辽宁省抚顺市中考数学试题及答案

合集下载

2024年辽宁省抚顺市新抚区中考数学质检试卷(四)(含答案)

2024年辽宁省抚顺市新抚区中考数学质检试卷(四)(含答案)

2024年辽宁省抚顺市新抚区中考数学质检试卷(四)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.温度由−4℃上升7℃后的温度为( )A. −3℃B. 3℃C. −11℃D. 11℃2.下列运算正确的是( )A. a10÷a2=a5B. (3a2)3=9a6C. 2a⋅3a2=6a3D. (a+b)2=a2+ab+b23.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是( )A. B.C. D.4.关于x的一元二次方程mx2−2x−1=0有两个不相等的实数根,则m的最小整数值是( )A. −2B. −1C. 0D. 15.不等式组{3x−1≤5x+1≥0的解集在数轴上表示正确的是( )A. B.C. D.6.下列说法正确的是( )A. 为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B. “煮熟的鸭子飞了”是一个随机事件C. 一组数据的中位数可能有两个D. 从分别标有−1、1、2的三张卡片中一次抽取2张,卡片上的两个数的乘积为负数的概率是237.如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C为圆心,以大于1AC的长度为半径作弧,两弧2相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E.若CD=3,则BD的长为( )A. 4B. 5C. 6D. 78.如图,正五边形ABCDE边长为6,以A为圆心,AB为半径画圆,图中阴影部分的面积为( )πA. 18B. 4ππC. 545D. 12π9.甲、乙两人沿同一直线同时同向出发去往B地,运动过程中甲、乙两人离B地的距离y(km)与出发时间t(ℎ)的关系如图所示,则甲到达B地时两人相距( )A. 20kmB. 30kmC. 40kmD. 50km10.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。

辽宁省抚顺市中考数学真题试题(含解析)

辽宁省抚顺市中考数学真题试题(含解析)

辽宁省抚顺市xx年中考数学真题试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣D.2.(3.00分)下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸3.(3.00分)下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x24.(3.00分)二次根式在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<15.(3.00分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差6.(3.00分)一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三,四象限 D.第二、三、四象限7.(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)8.(3.00分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B. C.πD.2π9.(3.00分)如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4 C.2D.210.(3.00分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本题共8小题,每小题3分,共24分)11.(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为.12.(3.00分)分解因式:xy2﹣4x= .13.(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s 甲2=0.007,s乙2=0.003,则两名运动员中,的成绩更稳定.14.(3.00分)一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为.15.(3.00分)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .16.(3.00分)如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是.17.(3.00分)如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为.18.(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O xx的坐标为.三、解答题(第19题10分,第20题12分,共22分)19.(10.00分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(12.00分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)22.(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?五、解答验(满分12分)23.(12.00分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.六、解答题(满分12分)24.(12.00分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?七、解答题(满分12分)25.(12.00分)如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC 在AC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).八、解答题(满分14分)26.(14.00分)如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C 出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣的绝对值是:.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.2.(3.00分)下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3.00分)下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的•法则解答即可.【解答】解:A、原式不能合并,错误;B、(x+3)2=x2+6x+9,错误;C、(xy2)3=x3y6,正确;D、x10÷x5=x5,错误;故选:C.【点评】此题考查了同底数幂的乘除法,完全平方公式,以及合并同类项,熟练掌握公式及运算法则是解本题的关键.4.(3.00分)二次根式在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<1【分析】根据二次根式有意义的条件可得1﹣x≥0,再解不等式即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1,故选:B.【点评】此题主要考查了二次根式有意义的条件,二次根式中的被开方数是非负数.5.(3.00分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.(3.00分)一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三,四象限 D.第二、三、四象限【分析】根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.【解答】解:∵﹣1<0,∴一次函数y=﹣x﹣2的图象一定经过第二、四象限;又∵﹣2<0,∴一次函数y=﹣x﹣2的图象与y轴交于负半轴,∴一次函数y=﹣x﹣2的图象经过第二、三、四象限;故选:D.【点评】本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.7.(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1).故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.8.(3.00分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B. C.πD.2π【分析】根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.【解答】解:∵∠BCD=30°,∴∠BOD=60°,∵AB是⊙O的直径,CD是弦,OA=2,∴阴影部分的面积是:=,故选:B.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.(3.00分)如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4 C.2D.2【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【解答】解:作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故选:A.【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.10.(3.00分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线的系数与图象的关系即可求出答案.【解答】解:①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴抛物线与y轴交于正半轴,∴c>0,∴abc>0.故正确;②∵0<2a≤b,∴>1,∴﹣<﹣1,∴该抛物线的对称轴在x=﹣1的左侧.故错误;③由题意可知:对于任意的x,都有y=ax2+bx+c≥0,∴ax2+bx+c+1≥1>0,即该方程无解,故正确;④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴当x=﹣1时,y>0,∴a﹣b+c>0,∴a+b+c≥2b,∵b>0,∴≥2.故正确.综上所述,正确的结论有3个.故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数的关系,本题属于中等题型.二、填空题(本题共8小题,每小题3分,共24分)11.(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为8.27×109.【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8270000000=8.27×109,故答案为:8.27×109.【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:xy2﹣4x= x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s 甲2=0.007,s乙2=0.003,则两名运动员中,乙的成绩更稳定.【分析】根据方差的性质,可得答案.【解答】解:=1.70m,=1.70m,s 甲2=0.007,s乙2=0.003,∵=,s 甲2>s乙2,则两名运动员中,乙的成绩更稳定,故答案为:乙.【点评】本题考查了方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3.00分)一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为 2 .【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2,故答案为:2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.15.(3.00分)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= 40°.【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°﹣(∠6+∠7)=40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.16.(3.00分)如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是10 .【分析】根据平行四边形的性质可知AD=BC=3,CD=AB=7,再由垂直平分线的性质得出AE=CE,据此可得出结论【解答】解:∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7.∵由作图可知,MN是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10.故答案为:10.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.17.(3.00分)如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为或.【分析】分两种情形画出图形,即可解决问题;【解答】解:如图,在Rt△AOB中,OB==10,①当△A′OB′在第三象限时,MM′=.②当△A″OB″在第二象限时,MM′=,故答案为或.【点评】本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O xx的坐标为(21010﹣2,21009).【分析】由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O xx的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O xx的坐标为(21010﹣2,21009).【解答】解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O xx的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O xx的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).【点评】本题考查规律型:点的坐标,一次函数的应用,解题的关键是学会探究规律的方法,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(第19题10分,第20题12分,共22分)19.(10.00分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.【解答】解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.20.(12.00分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.【分析】(1)根据B组人数以及百分比计算即可解决问题;(2)求出C组人数,画出条形图即可解决问题;(3)用500ד十分了解”所占的比例即可;(4)先画出树状图,继而根据概率公式可求出两位参赛选手恰好是一男一女的概率.【解答】解:(1)15÷30%=50(人),答:本次调查了50名学生.(2)50﹣10﹣15﹣5=10(人),条形图如图所示:(3)500×=100(人),答:该校共有500名学生,请你估计“十分了解”的学生有100名.(4)树状图如下:共有12种等可能情况,其中所选两位参赛选手恰好是一男一女有6种.所以,所选两位参赛选手恰好是一男一女的概率P==.【点评】本题考查了折线统计图、树状图法求概率的知识,信息量较大,注意仔细认真审题,培养自己的读图能力,善于寻找解题需要的信息,属于中考常考题型.四、解答题(第21题12分,第22题12分,共24分)21.(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.五、解答验(满分12分)23.(12.00分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E==,推出=,可得CD=BC=6,再利用勾股定理即可解决问题;【解答】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.【点评】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.六、解答题(满分12分)24.(12.00分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w 的值即可.【解答】解:(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.七、解答题(满分12分)25.(12.00分)如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC在AC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).【分析】(1)①先判断出△ABC是等边三角形,进而判断出∠CBP=∠CAQ,即可判断出△BPC≌△AQC,再判断出△PCQ是等边三角形,进而得出CE=QE,即可得出结论;②同①的方法即可得出结论;(2)先判断出,∠PAQ=90°﹣∠ACQ,∠BAP=90°﹣∠ACQ,进而得出∠BCP=∠ACQ,即可判断出进而判断出△BPC∽△AQC,最后用锐角三角函数即可得出结论.【解答】解:(1)①DE=AQ,DE∥AQ,理由:连接PC,PQ,在△ABC中,AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AB=BC,BD⊥AC,∴AD=CD,∠ABD=∠CBD=∠BAC,∵∠CAF=∠ABC,∴∠CBP=∠CAQ,。

2023年辽宁省抚顺市、葫芦岛市数学中考试卷(含解析)

2023年辽宁省抚顺市、葫芦岛市数学中考试卷(含解析)

2023年辽宁省抚顺市、葫芦岛市中考数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 3的相反数是( )A. 13B. −13C. 3D. −32. 如所示图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.3. 下列运算正确的是( )A. x3÷x2=xB. x2⋅2x3=2x6C. x+3x2=4x3D. (x3)2=x54.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的主视图是( )A.B.C.D.5. 某校对部分参加夏令营的中学生的年龄进行统计,结果如下表:年龄/岁131415161718人数/人58112097则这些学生年龄的众数是( )A. 13岁B. 14岁C. 15岁D. 16岁6. 在一个不透明的袋子中装有6个白球和14个红球,这些球除颜色外无其他差别,随机从袋子中摸出一个球,则摸到白球的概率为( )A. 13B. 37C. 310D. 7107.如图,直线AB,CD被直线EF所截,AB//CD.∠1=122°,则∠2的度数为( )A. 48°B. 58°C. 68°D. 78°8. 《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马速度的2倍,求规定时间.设规定时间为x天,所列方程正确的是( )A. 900x+1×2=900x−3B. 900x+1=900x−3×2C. 900x−1×2=900x+3D. 900x−1=900x+3×29.如图,在△ABC中,AB=AC,∠CAB=30°,BC=32,按以下步骤作图:①分别以点A和点B为圆心,大于12AB长为半径作弧,两弧相交于E,F两点;②作直线EF交AB于点M,交AC于点N,连接BN,则AN的长为( )A. 2+3B. 3+3C. 23D. 3310. 如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB= 6,连接BC,∠MAN的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG//AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是( )A. B.C. D.二、填空题(本大题共8小题,共24.0分)11. 若a−2有意义,则实数a的取值范围是______ .12. 分解因式:2m2−18=______.13. 若关于x的一元二次方程x2−6x+k=0有两个不相等的实数根,则k的取值范围是______ .14. 某跳远队准备从甲、乙两名运动员中选取一名成绩稳定的参加比赛.这两名运动员10次测试成绩(单位:m)的平均数是−x甲=6.01,−x乙=6.01,方差是s2甲=0.01,s2乙=0.02,那么应选______ 去参加比赛.(填“甲”或“乙”)15. 如图,在Rt△ABC中,∠ACB=90°,点D为BC的中点,过点C作CE//AB交AD的延长线于点E,若AC=4,CE=5,则CD的长为______ .16.如图,在平面直角坐标系中,点A的坐标为(0,2),将线段AO绕点A逆时针旋转120°,得到线段AB,连接OB,点B恰好落在反比例函数y=kx(x>0)的图象上,则k的值是______ .17. 如图,平行四边形ABCD的对角线AC,BD相交于点O,过点B作BE//AC,交DA的延长线于点E,连接OE,交AB于点F,则四边形BCOF的面积与△AEF的面积的比值为______ .18. 如图,在矩形ABCD中,AB=8,AD=10,点M为BC的中点,E是BM上的一点,连接AE,作点B关于直线AE的对称点B′,连接DB′并延长交BC于点F.当BF最大时,点B′到BC的距离是______ .三、解答题(本大题共8小题,共96.0分。

XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版)

XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版)

XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版) 正确的()8422236236222a . a \a = ab。

(﹣2a) = ﹣8a特区?a = a d(a-3)= a-925。

我校四名跳远运动员前10次跳远测试的平均成绩是一样的,方差s如表所示。

如果有一名跳远成绩最稳定的运动员被选中参加抚顺市运动会,被选中的参赛选手是()参赛选手甲、乙、丙、丙、丁、丁。

为了实践“绿色生活”的理念,甲、乙双方每天都要骑自行车。

甲以匀速骑行30公里,乙以匀速骑行25公里。

众所周知,a的时速比b高2公里,假设a的时速是x公里。

根据标题中列出的等式,正确的等式是()a.3 025?x?2x B.3025?xx?2摄氏度3025?xx?2 D.3025?x?2x7..如图所示,直线l1和l2分别穿过矩形ABCD的顶点A和D,使得L1 ∪l2、l2和边BC在点P相交。

如果∪1 = 38,则ABCD是()A.162B.152C.142 8。

如果主函数y=kx+b的图像如图所示。

则()d . 1281a . k 0,b > 0 9。

下列事件之一是()a .任意绘制一个规则的五边形。

它是一个中心对称图c.k 0d.k > 0,b b。

3是有意义的,那么实数x > 3 c a,b都是实数。

如果a=38,b=4,则a > bd.5数据分别为:6,6,3,2,1,则这组数据的中位数为310。

如图所示,菱形ABCD的边长为2,a .b .c .d .2 .填空(这个大问题有8个条目,每个条目有3分。

共24分)211。

因式分解:a b-a = 0 .212。

假设x上的等式x+2x-m = 0有实数解,则m的取值范围为. 13。

如图所示,用平行的反面切两张纸。

随机重叠,重叠部分形成四边形ABCD,当线段AD=3时,线段BC的长度为。

14。

众所周知,A(x1,y1),B(x2,y2)是反比函数Y??3图像上的两点,以及x1 > x2 > 0,y1 y2x(填充”>“或” 15。

辽宁省抚顺市、本溪市、辽阳市2020年中考数学试题(Word版,含答案与解析)

辽宁省抚顺市、本溪市、辽阳市2020年中考数学试题(Word版,含答案与解析)

辽宁省抚顺市、本溪市、辽阳市2020年中考数学试题一、选择题(本题共10小题,每小题3分,共30分.)(共10题;共30分)1.-2的倒数是( )A. −12B. -2 C. 12D. 2【答案】A【考点】有理数的倒数【解析】【解答】解:1÷(-2)=-12;故答案为:A .【分析】根据用1除以一个数得出这个数的倒数的方法即可求解。

