STM32串口通信中使用printf发送数据配置方法
IAR5.40中stm32用printf打印语句到串口

IAR EWARM 5.40和J-LinkV8调试STM32四、一、开发工具:u开发环境:IAR EWARM 5.40u固件库:V2.0.3,09/22/2008 (下载的压缩包为um0427)u仿真器:J-Link V8u开发板:ALIENTEK开发板二、参考资料u思蜕盟网站:《printf应用范例》u Ourdev论坛:《stm32 printf 问题》、《请教如何在IAR上使用代码库自带的printf函数》、《IAR环境下怎样定制printf打印语句到指定的串口上》三、部分源代码(1)在IAR中设置全库。
在Workspace中,选择XXX-Debug,然后点击鼠标右键,选择“Options”,在“General Options ->Library configuration -> Library”里面选择Full,见图1。
在“Library Options ”里面也选择Full,见图2。
(2)在main函数前面添加如下的代码。
#include <stdio.h>#ifdef __GNUC__/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)1#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)#endif /* __GNUC__ *//******************************************************************************** Function Name : PUTCHAR_PROTOTYPE* Description : Retargets the C library printf function to the USART.* Input : None* Output : None* Return : None*******************************************************************************/PUTCHAR_PROTOTYPE{/* Write a character to the USART */USART_SendData(USART1, (u16) ch);/* Loop until the end of transmission */while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET) {}return ch;}2图13图24图35。
在STM32中使用printf发送字符串到串口

在STM32中使用printf发送字符串到串口
问题:在使用STM32 调试时,经常使用串口发送信息,为了方便调试与
串口发送信息,用printf()函数实现通过串口打印信息。
方法一:
1.添加包含printf()函数的头文件:#include “stdio.h”
2.重写stdio.h 头文件中的int fputc(int ch, FILE *f) 函数
int fputc(int ch, FILE *f)
{
while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET);
//等待先前的字符发送完成
USART_SendData(USART1, (uint8_t) ch);
//发送字符
return ch;
}
//示例函数中使用了USART1 来发送消息
//实际情况可以根据硬件板来决定使用哪个串口
注意:使用while 循环先等待先前的字符发送完成,避免造成字符串首字符发
送丢失的问题。
3.将该函数” int fputc(int ch, FILE *f) “放在main()函数能够调用到的文件中,KEIL->Options for Target’xxx’->Target->Code Generation,勾选Use MicroLIB
方法二:
//加入以下代码,支持printf 函数,而不需要选择use MicroLIB
#if USART_DEBUG。
stm32多串口公用printf的问题

[1楼] 正点原子等级:站长注册时间:2010/12/02 10:41 回复数: 43927 这等于你自己重构了一个printf接用写不够用过我的淘宝小店:主题数: 356酷贴数:25论坛积分:47495 来自: 湖南离线 回复[2楼] licgang等级:注册时间:2012/06/19 11:08 回复数: 20主题数: 5论坛积分:35离线现在是要用printf较麻烦,输出的格式有点多回复[3楼] 正点原子等级:站长注册时间:2010/12/02 10:41 回复数: 43927主题数: 356酷贴数:25论坛积分:47495来自: 湖南离线哦的实现方法我的淘宝小店: 回复[4楼] licgang等级:注册时间:2012/06/19 11:08 回复数: 20主题数: 5论坛积分:35离线这两天有空研究了下数,参照网上资料自己写了个模拟现多串口其实变参数的获取了,这里要用到stdarg.h问题了。
void myitoa(int data,char *buf ){int temp,j=0,i=0;while(data) //反序生成数字,可自己取个数字测试,如123,反序字符数组中的值为321{buf[i++] = data%10+'0';//将转换后的数字字符存放在字符数组中data = data/10; //删除已经转换的数字,为取下一个数字做好准备}buf[i--]='\0'; //转换完后还需要在字符数组后面加一个字符串结束标志'/0',代表是一个字符串while( j < i ) //刚刚转换好的字符串是逆序的必须把它反转过来{temp = buf[j];buf[j] = buf[i];buf[i] = temp;i--,j++;}}//------------------------COM3 printf------------------------------//void DBGprintf(const char*format, ...){va_list ap;char c,nc;va_start(ap, format);//从右到左将参数入栈,ap指向formatwhile (c = *format++){if(c == '%'&&(nc = *format++) != '\0'){switch(nc){case 'c': //输出1个字符{char ch = va_arg(ap, int); //调用后栈回复[5楼] 正点原子可以写成形如myprintf(u8 uartx,const char *format, ...)其中等级:站长注册时间:2010/12/02 10:41 回复数: 43927主题数: 356酷贴数:25论坛积分:47495来自: 湖南离线如1,2,3,4,5对应串口1~5.后见面的两个参数就是标准的printf参数了.这样使用起来更方便.我的淘宝小店: 回复2012/08/05 11:54[6楼] licgang等级:注册时间:2012/06/19 11:08 回复数: 20主题数: 5论坛积分:35离线后面是要这样写方便些,贴出代码来主要是让大家看下,顺便测试看有没有什么问题,目前测试都还正常刚才测试打印INT整数,发现STM32int是32位的,上面程序默认的INT类型是有符号的,超出0x7fffffff,输出不正常。
