,练习B小结:本节重点介绍简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;学会用简单随机抽样的方法从总体中抽取样本课后作业:第58页,习题2-1A 第1、2、3题,。

高中数学随机抽样教案

高中数学随机抽样教案

高中数学随机抽样教案
教学内容:随机抽样
教学目标:
1. 了解随机抽样的概念和方法;
2. 掌握常见的随机抽样技术;
3. 能够应用随机抽样方法解决实际问题。

教学重点:
1. 随机抽样的概念;
2. 简单随机抽样;
3. 分层抽样;
4. 系统抽样;
5. 整群抽样。

教学步骤:
1. 导入:介绍随机抽样的重要性和应用背景。

2. 理论讲解:讲解随机抽样的定义、方法和常见技术。

3. 实例演练:通过具体例题演示简单随机抽样、分层抽样、系统抽样和整群抽样的操作步骤。

4. 练习:布置练习题,让学生巩固所学知识。

5. 拓展:介绍其他随机抽样方法和应用领域。

6. 总结:回顾本节课的重点内容,强化学生对随机抽样的理解。

教学资源:
1. PPT课件;
2. 教材教辅;
3. 练习题库。

教学评价:
1. 课堂表现;
2. 课后作业成绩;
3. 期中期末考试成绩。

教学延伸:
1. 可以结合实际案例进行讨论,让学生更好地理解随机抽样的应用;
2. 可以组织学生进行小组活动,让他们合作完成一些随机抽样实验。

教学反思:
1. 在教学中要注意引导学生理解随机抽样的概念,避免机械记忆方法而忽视理解;
2. 需要多种教学方法结合,提高学生的学习兴趣和参与度。

高中数学必修3《简单随机抽样》PPT

高中数学必修3《简单随机抽样》PPT

答案:B
3.为了了解全校240名高一学生的身高情况,从中抽取40名学 生进行测量.下列说法正确的是( ) A.总体是240名 B.个体是每一个学生 C.样本是40名学生 D.样本容量是40 解析:在这个问题中,总体是240名学生的身高,个体是每个学 生的身高,样本是40名学生的身高,样本容量是40.因此选D. 答案:D
解:方案如下:
第一步,将18名志愿者编号,号码为:01,02,03,…,18.
第二步,将号码分别写在相同的纸条上,揉成团,制成号签 . 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中依次取出6个号签,并记录上面的编号. 第五步,所得号码对应的志愿者就是医疗小组成员.
随机数表法的应用
分析:要判断所给的抽样方法是否是简单随机抽样,关键是看 它们是否符合简单随机抽样的四个特点. 解:(1)不是简单随机抽样.因为这不是等可能抽样. (2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个” 抽取. (3)不是简单随机抽样.因为这是有放回抽样. (4)是简单随机抽样.因为它满足简单随机抽样的四个特点.
方法感悟 方法技巧 1.抽签法制作号签时要求大小、形状完全相同 . 2.随机数表法的编号要求位数相同,且第一个 数字的抽取是随机的,开始读数的方向是任的

本节课到此结束, 谢谢!
对于总体容量不大,即易编号时,可采用这种 方法. 即:编号—选起始数—读数—取数.
例3 某个车间工人已加工一种轴100件,为了 了解这种轴的直径,要从中抽出10件在同一条 件下测量,用随机数表法抽取这10件.
【解】 按随机数表法的过程抽取样本: 将100个轴进行编号00,01,…,99,据课本上 的随机数表,如从第21行第1个数开始选取10 个:68,34,30,13,70,55,74,77,40,44,接着测量这 10个编号对应的轴的直径. 【思维总结】 在随机数表中遇到大于99的数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地抽取n个个体作为 样本(n≤N) ,如果每次抽
取时总体内的各个个体都被抽取到的机会

