必修三《简单随机抽样》课件

合集下载

人教版数学必修三2.1.1《简单随机抽样》课件_

人教版数学必修三2.1.1《简单随机抽样》课件_
1总体: 把所考察对象的某一数值指标的全体构成的集合 看作总体 2个体: 构成总体的每一个元素作为个体 3样本: 从总体中抽出若干个体所组成的集合叫做样本 4样本容量:样本中个体的数目叫做样本容量
抽样的必要性
由于所考察的总体包含的个体数量很大, 而且许多考察带有破坏性,因此,我们 往往考察总体中的一个样本,通过样本 来了解总体的情况,即抽样调查。
9这十个数字的表格称为随机数表其中各个位置上出现的数称为随机数随机数表并不是唯一的只要符合各个位置上等可能的出现其中各个数的要求就可以构成随机数表通常根据实际需要和方便使用的原则将几个数组成一组如5个数一组
2.1.1简单随机抽样
案例:我校共有学生900人,校医务室想对
全体高中学生的身高做一次调查,为了不影响正 常教学,准备抽取50名学生做为调查对象
随机数表
在表中每个位置上等可能的出现0,1,…,9这十个数字的 表格称为随机数表,其中各个位置上出现的数称为随机数, 随机数表并不是唯一的,只要符合各个位置上等可能的出现 其中各个数的要求,就可以构成随机数表,通常根据实际需 要和方便使用的原则将几个数组成一组,如5个数一组。(见 教材87页附录)
议一议
中央电视台需要在我市调查“春节联欢晚会”的 收视率。 (1)每个看电视的人都要被问到吗? (2)对我校调查结果能否作为该节目的收视率? (3)你认为对不同社区、年龄层次、文化背景 的人所做的调查结果会一样吗?
抽样的原则
如何抽取样本,直接关系到对总体估计的准确程度
尽量使每一个个体被抽到的机会是 均等的,抽出的样本能够很好地代表总 体,满足这样的条件的抽样是随机抽样。
抽签法
第一步:将50名学生编号01,02,…,50
第二步:将号码分别写在一张纸上,制成号签

课件人教A版数学必修三简单随机抽样PPT课件_优秀版

课件人教A版数学必修三简单随机抽样PPT课件_优秀版

利完用全抽 相签同法,抽而取且样一本定在时要编搅1号拌9问均3题匀6可,年从视中美情逐况一国而不定总放,回若统地已抽有选取编举号. ,前如考,号、一学份号、颇标签有号名码等气,可的不必杂重新志编的号,另工外作号签人要求员是做大小了、形状
重阅复读这 课个本过54程页一直,到次思取考民到:第意10个调号查码时。终止调。查兰顿(当时任堪萨斯州州长)和罗斯福(当时的
进行分析; 有限性
(2)它是从总体中逐个地进行抽取。 这 样,便于在抽样实践中进行操作;
逐个性
9
(3)它是一种不放回抽样。 由于抽样实 践中多采用不放回抽样,使其具有较广 泛的实用性,而且由于所抽取的样本中 没有被重复抽取的个体,便于进行有关
的分析和计算。 不放回性
(4)它每一次抽取时总体中的各个个体 有相同的可能性被抽到,从而保证了这
随怎机样数 从表总由体数中总字抽取0统,高1)质,量2中,的3样谁,本…将?…,当9 这选10下个数一字组届成总,并统且每。个为数字了在表了中解各个公位置众上意出现向的机,会调一样查。 者通过电话
(5)盒子中共有簿80和个零车件,辆从中登选出记5个簿零件上进的行质名量检单验给,在一抽样大操批作中人,从发中任了意拿调出查一个表零件(进注行质意量检在验1后再9把它3放6回盒年子里.
返18回
第三步,均匀搅拌.把上述号签放在同一个容器 (箱、包、盒等)内时进行均匀搅拌.(想一想为什 么?)
第四步,抽取.从容器中逐个连续地抽取5次, 得到一个容量为5的样本.(如:2,41,7,29,18.)
另外如果该班同学已有学号,可以直接利用学 号不必再编号,直接从第二步进行.
利用抽签法抽取样本时编号问题可视情况而定,若已有编号,如考 号、学号、标签号码等,可不必重新编号,另外号签要求是大小、形 状完全相同,而且一定要搅拌均匀,从中逐一不放回地抽取. 19