stm32printf函数

stm32printf函数STM32是一种基于ARMCortex-M内核的微控制器,它提供了广泛的外围设备和高性能计算能力。
在使用STM32进行开发时,printf 函数是一个非常有用的工具,它可以用于输出调试信息、错误信息和运行时状态等内容。
在本文中,我们将介绍如何在STM32中使用printf函数,以及它的一些常见应用场景。
一、printf函数的基本使用printf函数是C语言中的一个标准库函数,它可以将格式化的数据输出到终端设备上。
在STM32中,我们可以使用printf函数将数据输出到串口、LCD屏幕等外设上,以便进行调试和监测。
在使用printf函数之前,我们需要先配置串口或LCD屏幕的相关参数。
例如,对于串口,我们需要配置波特率、数据位、停止位和奇偶校验等参数,然后通过USART_SendData函数将数据发送到串口缓冲区中。
当缓冲区中有数据时,我们就可以使用printf函数输出数据了。
下面是一个简单的示例代码,演示了如何使用printf函数输出字符串和变量:#include <stdio.h>#include 'stm32f10x.h'void USART_Config(void){USART_InitTypeDef USART_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); USART_ART_BaudRate = 115200;USART_ART_WordLength =USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1; USART_ART_Parity = USART_Parity_No;USART_ART_Mode = USART_Mode_Tx;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_Init(USART1, &USART_InitStructure);USART_Cmd(USART1, ENABLE);}int main(void){USART_Config();printf('Hello, STM32!r');int num = 1234;printf('The number is: %dr', num);while(1);}在这个示例代码中,我们首先调用USART_Config函数配置了串口的相关参数,然后使用printf函数输出了一条字符串和一个变量。
stm32cubemx生成的HAL代码配置usart1使用printf打印数据

stm32cubemx⽣成的HAL代码配置usart1使⽤printf打印数据MX⽣成的HAL库代码没有printf,如果需要使⽤的话需要把标准库⾥的回调函数移植过去,⽹上已经提供了很多教程这⾥整理⼀下两种⽅法⽅法⼀1、在⽣成的usart.c中的/* Includes ------------------------------------------------------------------*/下添加#include "stdio.h"不添加stdio.h会报FILE错误————————————————————————————————————————在测试过程中MX重新⽣成代码会删除usart.c中的#include "stdio.h"把#include "stdio.h"添加到/* USER CODE BEGIN 0 */保护区就⾏了————————————————————————————————————————然后在usart.c代码保护区/* USER CODE BEGIN 0 */添加,不在保护区添加MX⽣成代码时会被删除,也不能⾃⼰⼿动添加保护区1/* USER CODE BEGIN 0 */2 #ifdef __GNUC__3/* With GCC, small printf (option LD Linker->Libraries->Small printf4set to 'Yes') calls __io_putchar() */5#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)6#else7#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)8#endif /* __GNUC__ */91011 PUTCHAR_PROTOTYPE12 {13/* Place your implementation of fputc here */14/* e.g. write a character to the USART2 and Loop until the end of transmission */15 HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);1617return ch;18 }19/* USER CODE END 0 */printf代码2、处理完usart.c以后我们回到mian.c中也在————————————————————————————————————————/* USER CODE BEGIN Includes *//* USER CODE END Includes */保护区中添加#include "stdio.h"————————————————————————————————————————不能添加在/* Includes ------------*/下,MX重新⽣成⼯程时会被删除这⾥不添加会报printf错误然后我们就可以在main中使⽤printf了在while中写个代码测试⼀下1/* USER CODE BEGIN WHILE */2while (1)3 {4/* USER CODE END WHILE */56/* USER CODE BEGIN 3 */7 HAL_Delay(1000);8 printf("123!