,就把这种抽样方法叫做简单随机抽样
说明:
我们所讨论的简单随机抽样都是 不放回 的抽样,
即抽取到某个个体后,该个体不再 放回 总体中, 常用到的简单随机抽样方法有两种: 抽签法 (抓阄法) 和 随机数法
思考:根据你的理解,简单随机抽样有哪些主要特点?
随机数表法:
按一定的规则从随机数表中选取号码, 从而产生样本的抽样方法叫随机数表法.
随机数表:
由数字0,1,2,…,9组成,并且每个数字 在表中各个位置出现的机会都一样的(见本 章附表p103)
例 要考察某公司生产的500克袋装牛奶 的质量是否达标,现从800袋牛奶中抽 取60袋进行检验.
随机数表法步骤如下:
思考:一般地,利用随机数法从含有N个个体的总体中
抽取一个容量为n的样本,其抽样步骤如何?
第一步:将总体中的所有个体编号.
第二步:在随机数表中任选一个数作为起始数. 第三步:规定一个方向作为从选定的数读取数字的方向 (可以向右,向左,向上,向下) 第四步:开始读取数字若不在编号中,则跳过,若在编 号中则读取,依次取下去,直到取满为止。(相同的号 只记一次)
(1)总体的个体数N是有限; (有限性)
(2)抽取样本的容量n小于或等于总体中的个体数N
(3)每个个体被抽到的机会都相等均为n/N(等率性)
(4)当总体中的个体无差异且个体数目较少时,采用 简单随机抽样
(5)样本的抽取是逐个进行的,每次只抽取一个个体; (逐一性)
(6)抽取的样本不放回,样本中无重复个体; (不回性)
数学必修三--简单随机抽样.
例子
某高中有学生900人,校医务室想对全校学 生的身高情况做一次调查,为了不影响正常 教学活动,准备抽取50名学生作为调查对 象.
问题
这次调查中的总体、个体、样本和样本容量 分别是什么?
总体:一般把所考察对象的某一项指标的全 体作为总体. 个体:构成总体的每一个元素作为个体. 样本:从总体中抽出若干个体所组成的集合 叫样本. 样本容量:样本中所包含的个体数量叫样本 容量.
笑过之后,谈谈你的看法 这个调查具有破坏性,不可能每根试过,
不能展开全面调查。
问题:抽样的目的是什么?
估计总体 问题:如何抽样才能正确估计总体?
(1) 抽样时要保证每一个个体都可能被 抽到;
(2)每一个个体被抽到的机会是均等的.
满足这些条件的抽样就是随机抽样.
设一个总体含有 N个个体 ,从中 逐个不放回
思考3:一般地,抽签法的操作步骤如何? 第一步:将总体中的所有个体编号分别写在形状、 大小相同的号签上. 第二步:将号签放在一个容次, 就得到一个容量为n的样本.
要点:编号,写签,搅匀,抽取样本
思考4:你认为抽签法有哪些优点和缺点? 优点:简单易行,当总体个数不多的时候搅拌均 匀很容易,个体有均等的机会被抽中,从而能保 证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,产生的 样本的代表性差的可能性很大.
例子
某高中有学生900人,校医务室想对全校学 生的身高情况做一次调查,为了不影响正常 教学活动,准备抽取50名学生作为调查对 象.
总体:全校900名学生的身高; 个体:每名学生的身高; 样本:50名学生的身高; 样本容量:50.
看一看
妈妈:“儿子,帮妈妈买盒火柴去。” 妈妈:“这次注意点,上次你买的火柴好多划不着。 ” ……… 儿子高兴地跑回来。 孩子:“妈妈,这次的火柴全划得着,我每根都试 过了。”
抽签法中确保样本代表性的关键是( )
A.制签
B.搅拌均匀
C.逐一抽取
D.抽取不放回
[答案] B
例 要考察某公司生产的500克袋装牛奶的质 量是否达标,现从800袋牛奶中抽取60袋进 行检验.
如果用抽签法如何完成?是否有其 他更为简单的办法呢?
随机数法:
利用随机数表、随机数骰子或计算 机产生的随机数进行抽样
在简单随机抽样中,某一个个体被抽中的可能性( ) A.与第几次抽样无关,第一次抽中的可能性要大些 B.与第几次抽样无关,每次抽中的可能性都相等 C.与第几次抽样有关,最后一次抽中的可能性要大些 D.每个个体被抽中的可能性无法确定
[答案] B
简单随机抽样的方法 思考1:假设要在我们班选派5个人去参加某项活动,为 了体现选派的公平性,你有什么办法确定具体人选? 抽签法 思考2:用抽签法(抓阄法)确定人选,具体如何操作? 用小纸条把每个同学的学号写下来放在盒子里,并搅拌 均匀,然后从中随机逐个抽出5个学号,被抽到学号的同 学即为参加活动的人选.
第三步,从选定的数7开始向右读(读数的方
向也可以是向左、向上、向下等),得到一个 三位数785,由于785<799,说明号码785在 总体内,将它取出;继续向右读,得到916, 由于916>799,将它去掉,按照这种方法继 续向右读,又取出567,199,507,…,依次 下去,直到样本的60个号码全部取出,这样我 们就得到一个容量为60的样本.
第一步,先将800袋牛奶编号,可以编为000, 001,…,799.
第二步,在随机数表中任选一个数,例如选出 第8行第7列的数7(为了便于说明,下面摘取了 附表1的第6行至第10行).
⑥16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 ⑦84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 ⑧63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 ⑨33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 ⑩57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28
相关文档
最新文档