2.下图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A. B.C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:从几何体的正面看,上面是一个等腰三角形,下面是一个矩形.故答案为:C.【分析】从物体的正面所看的的平面图形是主视图,圆锥的主视图是个等腰三角形,长方体的主视图是个矩形,据此判断即可.3.下列运算正确的是()A. m2+2m=3m3B. m4÷m2=m2C. m2⋅m3=m6D. (m2)3=m5【答案】B【考点】同底数幂的乘法,合并同类项法则及应用,幂的乘方【解析】【解答】A、m2与2m不是同类项,不能合并,故A选项错误;B、m4÷m2=m2,故B正确;C、m2·m3=m5,故C错误;D、(m2)3=m6,故D错误.故答案为:B.【分析】A、m2与2m不是同类项,不能合并,据此判断即可;B、利用同底数幂相除,底数不变指数相减进行计算,然后判断即可;C、利用同底数幂相乘,底数不变指数相加进行计算,然后判断即可;D、利用幂的乘方,底数不变指数相乘进行计算,然后判断即可.4.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【答案】 D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既不是轴对称图形,也不是中心对称图形,故B不符合题意;C、是轴对称图形,不是中心对称图形,故C不符合题意;D、既是轴对称图形,又是中心对称图形,故D符合题意;故答案为:D.【分析】中心对称图形:把一个图形绕着某一点旋转180°后,旋转后的图形能够与原来的图形重合,轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即可.5.某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A. 甲 B. 乙 C. 丙 D. 丁【答案】A【考点】方差【解析】【解答】解:∵3.6<4.6<6.3<7.3,∴数学成绩最稳定的是甲.故答案为:A.【分析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是()A. 15°B. 20°C. 25°D. 40°【答案】C【考点】平行线的性质,等腰直角三角形【解析】【解答】解:∵直尺的两边互相平行,∠1=20°,∴∠DCA=∠1=20°,∵∠BCA=45°,∴∠2=∠BCA-∠1=25°.故答案为:C.【分析】根据两直线平行,内错角相等,可得∠DCA=∠1=20°,由∠2=∠BCA-∠1即可求出结论.7.一组数据1,8,8,4,6,4的中位数是()A. 4B. 5C. 6D. 8【答案】B【考点】中位数【解析】【解答】解:将数据从小到大进行排列:1,4,4,6,8,8,中位数为4+62=5.故答案为:B.【分析】将6个数据从小到大进行排列,第3个与第4个数据的平均数即为中位数,据此解答即可. 8.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A. 3000x =4200x−80B. 3000x+80=4200xC. 4200x =3000x−80 D. 3000x=4200x+80【答案】 D【考点】分式方程的实际应用【解析】【解答】解:设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x+80)件,= 故答案为:D.【分析】设原来平均每人每周投递快件x 件,可得现在平均每人每周投递快件(x+80)件,根据前后快递公司的快递员人数不变,列出方程即可.9.如图,四边形 ABCD 是菱形,对角线 AC , BD 相交于点O , AC =8 , BD =6 ,点E 是 CD 上一点,连接 OE ,若 OE =CE ,则 OE 的长是( )A. 2B. 52 C.3 D. 4【答案】 B【考点】等腰三角形的性质,勾股定理,菱形的性质,直角三角形斜边上的中线【解析】【解答】解:∵四边形ABCD 是菱形,AC=8,BD=6,∴CO=12AC=4,OD=12BD=3,AC ⊥BD ,∴DC=√OC 2+OD 2=5,∠EOC+∠DOE=90°,∠DCO+∠ODC=90°,∵OE=CE ,∴∠EOC=∠ECO ,∴∠DOE=∠ODC ,∴DE=OE ,∴OE=12CD=52. 故答案为:B.【分析】根据菱形的性质,可得CO=12AC=4,OD=12BD=3,AC ⊥BD ,利用勾股定理及等角的余角相等,可得DC=5,∠DOE=∠ODC ,可得DE=OE ,从而可得DE=OE=CE ,继而得出OE=12CD ,据此即可求出结论. 10.如图,在 Rt ΔABC 中, ∠ACB =90° , AC =BC =2√2 , CD ⊥AB 于点D.点 P 从点A 出发,沿 A →D →C 的路径运动,运动到点C 停止,过点 P 作 PE ⊥AC 于点E ,作 PF ⊥BC 于点F.设点P 运动的路程为x ,四边形 CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A. B.C. D.【答案】 A【考点】动点问题的函数图象【解析】【解答】解:当点P 在AD 上时,则AP=x ,∵∠ACB=90°,AC=BC=2√2 , ∴AB=√2AC=4,∠A=45°,∴△AEP 是等腰直角三角形三角形, ∴AE=EP=√22AP=√22x ,CE=AC-CE=2√2-√22x , ∴四边形CEPF 的面积=PE·CE=√22x·(2√2-√22x )=-12x 2+2x ,∴当0<x <2时,抛物线开口向下; 当点P 在CD 上时,如图∵∠ACB=90°,CD ⊥AB ,AC=BC ,∴AD=BD ,△CEP 为等腰直角三角形三角形∴CD=12AB=2,∵AD+DP=x ,∴CP=CD+AD-x=4-x ,∴CE=PE=√22CP=√22(4-x ), ∴四边形CEPF 的面积=PE·CE=√22(4-x )·√22(4-x )=12(4-x )2 , ∴当x >2时,抛物线开口向上; 故答案为:A.【分析】当点P 在AD 上时,则AP=x ,利用勾股定理求出求出AB=4,易证△AEP 是等腰直角三角形三角形,从而求出AE=EP=√22AP=√22x ,CE=AC-CE=2√2-√22x ,利用矩形的面积公式求出y 与x 的关系式即可;当点P在CD上时,先求出CP=CD+AD-x=4-x,可证△CEP为等腰直角三角形三角形,从而求出PE与CE的长,利用矩形的面积公式求出y与x的关系式,据此逐一判断即可.二、填空题(本题共8小题,每小题3分,共24分)(共8题;共24分)11.截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为________. 【答案】1.98×105【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:198000 =1.98×100000=1.98×105.故答案为:1.98×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,据此解答即可.12.若一次函数y=2x+2的图象经过点(3,m),则m=________.【答案】8【考点】一次函数的图象【解析】【解答】解:将(3,m)代入y=2x+2中,得2×3+2=m,解得m=8.故答案为:8.【分析】根据一次函数图象上点的坐标特征,将(3,m)代入y=2x+2中即可求出m的值.13.若关于x的一元二次方程x2+2x−k=0无实数根,则k的取值范围是________.【答案】k<-1【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵关于x的一元二次方程x2+2x−k=0无实数根,∴△=22-4×1×(-k)<0,解得k<-1.【分析】由于关于x的一元二次方程x2+2x−k=0无实数根,可得根的判别式△=b2-4ac<0,据此解答即可.14.下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是________.【答案】59【考点】几何概率【解析】【解答】解:图案中共有9个小正方形,其中有5个小正方形是阴影,.∴这个点取在阴影部分的概率为59.故答案为:59【分析】用阴影小正方形的个数比上小正方形的总个数即可算出答案.15.如图,在ΔABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME 并延长,交BC的延长线于点D,若BC=4,则CD的长为________.【答案】2【考点】三角形全等及其性质,三角形全等的判定(AAS),三角形的中位线定理【解析】【解答】解:∵M,N分别是AB和AC的中点,BC=4,∴MN=1BC=2,MN∥BC,∴∠NME=∠D,2∵点E是CN的中点,∴EN=CE,∵∠MEN=∠DEC,∴△MEN≌△DEC(AAS)∴DC=MN=2.故答案为:2.BC=2,MN∥BC,利用平行线的性质可得∠NME=∠D,根据【分析】根据三角形中位线定理可得MN=12AAS可证△MEN≌△DEC,利用全等三角形对应边相等可得DC=MN=2.AB的长16.如图,在RtΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于12为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为________.【答案】5【考点】线段垂直平分线的性质,勾股定理【解析】【解答】解:由题意得MN垂直平分AB,∴AE=BE,设BE=AE=x,∴AC=CE+AE=x+3,,∵AC=2BC,∴BC=x+32在Rt△BCE中,BC2+CE2=BE2,即(x+3)2+32=x2,解得x1=5,x2=-3(舍去),2∴BE=5.故答案为:5.【分析】根据尺规作图,可得MN 垂直平分AB ,即得AE=BE ,可设BE=AE=x ,从而可得AC=CE+AE=x+3,BC=12AC=x+32,在Rt △BCE 中利用勾股定理可得BC 2+CE 2=BE 2 , 即(x+32)2+32=x 2 , 解出x 的值即可.17.如图,在 ΔABC 中, AB =AC ,点A 在反比例函数 y =k x ( k >0 , x >0 )的图象上,点B ,C在x 轴上, OC =15OB ,延长 AC 交y 轴于点D ,连接 BD ,若 ΔBCD 的面积等于1,则k 的值为________.【答案】 3【考点】反比例函数系数k 的几何意义,等腰三角形的性质,相似三角形的判定与性质【解析】【解答】解:过点A 作AH ⊥BC ,∵AC=BC ,∴CH=BH=12BC ,∵OC=15OB ,∴OC :CB=1:4,∴OC :OH=1:3,∵△BCD 的面积=12BC·OD=1,∴BC·OD=2,∴2CH·OD=2,即得CH·OD=1,∵AH ∥OD ,∴△OCD ∽△HCA ,∴AH OD =CH OC ,∴AH·OC=OD·CH=1,∵OC :OH=1:3,∴AH·13OH=1,∴AH·OH=3,∴K=AH·OH=3.故答案为:3.【分析】过点A 作AH ⊥BC ,根据等腰三角形的性质,可得CH=BH=12BC ,利用△BCD 的面积=1,可得CH·OD=1,利用两角分别相等可证△OCD ∽△HCA ,可得AH OD =CH OC , 可得AH·OC=OD·CH=1,由K=AH·OH 即可求出结论.18.如图,四边形 ABCD 是矩形,延长 DA 到点 E ,使 AE =DA ,连接 EB ,点 F 1 是 CD 的中点,连接 EF 1 , BF 1 ,得到 ΔEF 1B ;点 F 2 是 CF 1 的中点,连接 EF 2 , BF 2 ,得到 ΔEF 2B ;点 F 3 是 CF 2 的中点,连接 EF 3 , BF 3 ,得到 ΔEF 3B ;…;按照此规律继续进行下去,若矩形 ABCD 的面积等于2,则 ΔEF n B 的面积为________.(用含正整数 n 的式子表示)【答案】 2n +12n【考点】三角形的面积,矩形的性质,探索图形规律【解析】【解答】解:∵矩形ABCD 的面积为2,可设BC=AD=1,DC =AB=2,∴AE=AD=1,DF 1=CF 1=1,∴△EAB 的面积=12×1×2=1,△EDF 1的面积=12×1×2=1,△BCF 1的面积=12×1×1=12 ,∴△EF 1B 的面积=矩形ABCD 的面积+△EAB 的面积-△EDF 1的面积-△BCF 1的面积=32=2+12 , 同理可求出△EDF 2的面积=12×32×2=32 , △BCF 2的面积=12×1×12=14 ,∴△EF 2B 的面积=矩形ABCD 的面积+△EAB 的面积-△EDF 2的面积-△BCF 2的面积=54=22+122; ······,∴△EF n B=2n +12n ;故答案为:2n +12n. 【分析】由矩形ABCD 的面积为2,可设BC=AD=1,DC =AB=2,可得AE=AD=1,DF 1=CF 1=1,利用三角形的面积公式分别求出△EAB 的面积,△EDF 1的面积,△BCF 1的面积,利用△EF 1B 的面积=矩形ABCD 的面积+△EAB 的面积-△EDF 1的面积-△BCF 1的面积求出其面积,同理求出△EF 2B 的面积,根据结果得出△EF n B 的面积.三、解答题(第19题10分,第20题12分,共22分)(共2题;共22分)19.先化简,再求值: (x x−3−13−x )÷x+1x 2−9 ,其中 x =√2−3 .【答案】解:(xx−3−13−x)÷x+1x2−9=x+1x−3÷x+1x2−9=x+1x−3⋅(x+3)(x−3)x+1=x+3当x=√2−3时原式=√2−3+3=√2【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加减,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转化为乘法进行约分,即化为最简,最后将x的值代入计算即可.20.为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D (x≥6),并根据调查结果绘制了如两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为________°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.【答案】(1)50(2)108(3)解:由条形图和扇形图可知,D等级的人数是15名,所占百分比是26%所以样本容量为:15÷26%=50,所以C等级人数为:50−(4+13+15)=18补图如下:(4)解:方法一:列表如下,总共有12种结果,且每种结果出现的可能性相同,恰好选中甲和乙的结果有2种,所以P(恰好选中甲和乙)=212=16方法二:画树状图得,总共有12种结果,且每种结果出现的可能性相同,恰好选中甲和乙的结果有2种,所以P(恰好选中甲和乙)=212=16.