简单随机抽样ppt完整版

简单随机抽样ppt完整版

实现方式
优点与局限性
简单随机抽样具有操作简单、易于理 解等优点;但在总体个体差异较大或 样本量较小时,可能导致抽样误差较 大。
通过随机数生成器或随机表等方式, 从总体中随机抽取一定数量的样本。
02
简单随机抽样方法
有放回简单随机抽样
01
02
03
抽样过程
每次从总体中随机抽取一 个样本,记录后将其放回 总体,再进行下一次抽取。
参数估计 利用样本数据对总体参数进行估计, 包括点估计和区间估计。
假设检验
提出原假设和备择假设,通过计算检 验统计量和P值,判断原假设是否成 立。
方差分析
研究不同因素对因变量的影响程度, 通过计算F值和P值,判断因素对因 变量是否有显著影响。
回归分析
探究自变量和因变量之间的线性关系, 建立回归方程并检验其显著性。
结果可视化呈现技巧
图表类型选择
数据标签使用
根据数据类型和分析目的,选择合适的图表 类型,如柱状图、折线图、散点图等。
在图表中添加数据标签,使观众能够快速了 解数据点的具体数值。
颜色搭配
动画效果运用
运用合适的颜色搭配,突出重要信息,提高 图表的视觉效果。
适当使用动画效果,引导观众关注重点信息, 增强演示的吸引力。
调研目的
了解消费者对某品牌手机的认知度和购买意愿。
调研对象
该品牌手机的目标消费群体,即18-35岁的年轻人。
调研方法
采用简单随机抽样的方法,在目标消费群体中抽 取一定数量的样本进行调查。
调研过程回顾
样本抽取 根据目标消费群体的特征,确定抽样框,并按照一定的抽 样比例进行简单随机抽样,最终抽取了500个样本。
分层抽样等。

人教版高中数学必修三2.1.1《简单随机抽样》ppt课件_

人教版高中数学必修三2.1.1《简单随机抽样》ppt课件_

练习3、下列抽取样本的方式是属于简单随机抽样的 是( C ) ①从无限多个个体中抽取100个个体作样本; ②盒子里有80个零件,从中选出5个零件进行质量检 验,在抽样操作时,从中任意拿出一个零件进行质
量检验后,再把它放回盒子里;
③从8台电脑中不放回的随机抽取2台进行质量检验
(假设8台电脑已编好号,对编号随机抽取)
(2)用随机数表进行抽样的步骤:将总体中个体 编号;选定开始的数字;获取样本号码。 (3)用随机数表抽取样本,可以任选一个数作为
开始,读数的方向可以向左,也可以向右、向上、 向下等等。因此并不是唯一的.
(4)由于随机数表是等概率的,因此利用随机数
表抽取样本保证了被抽取个体的概率是相等的。
探究:抽签法和随机数表法的异同
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本. (2)从50台冰箱中一次性抽取5台冰箱进行质量检查. (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛. (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽 出6个号签.
例3:要考察某种品牌的850颗种子的发芽率,从中抽 取50颗种子作为样本进行试验.
由于需要编号,如果总体中的个体数太多, 采用抽签法进行抽样就显得不太方便了
第一步,先将850颗种子编号,可以编为001,002,… ,850.
所谓编号,实际上是编数字号码.不 要编号成:0,1,2,…,850
第二步,在随机数表中任选一个数作为开始,例如从第1行第1列的数4开始 . 为了保证所选定数字的随机性,应在面对 随机数表之前就指出开始数字的纵横位置
给出的随机数表中是5个数一组,我们使用各个5位数 组的前3位,不大于850且不与前面重复的取出,否则 第三步,获取样本号码. 就跳过不取,如此下去直到得出50个三位数

【课件】简单随机抽样(30张PPT)

【课件】简单随机抽样(30张PPT)
--精品--
解析:①不是.因为球大小不同,造成不公平. ②④不是,因为随意选取,随手写出并不说明对 每个个体机会均等. ③符合随机抽样的定义,是简单随机抽样. 答案:③
--精品--
考点二:抽签法
(1)抽签法适用于总体中个体数不多的情形. (2)整个操作过程可分成五步. (3)号签务必搅拌均匀,抽取的样本才具有代表 性. (4)抽取的号签要与总体中个体编号准确对应.
--精品--
例3 有一批机器,编号为1,2,3,…,112,请用 随机数表法抽取10台样本,写出抽样方法. 【思路点拨】 各机器的编号位数不一致,用随机 数表直接读数不方便,需将编号进行调整. 【解】 法一:第一步:将原来的编号调整为 001,002,003,…,112. 第二步:在随机数表中任选一数作为开始,任选一 方向作为读数方向,比如,选第9行第7个数“3”向 右读.
简单随机抽样的基本概念3这是一种不放回抽样由于在抽样的实践中常常采用不放回抽样使简单随机抽样具有较广泛的实用性而且由于在所抽取的样本中没有被重复抽取的个体所以便于分析与计算
2.1 抽样方法 2.1.1 简单随机抽样
--精品--
一、课堂引入
假如你是一名食品卫生工作人员,要对某一 超市内的一批小包装饼干进行卫生达标检验,你 准备怎么做?显然,不可能对所有的饼干进行一 一检验,只能从中抽取一定数量的饼干作为检验 的样本.为了使得到的结果更加真实可靠,我们 不能按顺序来抽取,而往往采用随机抽样的方法 来进行抽取.如何获得比较合理的样本?这就是 我们本节课要研究的问,每次读取三 位,凡不在001~112中的数跳过去不读, 前面已经读过的也跳过去不读,依次可得 到 074,100,094,052,080,003,105,107,083,092. 第四步:对应原来编号 74,100,94,52,80,3,105,107,83,92的机器就是 要抽取的对象. 法二:第一步:将原来的编号调整为 101,102,103,…,212. 第二步:在随机数表中任选一数作为开始, 任选一方向作为读数方向,比如选第9行第 7个数“3”向右读.