\r\n");9 }10/* USER CODE END 3 */测试⼀下代码这⾥就不截图串⼝助⼿中的图⽚了,效果是1秒打印次⽅法⼆这⾥提供了⼀种和⽹上不⼀样的printf使⽤⽅法,咱也是学习来的这⾥记录⼀下⽣成⼯程以后在mian.c的保护区/* USER CODE BEGIN PD *//* USER CODE END PD */中间添加1/* USER CODE BEGIN PD */23#define printf1(...) HAL_UART_Transmit(&huart1,\ 45 (uint8_t *)u_buf,\67 sprintf((char*)u_buf,__VA_ARGS__),\890xffff)1011/* USER CODE END PD */printf1还要在/* USER CODE BEGIN PV *//* USER CODE END PV */中间定义u_buf才可以使⽤1/* USER CODE BEGIN PV */2 uint8_t u_buf[256];3/* USER CODE END PV */u_buf注意这⾥定义的和普通的printf多了⼀个1,是printf1我们在下⾯mian函数的循环⾥⾯调⽤⼀下测试1/* USER CODE BEGIN WHILE */2while (1)3 {4/* USER CODE END WHILE */56/* USER CODE BEGIN 3 */7 HAL_Delay(2000);8 printf1("123456789");9 }10/* USER CODE END 3 */while可以看到在串⼝助⼿打印了数据这⾥就不解释代码的意思了,主要是简单的使⽤。
STM32串口教程

STM32串口教程STM32是一种基于ARM Cortex-M内核的32位微控制器系列。
它具有强大的处理能力和丰富的外设接口,适用于各种嵌入式应用。
其中,串口通信是STM32常用的外设之一,可以用于和其他设备进行数据的收发。
本文将介绍STM32串口的配置和使用方法。
一、串口的基本原理串口是一种以串行方式传输数据的通信方式。
在串口通信中,数据按照比特位的顺序传输,一次传输一个位。
数据的传输包括一个或多个字节,每个字节由8位组成,其中包括1位起始位、1位停止位和可选的奇偶校验位。
串口通信需要两根信号线,一根用于发送数据(TX),一根用于接收数据(RX)。
二、STM32串口的配置配置串口的步骤如下:1.设置GPIO引脚功能和模式:将串口的引脚配置为复用功能,并设置引脚的模式为推挽输出。
2.使能串口时钟:根据串口的编号,使能对应串口的时钟。
3.配置串口参数:设置串口的波特率、数据位、停止位、奇偶校验位等参数。
4.使能串口:使能串口的发送和接收功能。
三、STM32串口的使用方法配置完成后,即可使用STM32的串口进行数据的收发。
下面是使用STM32串口的一般流程:1.发送数据:将要发送的数据写入到串口的发送缓冲区,等待数据发送完成。
2.接收数据:检测是否有数据接收到,如果有则读取数据。
在发送数据时,可以使用printf函数实现方便的格式化输出。
为了使用printf函数,需要先配置printf函数的底层接口。
可以使用标准库提供的函数重定向方法,将输出重定向到串口。
在接收数据时,可以使用中断方式或轮询方式。
中断方式需要配置串口的中断,并在中断服务函数中处理接收到的数据。
轮询方式是在主循环中不断检测数据是否接收到,并进行读取。
四、常见问题及解决方法1.串口通信乱码问题:可能是波特率设置不正确导致的,可以检查波特率设置是否和目标设备匹配。
2.串口接收数据丢失问题:可能是接收缓冲区溢出导致的,可以增加接收缓冲区的大小或者使用中断方式处理接收数据。
STM32HAL库UART使用printf

STM32HAL库UART使⽤printf// 添加这个函数int fputc(int ch,FILE *f){uint8_t temp[1]={ch};HAL_UART_Transmit(&UartHandle,temp,1,2);}MDK设置:勾选Use Micro LIB测试板⼦:STM32F746NG-DISCOVERYmain.c⽂件/* Includes ------------------------------------------------------------------*/#include "main.h"#include <stdio.h>/** @addtogroup STM32F7xx_HAL_Examples* @{*//** @addtogroup UART_TwoBoards_ComDMA* @{*//* Private typedef -----------------------------------------------------------*//* Private define ------------------------------------------------------------*/#define TRANSMITTER_BOARD/* Private macro -------------------------------------------------------------*//* Private variables ---------------------------------------------------------*//* UART handler declaration */UART_HandleTypeDef UartHandle;__IO ITStatus UartReady = RESET;__IO uint32_t UserButtonStatus = 0; /* set to 1 after User Button interrupt *//* Buffer used for transmission */uint8_t aTxBuffer[] = " ****UART_TwoBoards communication based on DMA**** ****UART_TwoBoards communication based on DMA**** ****UART_TwoBoards communication based on DMA**** "; /* Buffer