【考点】扇形统计图,条形统计图,列表法与树状图法【解析】【解答】解:(1)本次共调查了13÷26%=50人;故答案为:50;(2)等级D所对应的扇形的圆心角为360°×1550=108°;故答案为:108;【分析】(1)利用等级B的人数除以其百分比即得共调查的人数;(2)利用360°乘以等级D的百分比即得结论;(3)利用调查的总人数分别减去等级A的人数、等级B的人数、等级D的人数即得等级C的人数,然后补图即可;(4) 根据列表法或树状图列举出共有12种结果,且每种结果出现的可能性相同,恰好选中甲和乙的结果有2种,然后利用概率公式计算即可.四、解答题(第21题12分,第22题12分,共24分)(共2题;共24分)21.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?【答案】 (1)解:设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据题意,得{x +2y =1702x +3y =290解得 {x =70y =50答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.(2)解:设学校计划购买甲种词典m 本,则购买乙种词典 (30−m) 本,根据题意,得70m +50(30−m)≤1600解得 m ≤5答:学校最多可购买甲种词典5本.【考点】一元一次不等式的应用,二元一次方程组的应用-和差倍分问题【解析】【分析】(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据购买1本甲种词典和2本乙种词典170元,购买2本甲种词典和3本乙种词典共需290元,列出方程组并解出方程组即可;(2)设学校计划购买甲种词典m 本,可得购买乙种词典 (30−m)本,根据甲种词典的总费用+乙种词典的总费用≤1600元,列出不等式并解出不等式即可.22.如图,我国某海域有A ,B 两个港口,相距80海里,港口B 在港口A 的东北方向,点 C 处有一艘货船,该货船在港口A 的北偏西30°方向,在港口B 的北偏西75°方向,求货船与港口A 之间的距离.(结果保留根号)【答案】 解:过点A 作 AD ⊥BC 于点D根据题意,得∠ABC=180°−75°−45°=60°∵AD⊥BC∴∠ADB=90°∴∠DAB=180°−∠ADB−∠ABC=180°−90°−60°=30°在RtΔABD中∵AB=80,∠ABD=60°∴AD=AB⋅sin∠ABD=80⋅sin60°=40√3∵∠CAB=30°+45°=75°∴∠DAC=∠CAB−∠DAB=75°−30°=45°在RtΔACD中∵AD=40√3,∠DAC=45°∴AC=ADcos∠DAC=40√3×√2=40√6答:货船与港口A之间的距离是40√6海里.【考点】解直角三角形的应用﹣方向角问题【解析】【分析】过点A作AD⊥BC于点D,可得∠ADB=90°,利用平角定义可求出∠ABC=60°,利用三角形内角和可求出∠BAD=30°,可求出∠CAD=∠BAC-∠BAD=45°,在Rt△ABD中,可得AD=AB·sin∠ABD=40√3米,在Rt△ACD中,AC=ADcos∠DAC=40√6米,从而求出结论.五、解答题(满分12分)(共1题;共12分)23.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?【答案】(1)解:设y与x之间的函数关系式为y=kx+b(k≠0),根据题意,得{12k+b=9014k+b=80解得{k=−5b=150∴y与x之间的函数关系式为y=−5x+150(2)解:根据题意,得w=(x−10)(−5x+150)=−5x2+200x−1500=−5(x−20)2+500∵a=−5<0∴抛物线开口向下,w有最大值∴当x<20时,w随x的增大而增大∵10≤x≤15,且x为整数∴当x=15时,w有最大值即w=−5×(15−20)2+500=375答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗于液每天销售利润最【考点】二次函数的实际应用-销售问题【解析】【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据每天的总利润=单件的利润×每天的销售量,即得w与x的函数关系式,然后利用二次函数性质求出其最大利润即可.六、解答题(满分12分)(共1题;共12分)24.如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.【答案】(1)证明:连接AE∵四边形ABCD是平行四边形∴AD=BC,AD//BC∴∠DAE=∠AEB∵AE=AB∴∠AEB=∠ABC∴∠DAE=∠ABC∴ΔAED≌ΔBAC∴∠DEA=∠CAB∵∠CAB=90°∴∠DEA=90°∴DE⊥AE∵AE是⊙A的半径∴DE与⊙A相切(2)解:∵∠ABC=60°,AB=AE∴ΔABE是等边三角形∴AE=BE,∠EAB=60°∵∠CAB=90°∴∠CAE=90°−∠EAB=90°−60°=30°∠ACB=90°−∠B=90°−60°=30°∴∠CAE=∠ACB∴AE=CE∴CE=BE∴SΔACE=SΔABE=12SΔABC∵在RtΔABC中,∠CAB=90°,∠ABC=60°,AB=4∴AC=AB⋅tan∠ABC=4×tan60°=4√3∴SΔABC=12AB⋅AC=12×4×4√3=8√3∴SΔACE=12SΔABC=12×8√3=4√3∵∠CAE=30°,AE=4S扇形AEF =30π×AE2360=30π×42360=4π3∴S阴影=SΔACE−S扇形AEF=4√3−4π3【考点】等边三角形的判定与性质,平行四边形的判定,切线的判定,扇形面积的计算【解析】【分析】(1)连接AE,根据平行四边形的性质,可得AD=BC,AD∥BC,可得∠DAE=∠AEB,根据AAS可证△AED≌△BAC,可得∠AED=∠CAB=90°,根据切线的判定定理可证DE与⊙A相切;(2)先证△ABE是等边三角形,可得AE=BE,∠EAB=90°,从而可得∠CAE=∠CAB-∠EAB=30°,∠ACB=90°-∠B=30°,从而可得∠CAE=∠ACB,利用等角对等边可得AE=CE,由等量代换可得CE=BE,根据等底同高可得S△ACE=S△ABE=12S△ABC,在Rt△ABC中,∠ABC=60°,AB=4,利用解直角三角形求出AC=4ABC=8√S△ACE=12S△ABC=4ACE-S扇形AEF,利用扇形的面积公式即可求出结论.七、解答题(满分12分)(共1题;共12分)25.如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D 是射线CB上的动点(点D不与点C和点B重合).作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.【答案】(1)∠AEB=45°(2)解:AE=√3BE+CE,理由如下:在AD上截取AF=CE,连接BF,过点B作BH⊥EF于点H.∵∠ABC=∠AEC、∠ADB=∠CDE∴180°−∠ABC−∠ADB=180°−∠AEC−∠CDE ∴∠A=∠C∵BA=BC∴ΔABF≌ΔCBE(SAS)∴∠ABF=∠CBE,BF=BE∴∠ABF+∠FBD=∠CBE+∠FBD∴∠FBE=∠ABC∵∠ABC=120°∴∠FBE=120°∵BF=BE∴∠BFE=∠BEF=12(180°−∠FBE)=12(180°−120°)=30°∵BH⊥EF于点H ∴∠BHE=90°∴在RtΔBHE中,FH=EH=BE⋅cos∠BEH=BE⋅cos30°=√32BE∴FE=FH+EH=√32BE+√32BE=√3BE∵AE=AF+FE,AF=CE ∴AE=CE+√3BE(3)3+√32或3−√32【考点】三角形内角和定理,三角形全等及其性质,等腰三角形的性质,解直角三角形,三角形全等的判定(SAS)【解析】【解答】解:(1)在AD上截取AF=CE,连接BF,∵∠AEC=∠ABC=a=90°,∠ADB=∠CDE,∴∠A=∠C,∵AB=BC,AF=CE,∴△AFB≌△CEB(SAS),∴BF=BE,∠ABF=∠CBE,∵∠ABD=∠ABF+∠DBF=∠CBE+∠DBF=∠FBE=90°,∴△FBE是等腰直角三角形,∴∠AEB=45°;(3)当点D在线段CB上时,由(2)且tan∠DAB=13,设BH=x,AH=3x,∴BF=2BH=2x,∴FH=√3x,BE=BF=2x,∴CE=AF=AH-FH=3x-√3x,∴CEBE =3−√32;当点D在射线CB上时,同理可得CEBE =3+√32,综上所述CEBE的值为【分析】(1)在AD上截取AF=CE,连接BF,根据三角形的内角和可得∠A=∠C,根据SAS可证△AFB≌△CEB,可得BF=BE,∠ABF=∠CBE,从而可得∠FBE=∠CBE+∠DBF=∠ABF+∠DBF=∠ABD=90°,可证得△FBE是等腰直角三角形,从而得出∠AEB=45°;(2)在AD上截取AF=CE,连接BF,过点B作BH⊥EF于点H,同(1)可证△AFB≌△CEB,可得BF=BE,∠ABF=∠CBE,从而可得∠FBE=∠ABC=120°,由于BF=BE,可得∠BFE=∠BEF=30°,在Rt△BHE,利用解直角三角形可求出FH=EH=√32BE,FE=FH+EH=√3BE,由于AE=AF+EF,AF=CE,可得出AE=CE+√3BE;(3)分两种情况讨论:①当点D在线段CB上时,②当点D在射线CB上时,分别解答即可.八、解答题(共1题;共14分)26.如图,抛物线y=ax2−2√3x+c(a≠0)过点O(0,0)和A(6,0),点B是抛物线的顶点,点D 是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合,连接EF,将ΔBEF沿EF折叠,点B的对应点为点B,ΔEFB′与ΔOBE的重叠部分为ΔEFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.【答案】 (1)解:把点 O(0,0) 和 A(6,0) 分别代入 y =ax 2−2√3x +c 中,得{c =036a −12√3+c =0解得 {a =√33c =0∴抛物线的解析式为 y =√33x 2−2√3x .(2)解:如图,设抛物线的对称轴与x 轴相交于点M ,与 OD 相交于点N∵ y =√33x 2−2√3x =√33(x −3)2−3√3∴顶点 B(3,−3√3) ,对称轴与x 轴的交点 M(3,0) ∴ OM =3 , MB =3√3∵在 Rt ΔOMB 中, tan ∠MOB =BM OM =3√33=√3∴ ∠MOB =60° ∵ ∠BOD =30°∴ ∠MOD =∠MOB −∠BOD =60°−30°=30°∴在 Rt ΔOMN 中, MN =OM ⋅tan ∠MON =3×tan30°=3×√33=√3∴ N(3,−√3)设直线 OD 的解析式是 y =kx ( k ≠0 ).把点 N(3,−√3) 代入,得3k =−√3 解得 k =−√33∴直线OD的解析式是y=−√33x∴−√33x=√33x2−2√3x解得x1=0(舍去),x2=5∴当x=5时,y=−5√33∴D(5,−5√33)(3)解:存在.H1(32,√32),H2(52,−3√32),H3(72,−3√32).【考点】待定系数法求二次函数解析式,矩形的性质,解直角三角形,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】解:(3)由(2)得∠COE=∠EOB=30°,CE=√3,当∠EFG=90°时,如图,点B',O,G重合,此时四边形EFGH是矩形,过点H作HP⊥x轴于点P,∴∠COE=∠EOB=30°∴OH=EF=CE=√3,∴∠HOP=90°-60°=30°,∴HP=12OH=√32,OP=√3HP=√3×√32=32.∴点H(32,√32);当∠ECG=90°时,此时四边形EGFH是矩形,如图,过点H作HQ⊥BC于点Q,∵∠CEO=90°-30°=60°,∠OEG=90°-30°=60°,∴∠BEG=180°-∠CEO-∠OEG=180°-60°-60°=60°∵将ΔBEF沿EF折叠,点B的对应点为点B,∴∠BEF=30°,在Rt△EGF中,∠GEF=30°,GE=CE=√3∴GF=GEtan30°=√3×√33=1,∴EH=GF=1∵∠HEQ=90°-∠BEG=90°-60°=30°∴HQ=12EH=12,EQ=√3HQ=√32∴点H(12+3,−√32−√3)即(72,−3√32);当点G在OD上时,且∠EGF=90°时,此时四边形EGFH是矩形∵∠BOE=30°,∴∠OFG=90°-∠EOB=60°,,根据折叠的性质可知:∠BFE=12∠BFG=12(180°−∠OFG)=60°,所以FG是线段OE的垂直平分线,∴OG=GE=12OE=√3,EH=FG=OGtan30°=1, 过点H作HK⊥BC于点K,∴∠HEK=180°-∠OEC-∠OEH=30°∴HK=12EH=12,EK=√3HK=√32∴点H(3−12,−√32−√3)即(52,−3√32)∴点H的坐标为(32,√32)或(72,−3√32)或(52,−3√32).【分析】(1)利用待定系数法求出抛物线解析式y=√33x2−2√3x;(2)如图,设抛物线的对称轴与x轴相交于点M,与OD相交于点N,利用抛物线解析式求出顶点B(3,−3√3),对称轴与x轴的交点M(3,0),可得OM=3,MB=3√3,在Rt△OMB中,由于tan∠MOB=BMOM =3√33=√3,利用特殊角三角函数值可得∠MOB=60°,从而可得∠AOD=30°,在Rt△OMN中,MN=OM·tan∠MON=√3,可得N(3,√3),设直线OD的解析式为y=kx,将N的坐标代入求出K值,即得y=√33x,联立直线OD解析式与抛物线解析式为方程组,求出x,y的值,即得D的坐标. (3)由(2)可知∠COE=∠EOB=30°,CE=√3,分情况讨论:当∠EFG=90°时,如图,点B',O,G 重合,此时四边形EFGH是矩形,过点H作HP⊥x轴于点P,利用矩形的性质可得到OH=EF=CE=√3,利用解直角三角形求出HP,PO的长,即可得到点H的坐标;当∠ECG=90°时,此时四边形EGFH是矩形,如图,过点H作HQ⊥BC于点Q,由题意可求出∠OEG,∠BEG的度数,利用折叠的性质求出∠BEF的度数,再利用解直角三角形求出GF,EH的长;然后利用解直角三角形求出EQ,HQ的长,即可得到点H的坐标;当点G在OD上时,且∠EGF=90°时,此时四边形EGFH是矩形,利用折叠的性质求出∠BFE的度数,再求出OG,EH的长;过点H作HK⊥BC于点K,利用解直角三角形求出HK,EK的长,然后求出点H的坐标,综上所述可得符合题意的点H的坐标。