人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件(共21张PPT)

人教版高中数学必修三第二章第1节 2.1.1简单随机抽样  课件(共21张PPT)
分层抽样过程: (1)确定样本容量与总体的个体数之比 50 1
1000 20
(2) 利用抽样比例确定各年龄段应抽取的个体数,Biblioteka 依次为, 920. 1 46
20
, 80. 1 4 20
分层抽样适用情况: 总体由差异明显的几部分组成
分层抽样的抽取步骤:
(1)确定抽取的比例:
样本容量 总体
(2)确定各层抽取的样本数:
运动员有6人,则抽取的男运动员有___8_
变式: 一支田径运动队有98人.现用分层抽样的方法 抽取14人,若抽取的男运动员有8人,则运动队
中,男运动员有___5_ 6
某社区有500个家庭,其中高收入家庭125户,中等收入家庭 280户,低收入家庭 95户,为了调查社会购买力的某项指标,要 从中抽取1个容量为100的样本,记做(1);
思考:抽签法是否简单易行?
随机数表法
解决问题
第一步,先将800件产品编号(001,002…….800) 第二步,在随机数表(P103)中任选一个数作为 开始.
第三步,从选定的数开始向右读下去,得到一个三位 数字。(满足要求,则读取;不符合要求,则舍去)
总结:简单随机抽样:抽签法,随机数表法
1、简单随机抽样概念: 一般地,设一个总体的个体数为N, 如果通过逐个抽取的方法, 不放回地抽取一个样本(n≤N), 且每次抽取时各个个体被抽到的概率相等, 就称这样的抽样为简单随机抽样。
某学校高一年级有12名女排运动员,要从中选出3人调查学 习负担情况,记做(2).
那么完成上述2项调查应采用的抽样方法是( ) A (1)用随机抽样法, (2)用系统抽样法 B (1)用分层抽样法, (2)用随机抽样法 C (1)用系统抽样法, (2)用分层抽样法

简单随机抽样-课件

简单随机抽样-课件
第二步:将50名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,如2,11,26,19,45;对应编号的同 学去开会;
随机数表法的步骤如下:
第一步:将50件产品编号,可以编为00,01,02,……49;
例:利用抽签法从15名学生中抽取5名同学去开会。
抽签的步骤如下:
第一步:给15名同学编号,号码为1,2,……15;
第二步:将15名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
二、选择题
1、简单随机抽样的结果: D
A、由抽样方式决定
B、由随机性决定
C、由人为因素决定
D、由计算方法决定
2、从10个篮球中任意取一个检验其质量,则抽样为:A
A、简单随机抽样
B、系统抽样
C、分层抽样
D、有放回抽样
三、填空题
1、从65名同学中抽出20人考察他们的学习成绩, 在这次抽样中样本为( 20名同学 ),样 本容量为( 20 );
演练反馈:从20名学生中抽取5名同学去开会。
抽签法的步骤如下:
第一步:给20名同学编号,号码为1,2,……20;
第二步:将20名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
15 65 85 58 96 90 60 24 52 52 57 56 68 42 66 85 87 47 70 01 25 45 35 20 14 01 25 45 86 93 57 48 56 35 87 45 32 56 82 54 56 68 97 80 12 01 02 50 80 95

课件_人教版数学必修三《简单随机抽样》课堂PPT课件_优秀版

课件_人教版数学必修三《简单随机抽样》课堂PPT课件_优秀版
思考6:假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本
2.1.1 简单随机抽样 时应如何操作?
第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上. 方案一:通过互联网调查.
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
简单随机抽样的含义:
一般地,设一个总体有N个个体, 你认为预测结果出错的原因是什么?
思考7:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?
从中逐个不放回地抽取n个个体作为样 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.
一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相 等, 则这种抽样方法叫做简单随机抽样.
第一步,将800袋牛奶编号为000,001, 002,…,799.
第二步,在随机数表中任选一个数作为 起始数(例如选出第8行第7列的数7为 起始数).
第三步,从选定的数7开始依次向右读 (读数的方向也可以是向左、向上、向 下等),将编号范围内的数取出,编号 范围外的数去掉,直到取满60个号码为 止,就得到一个容量为60的样本.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断?
将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.
知识探究(一):简单随机抽样的基本思想
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档