used for reception */uint8_t aRxBuffer[RXBUFFERSIZE];/* Private function prototypes -----------------------------------------------*/void SystemClock_Config(void);static void Error_Handler(void);static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);static void MPU_Config(void);static void CPU_CACHE_Enable(void);/* Private functions ---------------------------------------------------------*/UART_HandleTypeDef UartHandle;uint8_t sendbuf[]="send ok ";// 添加这个函数int fputc(int ch,FILE *f){uint8_t temp[1]={ch};HAL_UART_Transmit(&UartHandle,temp,1,2);/*** @brief Main program* @param None* @retval None*/int main(void){/* Configure the MPU attributes as Write Through */MPU_Config();/* Enable the CPU Cache */CPU_CACHE_Enable();/* STM32F7xx HAL library initialization:- Configure the Flash ART accelerator- Systick timer is configured by default as source of time base, but usercan eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time baseduration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis.- Set NVIC Group Priority to 4- Low Level Initialization*/HAL_Init();/* Configure the system clock to 216 MHz */SystemClock_Config();/* Configure LED1 */BSP_LED_Init(LED1);UartHandle.Instance = DISCOVERY_COM1;UartHandle.Init.BaudRate = 9600;UartHandle.Init.WordLength = UART_WORDLENGTH_8B;UartHandle.Init.StopBits = UART_STOPBITS_1;UartHandle.Init.Parity = UART_PARITY_NONE;UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;UartHandle.Init.Mode = UART_MODE_TX_RX;BSP_COM_DeInit(COM1,&UartHandle);BSP_COM_Init(COM1,&UartHandle);// HAL_UART_Transmit(&UartHandle,sendbuf,sizeof(sendbuf),10);/* Configure User push-button in Interrupt mode */BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_EXTI);/* Wait for User push-button press before starting the Communication.In the meantime, LED1 is blinking */printf("hello");while(UserButtonStatus == 0){/* Toggle LED1*/BSP_LED_Toggle(LED1);HAL_Delay(100);}/* Turn on LED1 if test passes then enter infinite loop */BSP_LED_On(LED1);/* Infinite loop */while (1){}}/*** @brief System Clock Configuration* The system Clock is configured as follow :* System Clock source = PLL (HSE)* SYSCLK(Hz) = 216000000* HCLK(Hz) = 216000000* AHB Prescaler = 1* APB1 Prescaler = 4* APB2 Prescaler = 2* HSE Frequency(Hz) = 25000000* PLL_M = 25* PLL_N = 432* PLL_P = 2* PLL_Q = 9* VDD(V) = 3.3* Main regulator output voltage = Scale1 mode* Flash Latency(WS) = 7* @param None* @retval None*/void SystemClock_Config(void)RCC_ClkInitTypeDef RCC_ClkInitStruct;RCC_OscInitTypeDef RCC_OscInitStruct;HAL_StatusTypeDef ret = HAL_OK;/* Enable HSE Oscillator and activate PLL with HSE as source */RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 432;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 9;ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);if(ret != HAL_OK){while(1) { ; }}/* Activate the OverDrive to reach the 216 MHz Frequency */ret = HAL_PWREx_EnableOverDrive();if(ret != HAL_OK){while(1) { ; }}/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);if(ret != HAL_OK){while(1) { ; }}}/*** @brief Tx Transfer completed callback* @param UartHandle: UART handle.