辽宁省抚顺市2021年中考[数学]考试真题与答案解析

辽宁省抚顺市2021年中考[数学]考试真题与答案解析

辽宁省抚顺市2021年中考[数学]考试真题与答案解析同卷城市:铁岭市一、选择题本题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各数中,比﹣1大的数是( )A.﹣3B.﹣2C.﹣1D.0【解答】解:∵﹣3<﹣1,﹣2<﹣1,﹣1=﹣1,0>﹣1,∴所给的各数中,比﹣1大的数是0.故选:D.2.如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是( )A.B.C.D.【解答】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:A.3.如图,直线a∥b,∠1=50°,∠2的度数为( )A.100°B.120°C.130°D.150°【解答】解:∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°,故选:C.4.下列运算正确的是( )A.x5+x5=x10B.(x3y2)2=x5y4C.x6÷x2=x3D.x2•x3=x5【解答】解:A、x5+x5=2x5,故此选项不符合题意;B、(x3y2)2=x6y4,故此选项不符合题意;C、x6÷x2=x4,故此选项不符合题意;D、x2•x3=x5,正确,故此选项符合题意;故选:D.5.某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:成绩(分)909195969799人数(人)232431则这组数据的中位数和众数分别为( )A.95,95B.95,96C.96,96D.96,97【分析】根据中位数、众数的意义分别求出中位数、众数即可.【解答】解:将这15名学生成绩从小到大排列,处在中间位置的一个数,即第8个数是96,因此中位数是96,这15名学生成绩出现次数最多的是96,共出现4次,因此众数是96,故选:C.6.某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是( )A.83分B.84分C.85分D.86分【解答】解:他的最终成绩为80×40%+90×60%=86(分),故选:D.7.如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是( )A.x=B.x=1C.x=2D.x=4【解答】解:∵线y=2x与y=kx+b相交于点P(m,2),∴2=2m,∴m=1,∴P(1,2),∴当x=1时,y=kx+b=2,∴关于x的方程kx+b=2的解是x=1,故选:B.8.如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD=20°,∠AED=80°,则∠COB的度数为( )A.80°B.100°C.120°D.140°【解答】解:∵∠ABD=20°,∠AED=80°,∴∠D=∠AED﹣∠ABD=80°﹣20°=60°,∴∠COB=2∠D=120°,故选:C.9.自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x元,则列出方程正确的是( )A.B.C.D.【解答】解:设甲种水杯的单价为x元,则乙种水杯的单价为(x﹣15)元,依题意得:=.故选:A.10.如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC 的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S与x之间函数关系的图象是( )A.B.C.D.【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=,∴△AMN的面积S==,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.二.填空题11.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为 9.899×107 .【解答】解:98990000=9.899×107,故答案为:9.899×107.12.27的立方根为 3 .【解答】解:∵33=27,∴27的立方根是3,故答案为:3.13.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是 (2,﹣4) .【解答】解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).故答案为:(2,﹣4).14.在一个不透明袋子中,装有3个红球,5个白球和一些黄球,这些球除颜色外无其他差别,从袋中随机摸出一个球是白球的概率为,则袋中黄球的个数为 7 .【解答】解:设有黄球x个,根据题意得:=,解得:x=7,经检验x=7是原方程的解,故答案为:7.15.如图,△ABC中,∠B=30°,以点C为圆心,CA长为半径画弧,交BC于点D,分别以点A,D为圆心,大于AD的长为半径画弧两弧相交于点E,作射线CE,交AB于点F,FH⊥AC于点H.若FH=,则BF的长为 2 .【解答】解:过F作FG⊥BC于G,由作图知,CF是∠ACB的角平分线,∵FH⊥AC于点H.FH=,∴FG=FH=,∵∠FGB=90°,∠B=30°.∴BF=2FG=2,故答案为:2.16.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕EF与AC相交于点O,连接BO.若AB=4,CF=5,则OB的长为 2 .【解答】解:连接AF,过O作OH⊥BC于H,如图:∵将矩形纸片ABCD折叠,使点A与点C重合,折痕EF与AC相交于点O,∴AF=CF=5,在Rt△ABF中,BF===3,∴BC=BF+CF=8,∵OA=OC,OH⊥BC,AB⊥BC,∴O为AC中点,OH∥AB,∴OH是△ABC的中位线,∴BH=CH=BC=4,OH=AB=2,在Rt△BOH中,OB===2,故答案为:2.17.如图,△AOB中,AO=AB,OB在x轴上C,D分别为AB,OB的中点,连接CD,E为CD上任意一点,连接AE,OE,反比例函数y=(x>0)的图象经过点A.若△AOE的面积为2,则k的值是 4 .【解答】解:如图:连接AD,△AOB中,AO=AB,OB在x轴上,C、D分别为AB,OB的中点,∴AD⊥OB,AO∥CD,∴S△AOE=S△AOD=2,∴k=4.故答案为:4.18.如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是 ①②④ .(填写所有正确结论的序号)【解答】解:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,∵∠BAC=∠EDC=60°,AC=2cm,DC=1cm,∴tan∠BAC==,tan∠BAC==,∴BC=2cm,CE=cm,∴==2,∴△ACD∽△BCE,故①正确;∵△ACD∽△BCE,∴∠EBC=∠DAC,如图,记BE与AD、AC分别交于F、G,∵∠AGF=∠BGC,∴∠BCG=∠BFA=90°,∴AD⊥BE,故②正确;∵∠EBC=∠DAC,∴∠CBE+∠DAE=∠DAC+∠DAE=∠CAE不一定等于45°,故③错误;如图,过点C作CH⊥AB于H,∵∠ABC=30°,∴CH=BC=cm,∴D到直线AB的最大距离为CH+CD=(+1)cm,∴△ABD面积的最大值为=(2+2)cm2,故④正确.故答案为:①②④.三、解答题19先化简,再求值:,其中m=.【答案】,.【解答】解:=•===,当m==4时,原式==.20某校以“我最喜爱的书籍”为主题,对全校学生进行随机抽样调查,每个被调查的学生必须从“科普”、“绘画”、“诗歌”、“散文”四类书籍中选择最喜欢的一类,学校的调查结果如图:图中信息解答下列问题(1)本次被调查的学生有 人;(2)根据统计图中“散文”类所对应的圆心角的度数为 ,请补充条形统计图.(3)最喜爱“科普”类的4名学生中有1名女生,3名男生,现从4名学生中随机抽取两人参加学校举办的科普知识宣传活动,请用列表或画树状图的方法求出所选的两人恰好都是男生的概率.【答案】(1)50;(2)72°;(3).【解答】解:(1)20÷40%=50(人),所以本次被调查的学生有50人;故答案为50;(2)“散文”类所对应的圆心角的度数为360°×=72°;最喜欢“绘画”类的人数为50﹣4﹣20﹣10=16(人),条形统计图补充为:故答案为72°;(3)画树状图为:共有12种等可能的结果,其中所选的两人恰好都是男生的结果数为6,所以所选的两人恰好都是男生的概率==.四、解答题21某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车【答案】(1)A型公交车每辆45万元,B型公交车每辆60万元;(2)该公司最多购买80辆A型公交车.【解答】解:(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意得:,解得:,答:A型公交车每辆45万元,B型公交车每辆60万元;(2)设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,由题意得:45m≤60(140﹣m),解得:m≤80,答:该公司最多购买80辆A型公交车.22某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)【答案】(1)300m;(2)204m.【解答】解:(1)过点C作CD⊥AB于点D,由题意得,∠A=30°,∠BCE=75°,AC=600m,在Rt△ACD中,∠A=30°,AC=600,∴CD=AC=300(m),AD=AC=300(m),∵∠BCE=75°=∠A+∠B,∴∠B=75°﹣∠A=45°,∴CD=BD=300(m),BC=CD=300(m),答:景点B和C处之间的距离为300m;(2)由题意得.AC+BC=600+300≈1024(m),AB=AD+BD=300+300≈820(m),1024﹣820=204(m),答:大桥修建后,从景点A到景点B比原来少走约204m.五、解答满分12分23某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个}与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每填的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售润最大?最大利润是多少元?【答案】(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售润最大,最大利润是2890元.【解答】解:(1)设函数关系式为y=kx+b,由题意可得:,解得:,∴函数关系式为y=﹣10x+540;(2)由题意可得:w=(x﹣20)y=(x﹣20)(﹣10x+540)=﹣10(x﹣37)2+2890,∵﹣10<0,∴当x=37时,w有最大值为2890,答:当销售单价定为37元时,才能使每天的销售润最大,最大利润是2890元.六、解答题24如图,在⊙O中,∠AOB=120°,=,连接AC,BC,过点A作AD⊥BC,交BC的延长线于点D,DA与BO的延长线相交于点E,DO与AC相交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,求线段DF的长.【答案】(1)详见解答;(2).【解答】解:(1)如图,连接OC,∵=,∴AC=BC,又∵OA=OB,OC=OC,∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC=∠AOB=60°,∴△AOC、△BOC是等边三角形,∴OA=AC=CB=OB,∴四边形OACB是菱形,∴OA∥BD,又∵AD⊥BD,∴OA⊥DE,∴DE是⊙O的切线;(2)由(1)得AC=OA=2,∠OAC=60°,∠DAC=90°﹣60°=30°,在Rt△ACD中,∠DAC=30°,AC=2,∴DC=AC=1,AD=AC=,在Rt△AOD中,由勾股定理得,OD===,∵OA∥BD,∴△CFD∽△AFO,∴=,又∵=sin30°=,AC=OA=2,∴=,∴=,即DF=OD=.七、解答题25如图,Rt△ABC中,∠ACB=90°,D为AB中点,点E在直线BC上(点E不与点B,C重合),连接DE,过点D作DF⊥DE交直线AC于点F,连接EF .(1)如图1,当点F与点A重合时,请直接写出线段EF与BE的数量关系;(2)如图2,当点F不与点A重合时,请写出线段AF,EF,BE之间的数量关系,并说明理由;(3)若AC=5,BC=3,EC=1,请直接写出线段AF的长.【答案】(1)EF=EB.(2)结论:AF2+BE2=EF2,证明见解析部分.(3)AF的长为或1.【解答】解:(1)结论:EF=BE.理由:如图1中,∵AD=DB,DE⊥AB,∴EF=EB.(2)结论:AF2+BE2=EF2.理由:如图2中,过点A作AJ⊥AC交ED的延长线于J,连接FJ.∵AJ⊥AC,EC⊥AC,∴AJ∥BE,∴∠AJD=∠DEB,在△AJD和△BED中,,∵△AJD≌△BED(AAS),∴AJ=BE,DJ=DE,∵DF⊥EJ,∴FJ=EF,∵∠FAJ=90°,∴AF2+AJ2=FJ2,∴AF2+BE2=EF2.(3)如图3﹣1中,当点E在线段BC上时,设AF=x,则CF=5﹣x.∵BC=3,CE=1,∴BE=2,∵EF2=AF2+BE=CF2+CE2,∴x2+22=(5﹣x)2+12,∴x=,∴AF=.如图3﹣2中,当点E在线段BC的延长线上时,设AF=x,则CF=5﹣x.∵BC=3,CE=1,∴BE=4,∵EF2=AF2+BE=CF2+CE2,∴x2+42=(5﹣x)2+12,∴x=1,∴AF=1,综上所述,满足条件的AF的长为或1.八、解答题26直线y=﹣x+3与x轴相交于点A,与y轴相交于点B,抛物线y=ax2+2x+c 经过点A,B,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是第一象限内抛物线上的一个动点,过点D作DE∥y轴交AB 于点E,DF⊥AB于点F,FG⊥x轴于点G.当DE=FG时,求点D的坐标;(3)如图2,在(2)的条件下,直线CD与AB相交于点M,点H在抛物线上,过H作HK∥y轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P 为顶点的四边形是正方形时,请直接写出点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)(2,3);(5,2)或(﹣1,2)或(1,2+)或(1,2﹣).【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x=3,∴A(3,0),∵抛物线y=ax2+2x+c经过点A,B,∴,∴,∴抛物线解析式为y=﹣x2+2x+3;(2)设D(m,﹣m2+2m+3),∵DE∥y轴交AB于点E,∴E(m,﹣m+3),∵OA=OB,∴∠OAB=45°,∴AG=FG,∵DE=FG,∴DE=AG,连接GE,延长DE交x轴于点T,∴四边形FGED是平行四边形,∵DF⊥AB,∴EG⊥AB,∴△AEG为等腰直角三角形,∴AT=ET=GT=3﹣m,∴AG=FG=6﹣2m,∴OG=3﹣(6﹣2m)=2m﹣3,∴F点横坐标为2m﹣3,∴FG=﹣2m+6,∴DT=﹣2m+6+3﹣m=﹣3m+9,∴﹣m2+2m+3=﹣3m+9,解得m=2或m=3(舍),∴D(2,3);(3)令y=0,则﹣x2+2x+3=0,解得x=3或x=﹣1,∴C(﹣1,0),设CD的解析式为y=kx+b,将C(﹣1,0)、D(2,3)代入,∴,∴,∴y=x+1,∴∠ACM=45°,∴CM⊥AM,联立x+1=﹣x+3,解得x=1,∴M(1,2),∵以点M,H,K,P为顶点的四边形是正方形,①当MH⊥MK时,H点在AB上,K点在CD上,∵H点在抛物线上,∴H(3,0)或H(0,3),当H(3,0)时,MH=2,∴KH=4,∴K(3,4)∴HK的中点为(3,2),则MP的中点也为(3,2),∴P(5,2);当H(0,3)时,MH=,∴KH=2,∴K(0,1),∴HK的中点为(0,2),则MP的中点也为(0,2),∴P(﹣1,2);②当MH⊥HK时,此时MH⊥y轴,∴H(1+,2)或H(1﹣,2),当H(1+,2)时,MH=,∴P(1,2+);当H(1﹣,2)时,MH=,∴P(1,2﹣);综上所述:当以点M,H,K,P为顶点的四边形是正方形时,P点坐标为(5,2)或(﹣1,2)或(1,2+)或(1,2﹣).。

2021年辽宁省抚顺市中考数学真题及答案

2021年辽宁省抚顺市中考数学真题及答案

2021年辽宁省抚顺市中考数学真题及答案一、选择题(本题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各数中,比﹣1大的数是()A.﹣3B.﹣2C.﹣1D.02.如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是()A. B. C. D.3.如图,直线a∥b,∠1=50°,∠2的度数为()A.100°B.120°C.130°D.150°4.下列运算正确的是()A.x5+x5=x10B.(x3y2)2=x5y4C.x6÷x2=x3D.x2•x3=x55.某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:成绩90 91 95 96 97 99(分)2 3 2 4 3 1人数(人)则这组数据的中位数和众数分别为()A.95,95B.95,96C.96,96D.96,976.某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是()A.83分B.84分C.85分D.86分7.如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是()A.x =B.x=1C.x=2D.x=48.如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD=20°,∠AED=80°,则∠COB的度数为()A.80°B.100°C.120°D.140°9.自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x元,则列出方程正确的是()A. B.C. D.10.如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A →B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S 与x之间函数关系的图象是()A. B.C. D.二、填空题(本题共8个小题,每小题3分,共24分)11.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.12.27的立方根为.13.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.14.在一个不透明袋子中,装有3个红球,5个白球和一些黄球,这些球除颜色外无其他差别,从袋中随机摸出一个球是白球的概率为,则袋中黄球的个数为. 15.如图,△ABC中,∠B=30°,以点C为圆心,CA长为半径画弧,交BC于点D,分别以点A,D为圆心,大于AD 的长为半径画弧两弧相交于点E,作射线CE,交AB于点F,FH⊥AC于点H.若FH=,则BF的长为.16.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕EF与AC相交于点O,连接BO.若AB=4,CF=5,则OB的长为.17.如图,△AOB中,AO=AB,OB在x轴上C,D分别为AB,OB的中点,连接CD,E为CD上任意一点,连接AE,OE,反比例函数y=(x>0)的图象经过点A.若△AOE的面积为2,则k的值是.18.如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是.(填写所有正确结论的序号)三、解答题(第19题10分,第20题12分,共22分)19先化简,再求值:,其中m=.20某校以“我最喜爱的书籍”为主题,对全校学生进行随机抽样调查,每个被调查的学生必须从“科普”、“绘画”、“诗歌”、“散文”四类书籍中选择最喜欢的一类,学校的调查结果如图:图中信息解答下列问题(1)本次被调查的学生有人;(2)根据统计图中“散文”类所对应的圆心角的度数为,请补充条形统计图.(3)最喜爱“科普”类的4名学生中有1名女生,3名男生,现从4名学生中随机抽取两人参加学校举办的科普知识宣传活动,请用列表或画树状图的方法求出所选的两人恰好都是男生的概率.四、解答题(第21题12分,第22题12分,共24分)21某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?22某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C 处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A 到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)五、解答满分12分23某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个}与销售单价x (元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每填的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售润最大?最大利润是多少元?六、解答题(满分12分)24如图,在⊙O中,∠AOB=120°,=,连接AC,BC,过点A作AD⊥BC,交BC的延长线于点D,DA与BO的延长线相交于点E,DO与AC相交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,求线段DF的长.七、解答题(满分12分)25如图,Rt△ABC中,∠ACB=90°,D为AB中点,点E在直线BC上(点E不与点B,C重合),连接DE,过点D 作DF⊥DE交直线AC于点F,连接EF.(1)如图1,当点F与点A重合时,请直接写出线段EF 与BE的数量关系;(2)如图2,当点F不与点A重合时,请写出线段AF,EF,BE之间的数量关系,并说明理由;(3)若AC=5,BC=3,EC=1,请直接写出线段AF的长.八、解答题(满分14分)26直线y=﹣x+3与x轴相交于点A,与y轴相交于点B,抛物线y=ax2+2x+c经过点A,B,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是第一象限内抛物线上的一个动点,过点D作DE∥y轴交AB于点E,DF⊥AB于点F,FG⊥x轴于点G.当DE=FG时,求点D的坐标;(3)如图2,在(2)的条件下,直线CD与AB相交于点M,点H在抛物线上,过H作HK∥y轴,交直线CD于点K.P 是平面内一点,当以点M,H,K,P为顶点的四边形是正方形时,请直接写出点P的坐标.参考答案与试题解析一.选择题(共10小题)1.下列各数中,比﹣1大的数是()A.﹣3B.﹣2C.﹣1D.0【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣3<﹣1,﹣2<﹣1,﹣1=﹣1,0>﹣1,∴所给的各数中,比﹣1大的数是0.故选:D.2.如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是()A. B. C. D.【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【解答】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:A.3.如图,直线a∥b,∠1=50°,∠2的度数为()A.100°B.120°C.130°D.150°【分析】根据“直线a∥b,∠1=50°”得到∠3的度数,再根据∠2+∠3=180°即可得到∠2的度数.【解答】解:∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°,故选:C.4.下列运算正确的是()A.x5+x5=x10B.(x3y2)2=x5y4C.x6÷x2=x3D.x2•x3=x5【分析】根据合并同类项,积的乘方,同底数幂的除法,同底数幂的乘法法则进行计算,从而作出判断.【解答】解:A、x5+x5=2x5,故此选项不符合题意;B、(x3y2)2=x6y4,故此选项不符合题意;C、x6÷x2=x4,故此选项不符合题意;D、x2•x3=x5,正确,故此选项符合题意;故选:D.5.某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:90 91 95 96 97 99成绩(分)2 3 2 4 3 1人数(人)则这组数据的中位数和众数分别为()A.95,95B.95,96C.96,96D.96,97 【分析】根据中位数、众数的意义分别求出中位数、众数即可.【解答】解:将这15名学生成绩从小到大排列,处在中间位置的一个数,即第8个数是96,因此中位数是96,这15名学生成绩出现次数最多的是96,共出现4次,因此众数是96,故选:C.6.某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是()A.83分B.84分C.85分D.86分【分析】根据加权平均数的定义列式计算即可.【解答】解:他的最终成绩为80×40%+90×60%=86(分),故选:D.7.如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是()A.x=B.x=1C.x=2D.x=4【分析】首先利用函数解析式y=2x求出m的值,然后再根据两函数图象的交点横坐标就是关于x的方程kx+b=2的解可得答案.【解答】解:∵线y=2x与y=kx+b相交于点P(m,2),∴2=2m,∴m=1,∴P(1,2),∴当x=1时,y=kx+b=2,∴关于x的方程kx+b=2的解是x=1,故选:B.8.如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD=20°,∠AED=80°,则∠COB的度数为()A.80°B.100°C.120°D.140°【分析】根据三角形的外角性质求出∠D,根据圆周角定理得出∠D=COB,求出∠COB=2∠D,再代入求出答案即可.【解答】解:∵∠ABD=20°,∠AED=80°,∴∠D=∠AED﹣∠ABD=80°﹣20°=60°,∴∠COB=2∠D=120°,故选:C.9.自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x元,则列出方程正确的是()A. B.C. D.【分析】设甲种水杯的单价为x元,则乙种水杯的单价为(x﹣15)元,利用数量=总价÷单价,结合用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,即可得出关于x的分式方程,此题得解.【解答】解:设甲种水杯的单价为x元,则乙种水杯的单价为(x﹣15)元,依题意得:=.故选:A.10.如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A →B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S 与x之间函数关系的图象是()A. B.C. D.【分析】先证明△ADE≌△FCE得到,BF=8,由勾股定理求出AF=10.当点M在AB上时,根据三角函数求出NM=,从而得到△AMN的面积S==;当点M在BF上时,先利用三角函数求出MN,再求出此时S关于x的函数关系式,即可得到答案.【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=,∴△AMN的面积S==,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.二.填空题(共8小题)11.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为9.899×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:98990000=9.899×107,故答案为:9.899×107.12.27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.13.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是(2,﹣4).【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).故答案为:(2,﹣4).14.在一个不透明袋子中,装有3个红球,5个白球和一些黄球,这些球除颜色外无其他差别,从袋中随机摸出一个球是白球的概率为,则袋中黄球的个数为7 . 【分析】设有黄球x个,根据概率公式得:=,解得x的值即可.【解答】解:设有黄球x个,根据题意得:=,解得:x=7,经检验x=7是原方程的解,故答案为:7.15.如图,△ABC中,∠B=30°,以点C为圆心,CA长为半径画弧,交BC于点D,分别以点A,D为圆心,大于AD 的长为半径画弧两弧相交于点E,作射线CE,交AB于点F,FH⊥AC于点H.若FH=,则BF的长为2.【分析】过F作FG⊥BC于G,由作图知,CF是∠ACB的角平分线,根据角平分线的性质得到FG=FH=,根据直角三角形的性质即可得到结论.【解答】解:过F作FG⊥BC于G,由作图知,CF是∠ACB的角平分线,∵FH⊥AC于点H.FH=,∴FG=FH=,∵∠FGB=90°,∠B=30°.∴BF=2FG=2,故答案为:2.16.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕EF与AC相交于点O,连接BO.若AB=4,CF=5,则OB的长为2.【分析】连接AF,过O作OH⊥BC于H,由将矩形纸片ABCD 折叠,使点A与点C重合,折痕EF与AC相交于点O,可得AF=CF=5,BF==3,BC=BF+CF=8,根据折叠可知OH是△ABC的中位线,故BH=BC=4,OH=AB=2,在Rt△BOH中,用勾股定理即得OB=2.【解答】解:连接AF,过O作OH⊥BC于H,如图:∵将矩形纸片ABCD折叠,使点A与点C重合,折痕EF与AC相交于点O,∴AF=CF=5,在Rt△ABF中,BF===3,∴BC=BF+CF=8,∵OA=OC,OH⊥BC,AB⊥BC,∴O为AC中点,OH∥AB,∴OH是△ABC的中位线,∴BH=CH=BC=4,OH=AB=2,在Rt△BOH中,OB===2,故答案为:2.17.如图,△AOB中,AO=AB,OB在x轴上C,D分别为AB,OB的中点,连接CD,E为CD上任意一点,连接AE,OE,反比例函数y=(x>0)的图象经过点A.若△AOE的面积为2,则k的值是 4 .【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S =2,应用|k|的几何意义求k.△AOD【解答】解:如图:连接AD,△AOB中,AO=AB,OB在x轴上,C、D分别为AB,OB的中点,∴AD⊥OB,AO∥CD,∴S△AOE=S△AOD=2,∴k=4.