* @note This example shows a simple way to report end of DMA Tx transfer, and* you can add your own implementation.* @retval None*/void HAL_UART_TxCpltCallback(UART_HandleTypeDef *UartHandle){/* Set transmission flag: trasfer complete*/UartReady = SET;}/*** @brief Rx Transfer completed callback* @param UartHandle: UART handle* @note This example shows a simple way to report end of DMA Rx transfer, and* you can add your own implementation.* @retval None*/void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle){/* Set transmission flag: trasfer complete*/UartReady = SET;}/*** @brief UART error callbacks* @param UartHandle: UART handle* @note This example shows a simple way to report transfer error, and you can* add your own implementation.* @retval None*/void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle){Error_Handler();}/*** @brief EXTI line detection callbacks* @param GPIO_Pin: Specifies the pins connected EXTI line* @retval None*/void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){if(GPIO_Pin == KEY_BUTTON_PIN){UserButtonStatus = 1;}}/*** @brief Compares two buffers.* @param pBuffer1, pBuffer2: buffers to be compared.* @param BufferLength: buffer's length* @retval 0 : pBuffer1 identical to pBuffer2* >0 : pBuffer1 differs from pBuffer2*/static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) {while (BufferLength--){if ((*pBuffer1) != *pBuffer2){return BufferLength;}pBuffer1++;pBuffer2++;}return0;}/*** @brief This function is executed in case of error occurrence.* @param None* @retval None*/static void Error_Handler(void){/* Turn LED1 on */BSP_LED_On(LED1);while(1){/* Error if LED1 is slowly blinking (1 sec. period) */BSP_LED_Toggle(LED1);HAL_Delay(1000);}}#ifdef USE_FULL_ASSERT/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/void assert_failed(uint8_t* file, uint32_t line){/* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* Infinite loop */while (1){}}#endif/*** @brief Configure the MPU attributes as Write Through for SRAM1/2.* @note The Base Address is 0x20010000 since this memory interface is the AXI. * The Region Size is 256KB, it is related to SRAM1 and SRAM2 memory size. * @param None* @retval None*/static void MPU_Config(void){MPU_Region_InitTypeDef MPU_InitStruct;/* Disable the MPU */HAL_MPU_Disable();/* Configure the MPU attributes as WT for SRAM */MPU_InitStruct.Enable = MPU_REGION_ENABLE;MPU_InitStruct.BaseAddress = 0x20010000;MPU_InitStruct.Size = MPU_REGION_SIZE_256KB;MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;MPU_InitStruct.Number = MPU_REGION_NUMBER0;MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;MPU_InitStruct.SubRegionDisable = 0x00;MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;HAL_MPU_ConfigRegion(&MPU_InitStruct);/* Enable the MPU */HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);}/*** @brief CPU L1-Cache enable.