故答案为:4.18.如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是①②④.(填写所有正确结论的序号)【分析】先证明△ACD∽△BCE,再用对应角∠EBC=∠DAC,即可判断①②③,再由D到直线AB的最大距离为CH+CD=(+1)cm,即可求得△ABD面积的最大值为=(2+2)cm2,故可判断④.【解答】解:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,∵∠BAC=∠EDC=60°,AC=2cm,DC=1cm,∴tan∠BAC==,tan∠BAC==,∴BC=2cm,CE=cm,∴==2,∴△ACD∽△BCE,故①正确;∵△ACD∽△BCE,∴∠EBC=∠DAC,如图,记BE与AD、AC分别交于F、G,∵∠AGF=∠BGC,∴∠BCG=∠BFA=90°,∴AD⊥BE,故②正确;∵∠EBC=∠DAC,∴∠CBE+∠DAE=∠DAC+∠DAE=∠CAE不一定等于45°,故③错误;如图,过点C作CH⊥AB于H,∵∠ABC=30°,∴CH=BC=cm,∴D到直线AB的最大距离为CH+CD=(+1)cm,∴△ABD面积的最大值为=(2+2)cm2,故④正确.故答案为:①②④.三、解答题(第19题10分,第20题12分,共22分)19先化简,再求值:,其中m=.【考点】分式的化简求值;负整数指数幂.【专题】分式;运算能力.【答案】,.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.【解答】解:=•===,当m==4时,原式==.20某校以“我最喜爱的书籍”为主题,对全校学生进行随机抽样调查,每个被调查的学生必须从“科普”、“绘画”、“诗歌”、“散文”四类书籍中选择最喜欢的一类,学校的调查结果如图:图中信息解答下列问题(1)本次被调查的学生有人;(2)根据统计图中“散文”类所对应的圆心角的度数为,请补充条形统计图.(3)最喜爱“科普”类的4名学生中有1名女生,3名男生,现从4名学生中随机抽取两人参加学校举办的科普知识宣传活动,请用列表或画树状图的方法求出所选的两人恰好都是男生的概率.【考点】扇形统计图;条形统计图;列表法与树状图法. 【专题】概率及其应用;应用意识.【答案】(1)50;(2)72°;(3).【分析】(1)用最喜欢“诗歌”类的人数除以它所占的百分比得到调查的总人数;(2)用360°乘以“散文”类的人数所占的百分比得到“散文”类所对应的圆心角的度数,然后计算最喜欢“绘画”类的人数后补全条形统计图;(3)通过树状图展示所有12种等可能的结果,找出所选的两人恰好都是男生的结果数,然后根据概率公式计算. 【解答】解:(1)20÷40%=50(人),所以本次被调查的学生有50人;故答案为50;(2)“散文”类所对应的圆心角的度数为360°×=72°;最喜欢“绘画”类的人数为50﹣4﹣20﹣10=16(人),条形统计图补充为:故答案为72°;(3)画树状图为:共有12种等可能的结果,其中所选的两人恰好都是男生的结果数为6,所以所选的两人恰好都是男生的概率==.四、解答题(第21题12分,第22题12分,共24分)21某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?【考点】二元一次方程组的应用;一元一次不等式的应用. 【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力;推理能力;应用意识.【答案】(1)A型公交车每辆45万元,B型公交车每辆60万元;(2)该公司最多购买80辆A型公交车.【分析】(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意:购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.列出二元一次方程组,解方程组即可;(2)设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,由题意:购买A型公交车的总费用不高于B 型公交车的总费用,列出一元一次不等式,解不等式即可.【解答】解:(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意得:,解得:,答:A型公交车每辆45万元,B型公交车每辆60万元;(2)设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,由题意得:45m≤60(140﹣m),解得:m≤80,答:该公司最多购买80辆A型公交车.22某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C 处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A 到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力;模型思想.【答案】(1)300m;(2)204m.【分析】(1)通过作辅助线,构造直角三角形,在Rt△ACD中,可求出CD、AD,根据外角的性质可求出∠B的度数,在Rt△BCD中求出BC即可;(2)计算AC+BC和AB的长,计算可得答案.【解答】解:(1)过点C作CD⊥AB于点D,由题意得,∠A=30°,∠BCE=75°,AC=600m,在Rt△ACD中,∠A=30°,AC=600,∴CD=AC=300(m),AD=AC=300(m),∵∠BCE=75°=∠A+∠B,∴∠B=75°﹣∠A=45°,∴CD=BD=300(m),BC=CD=300(m),答:景点B和C处之间的距离为300m;(2)由题意得.AC+BC=600+300≈1024(m),AB=AD+BD=300+300≈820(m),1024﹣820=204(m),答:大桥修建后,从景点A到景点B比原来少走约204m.五、解答满分12分23某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个}与销售单价x (元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每填的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售润最大?最大利润是多少元?【考点】二次函数的应用.【专题】一次函数及其应用;二次函数的应用;应用意识. 【答案】(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售润最大,最大利润是2890元.【分析】(1)设函数关系式为y=kx+b,由当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.可列方程组,即可求解;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,由二次函数的性质可求解.【解答】解:(1)设函数关系式为y=kx+b,由题意可得:,解得:,∴函数关系式为y=﹣10x+540;(2)由题意可得:w=(x﹣20)y=(x﹣20)(﹣10x+540)=﹣10(x﹣37)2+2890,∵﹣10<0,∴当x=37时,w有最大值为2890,答:当销售单价定为37元时,才能使每天的销售润最大,最大利润是2890元.六、解答题(满分12分)24如图,在⊙O中,∠AOB=120°,=,连接AC,BC,过点A作AD⊥BC,交BC的延长线于点D,DA与BO的延长线相交于点E,DO与AC相交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,求线段DF的长.【考点】切线的判定与性质;相似三角形的判定与性质. 【专题】矩形菱形正方形;与圆有关的位置关系;解直角三角形及其应用;运算能力;推理能力;模型思想. 【答案】(1)详见解答;(2).【分析】(1)由=,可得AC=BC,进而可证出△OAC ≌△OBC,从而得出四边形OACB是菱形,由OA∥BD,AD⊥BD,可得出OA⊥DE,得出DE是切线;(2)根据特殊锐角的三角函数值,可求出CD、AD,进而在Rt△AOD中,由勾股定理求出OD,再根据△CFD∽△AFO,可得==,进而得到DF=OD即可.【解答】解:(1)如图,连接OC,∵=,∴AC=BC,又∵OA=OB,OC=OC,∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC=∠AOB=60°,∴△AOC、△BOC是等边三角形,∴OA=AC=CB=OB,∴四边形OACB是菱形,∴OA∥BD,又∵AD⊥BD,∴OA⊥DE,∴DE是⊙O的切线;(2)由(1)得AC=OA=2,∠OAC=60°,∠DAC=90°﹣60°=30°,在Rt△ACD中,∠DAC=30°,AC=2,∴DC=AC=1,AD=AC=,在Rt△AOD中,由勾股定理得,OD===,∵OA∥BD,∴△CFD∽△AFO,∴=,又∵=sin30°=,AC=OA=2,∴=,∴=,即DF=OD=.七、解答题(满分12分)25如图,Rt△ABC中,∠ACB=90°,D为AB中点,点E在直线BC上(点E不与点B,C重合),连接DE,过点D 作DF⊥DE交直线AC于点F,连接EF.(1)如图1,当点F与点A重合时,请直接写出线段EF 与BE的数量关系;(2)如图2,当点F不与点A重合时,请写出线段AF,EF,BE之间的数量关系,并说明理由;(3)若AC=5,BC=3,EC=1,请直接写出线段AF的长.【考点】三角形综合题.【专题】作图题;推理能力.【答案】(1)EF=EB.(2)结论:AF2+BE2=EF2,证明见解析部分.(3)AF的长为或1.【分析】(1)结论:EF=BE.利用线段的垂直平分线的性质证明即可.(2)结论:AF2+BE2=EF2如图2中,过点A作AJ⊥AC交ED的延长线于J,连接FJ.证明△AJD≌△BED(AAS),推出AJ=BE,DJ=DE,再证明FJ=EF,可得结论.(3)分两种情形:如图3﹣1中,当点E在线段BC上时,如图3﹣2中,当点E在线段BC的延长线上时,设AF=x,则CF=5﹣x.构建方程求解即可.【解答】解:(1)结论:EF=BE.理由:如图1中,∵AD=DB,DE⊥AB,∴EF=EB.(2)结论:AF2+BE2=EF2.理由:如图2中,过点A作AJ⊥AC交ED的延长线于J,连接FJ.∵AJ⊥AC,EC⊥AC,∴AJ∥BE,∴∠AJD=∠DEB,在△AJD和△BED中,,∵△AJD≌△BED(AAS),∴AJ=BE,DJ=DE,∵DF⊥EJ,∴FJ=EF,∵∠FAJ=90°,∴AF2+AJ2=FJ2,∴AF2+BE2=EF2.(3)如图3﹣1中,当点E在线段BC上时,设AF=x,则CF=5﹣x.∵BC=3,CE=1,∴BE=2,∵EF2=AF2+BE=CF2+CE2,∴x2+22=(5﹣x)2+12,∴x=,∴AF=.如图3﹣2中,当点E在线段BC的延长线上时,设AF=x,则CF=5﹣x.∵BC=3,CE=1,∴BE=4,∵EF2=AF2+BE=CF2+CE2,∴x2+42=(5﹣x)2+12,∴x=1,∴AF=1,综上所述,满足条件的AF的长为或1.八、解答题(满分14分)26直线y=﹣x+3与x轴相交于点A,与y轴相交于点B,抛物线y=ax2+2x+c经过点A,B,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是第一象限内抛物线上的一个动点,过点D作DE∥y轴交AB于点E,DF⊥AB于点F,FG⊥x轴于点G.当DE=FG时,求点D的坐标;(3)如图2,在(2)的条件下,直线CD与AB相交于点M,点H在抛物线上,过H作HK∥y轴,交直线CD于点K.P 是平面内一点,当以点M,H,K,P为顶点的四边形是正方形时,请直接写出点P的坐标.【考点】二次函数综合题.【专题】二次函数图象及其性质;运算能力;推理能力. 【答案】(1)y=﹣x2+2x+3;(2)(2,3);(5,2)或(﹣1,2)或(1,2+)或(1,2﹣).【分析】(1)令x=0,求点B(0,3),令y=0,求点A (3,0),将点A、点B代入抛物线y=ax2+2x+c即可求解;(2)设D(m,﹣m2+2m+3),由DE∥y轴交AB于点E,则E(m,﹣m+3),再由OA=OB,可知∠OAB=45°,则有AG =FG=DE=AG,连接GE,延长DE交x轴于点T,可证四边形FGED是平行四边形,△AEG为等腰直角三角形,可求AT =ET=GT=3﹣m,AG=FG=6﹣2m,OG=2m﹣3,求出FG =﹣2m+6,DT=﹣3m+9,得到﹣m2+2m+3=﹣3m+9,即可求D(2,3);(3)先求出C(﹣1,0),直线CD的解析式为y=x+1,联立x+1=﹣x+3,求出M(1,2),分两种情况讨论:①当MH⊥MK时,H点在AB上,K点在CD上,可确定H(3,0)或H(0,3),当H(3,0)时,K(3,4),P(5,2);当H(0,3)时,K(0,1),P(﹣1,2);②当MH⊥HK 时,此时MH⊥y轴,H(1+,2)或H(1﹣,2),当H (1+,2)时,P(1,2+);当H(1﹣,2)时,P (1,2﹣).【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x=3,∴A(3,0),∵抛物线y=ax2+2x+c经过点A,B,∴,∴,∴抛物线解析式为y=﹣x2+2x+3;(2)设D(m,﹣m2+2m+3),∵DE∥y轴交AB于点E,∴E(m,﹣m+3),∵OA=OB,∴∠OAB=45°,∴AG=FG,∵DE=FG,∴DE=AG,连接GE,延长DE交x轴于点T,∴四边形FGED是平行四边形,∵DF⊥AB,∴EG⊥AB,∴△AEG为等腰直角三角形,∴AT=ET=GT=3﹣m,∴AG=FG=6﹣2m,∴OG=3﹣(6﹣2m)=2m﹣3,∴F点横坐标为2m﹣3,∴FG=﹣2m+6,∴DT=﹣2m+6+3﹣m=﹣3m+9,∴﹣m2+2m+3=﹣3m+9,解得m=2或m=3(舍),∴D(2,3);(3)令y=0,则﹣x2+2x+3=0,解得x=3或x=﹣1,∴C(﹣1,0),设CD的解析式为y=kx+b,将C(﹣1,0)、D(2,3)代入,∴,∴,∴y=x+1,∴∠ACM=45°,∴CM⊥AM,联立x+1=﹣x+3,解得x=1,∴M(1,2),∵以点M,H,K,P为顶点的四边形是正方形,①当MH⊥MK时,H点在AB上,K点在CD上,∵H点在抛物线上,∴H(3,0)或H(0,3),当H(3,0)时,MH=2,∴KH=4,∴K(3,4)∴HK的中点为(3,2),则MP的中点也为(3,2),∴P(5,2);当H(0,3)时,MH=,∴KH=2,∴K(0,1),∴HK的中点为(0,2),则MP的中点也为(0,2),∴P(﹣1,2);②当MH⊥HK时,此时MH⊥y轴,∴H(1+,2)或H(1﹣,2),当H(1+,2)时,MH=,∴P(1,2+);当H(1﹣,2)时,MH=,∴P(1,2﹣);综上所述:当以点M,H,K,P为顶点的四边形是正方形时,P点坐标为(5,2)或(﹣1,2)或(1,2+)或(1,2﹣).。