* @param None* @retval None*/static void CPU_CACHE_Enable(void){/* Enable I-Cache */SCB_EnableICache();/* Enable D-Cache */SCB_EnableDCache();}/*** @}*//*** @}*//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/。
STM32单片机串口的定义及应用方法

STM32单片机串口的定义及应用方法一、串口定义:串口是一种通过物理上的串行传输来进行数据传输和通信的接口。
在STM32单片机中,串口是通过UART(通用异步收发传输器)模块来实现的。
在STM32单片机中,UART模块通常包括了多个串口,每个串口都有一个唯一的标识号,比如USART1、USART2等。
每个串口模块通常包括发送和接收两个数据线路,分别是Tx和Rx。
其中,Tx是发送线路,负责将数据从单片机发送出去;Rx是接收线路,负责从外部设备接收数据。
二、应用方法:1.引脚配置:在使用串口之前,需要对引脚进行配置,将引脚设置为串口功能。
具体配置方法如下:a.打开时钟使能,使能UART相应的时钟。
b.配置相应的GPIO引脚为复用功能,选择对应的UART号。
c.设置GPIO的输出模式、输入模式、输出速度等参数。
2.串口参数配置:在使用串口之前,需要对串口进行参数配置,包括波特率、数据位、停止位、奇偶校验等。
具体配置方法如下:a.打开时钟使能,使能UART相应的时钟。
b.设置波特率,将UART的波特率寄存器设置为目标波特率。
c.配置数据位、停止位、奇偶校验等参数。
3.串口中断配置:在串口通信过程中,可以配置串口接收中断和发送中断,实现数据的异步收发。
具体配置方法如下:a.使能串口接收中断和发送中断。
b.在中断服务函数中,处理接收和发送的逻辑,包括接收到数据后的处理操作和发送数据完成后的处理操作。
4.数据发送:使用串口发送数据时,需要按照以下步骤进行操作:a.判断发送缓冲区是否为空,如果不为空,则等待缓冲区为空。
b.将要发送的数据写入发送缓冲区。
c.等待发送完成。
5.数据接收:使用串口接收数据时,需要按照以下步骤进行操作:a.判断接收缓冲区是否为空,如果为空,则等待数据接收完成。
b.从接收缓冲区读取接收到的数据。
6.异步收发:使用STM32单片机的串口功能时,可以实现异步收发的功能,即在发送数据的同时可以接收数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
while (!(USART1->SR & USART_FLAG_TXE)); // USART1 可换成你程 序中通信的串口
USART1->DR = (ch & 0x1FF); return (ch); } int GetKey (void) { while (!(USART1->SR & USART_FLAG_RXNE)); return ((int)(USART1->DR & 0x1FF)); } 3、 至此完成配置,可以在 main 文件中随意使用 printf 。
有两种配置方法:
一、对工程属性进行配置,详细步骤如下
1、首先要在你的 main 文件中 包含“stdio.h” (标准输入输出头文件)。 2、在 main 文件中重定义&ch, FILE *f) {
USART_SendData(USART1, (unsigned char) ch); // USART1 可以换成 USART2 等
STM32串口通信中使用 printf 发送数据配置方法(开发环境 Keil RVMDK) 【详细说明】STM32串口通信中使用 printf 发送数据配置方法(开发环境 Keil RVMDK)
在 STM32串口通信程序中使用 printf 发送数据,非常的方便。可在刚开始使用的 时候总是遇到问题,下面就说一下使用 printf 需要做哪些配置。
while (!(USART1->SR & USART_FLAG_TXE)); return (ch); } 这样在使用 printf 时就会调用自定义的 fputc 函数,来发送字符。
3、在工程属性的 “Target" -> "Code Generation" 选项中勾选 "Use MicroLIB"” MicroLIB 是缺省 C 的备份库,关于它可以到网上查找详细资料。
int handle; // Add whatever you need here }; FILE __stdout; FILE __stdin; int fputc(int ch, FILE *f)
{ return (SendChar(ch));
} int fgetc(FILE *f) {
return (SendChar(GetKey())); } void _ttywrch(int ch) {
至此完成配置,在工程中可以随意使用 printf 向串口发送数据了。
二、第二种方法是在工程中添加“Regtarge.c”文件
1、在工程中创建一个文件保存为 Regtarge.c , 然后将其添加工程中 在文件中输入如下内容(直接复制即可) #include <stdio.h> #include <rt_misc.h> #pragma import(__use_no_semihosting_swi) extern int SendChar(int ch); // 声明外部函数,在 main 文件中定义 extern int GetKey(void); struct __FILE {
SendChar (ch); } int ferror(FILE *f) { // Your implementation of ferror
return EOF; } void _sys_exit(int return_code) {
label: goto label; // endless loop } 2、在 main 文件中添加定义以下两个函数