2024年辽宁中考数学试卷

2024年辽宁中考数学试卷

中考数学试卷一、单项选择题(共12分)1.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈2.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√333.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12 4.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=35.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。

A.16B.14C.12D.116.在同一平面直角坐标系中,函数y=x﹣1与函数y=1x的图象可能是()A.B. C.D.二、填空题(共24分)7.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。

8.将抛物线y=﹣x2向右平移一个单位,所得函数解析式为。

9.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)10.如图,在平面直角坐标系xOy中,反比例函数y=一的图象与↵0交于A,B 两点,且点A,B都在第一象限.若A(1,2),则点B的坐标为___.11.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。

三、解答题(共20分)12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是多少?13.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年抚顺市初中毕业生学业考试数学试题
四、解答题
21如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,D E⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留 )
O G
F
E
D C
B
A
16.(3
分)(2013•锦州)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴
的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为.
18.(8分)(2013•锦州)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;
(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt △A1B1C1在上述旋转过程中点C1所经过的路径长.
六、解答题(本大题共2个小题,每小题10分,共20分)
23.(10分)(2013•锦州)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、
线段CE和BE所围成的图形面积S.
24.(10分)(2013•锦州)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.
(1)直接写出a,m,n的值;
(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);
(3)当两车相距120千米时,乙车行驶了多长时间?
七、解答题(本题12分)
25.(12分)(2013•锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;
(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;
(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠
BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.八、解答题(本题14分)
26.(14分)(2013•锦州)如图,抛物线y=﹣x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),
点B坐标为(2,3),点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式及点C的坐标;
(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;
(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?
22.2013年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮.某体育用品商店预测某种品牌的运动鞋会畅销,就用4800元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双鞋进价多用了20元.
(1)求该商店第二次购进这种运动鞋多少双?
(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元?
六、解答题
24.某服装店以每件40元的价格购进一批衬衫,在试销过程中发现:每月销售量y (件)与销售单价x (x 为正整数)(元)之间符合一次函数关系,当销售单价为55元时,月销售量为140件;当销售单价为70元时,月销售量为80件.
(1)求y 与x 的函数关系式;
(2)如果每销售一件衬衫需支出各种费用1元,设服装店每月销售该种衬衫获利为w 元,求w 与x 之间的函数关系式,并求出销售单价定为多少元时,商场获利最大,最大利润是多少元?
七、解答题
25.在Rt △ABC 中,∠ACB=90°,∠A=30°,点D 是AB 的中点,D E ⊥BC,垂足为点E ,连接CD.
(1)如图1,DE 与BC 的数量关系是 ;
(2)如图2,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论;
(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE 、BF 、BP 三者之间的数量关系.
八、解答题
26.如图,已知直线3+=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=2经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D.
(1)求抛物线的解析式;
(2)在第三象限内,F 为抛物线上一点,以A 、E 、F 为顶点的三角形面积为3,求点F 的坐标;
(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是直角三角形?直接写出所有符合条件的t 值.

图图
E B
F P E C P E C B。

相关文档
最新文档