数字信号处理实验——维纳滤波器设计..

合集下载

(完整word版)维纳滤波器设计(word文档良心出品)

(完整word版)维纳滤波器设计(word文档良心出品)

1.设计要求Sequence s(n) of N=2000 points is generated by AR(1) model: s(n)=as(n-1)+w(n), in which a=0.8, w(n) is white noise sequence, the mean and variance of w(n) is 0w m =,20.36w σ=.The measurement model is x(n) =s(n) +v(n), in which white noise sequence v (n) andw (n) is not related, the mean and variance of v(n) is 0v m =,21mσ=. Requirements:(1)Design IIR causal Wiener filter , calculate the filtered sequence and mean square error;(2)Design FIR Wiener filter , calculate the filtered sequence and mean square error;(3)Display raw data , noise data and filtered data on the same graph , compare the mean square error between the two cases and draw a conclusion.2.设计原理2.1维纳滤波原理概述维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。

这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。

一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且)()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为∑-=mm n x m h n y )()()( (2)我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称)(n y 为)(n s 的估计值,用^)(n s 表示,即^)()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。

维纳滤波设计matlab

维纳滤波设计matlab

维纳滤波设计matlab维纳滤波是一种常用于信号处理和图像处理的滤波方法,它可以通过对输入信号进行滤波,提取出信号中的有用信息,并抑制噪声。

在Matlab中,我们可以使用信号处理工具箱中的函数来实现维纳滤波。

维纳滤波的基本原理是在频域中对信号进行处理。

首先,我们将输入信号和噪声信号都转换到频域中,然后根据信号和噪声的功率谱来计算维纳滤波器的频谱函数。

最后,将滤波器应用到输入信号的频谱中,得到输出信号的频谱,再将其转换回时域,即可得到滤波后的信号。

在Matlab中,我们可以使用函数`fft`和`ifft`来进行频域和时域的转换。

具体步骤如下:1. 首先,读取输入信号和噪声信号,并对其进行采样。

可以使用函数`audioread`来读取音频文件。

2. 将输入信号和噪声信号转换到频域。

可以使用函数`fft`来计算信号的频谱。

3. 根据信号和噪声的功率谱,计算维纳滤波器的频谱函数。

可以根据公式进行计算,或者使用函数`pwelch`来估计功率谱。

4. 将维纳滤波器的频谱函数应用到输入信号的频谱中,得到输出信号的频谱。

5. 将输出信号的频谱转换回时域。

可以使用函数`ifft`来进行逆变换。

6. 最后,将输出信号保存到文件中,或者播放出来。

维纳滤波是一种非常有效的信号处理方法,可以在很大程度上提高信号的质量。

在实际应用中,我们可以根据具体的需求进行参数的选择,以达到最佳的滤波效果。

通过使用Matlab中的信号处理工具箱,我们可以轻松地实现维纳滤波,并对信号进行去噪处理。

这种滤波方法在语音信号处理、图像处理等领域有着广泛的应用,对提高信号质量和准确性具有重要意义。

希望本文能够帮助读者更好地理解维纳滤波的原理和实现方法,并在实际应用中发挥作用。

维纳滤波毕业设计

维纳滤波毕业设计

维纳滤波毕业设计维纳滤波毕业设计维纳滤波是一种常用于信号处理领域的滤波方法,其主要目的是通过对信号进行数学处理,去除其中的噪声成分,从而提取出有用的信息。

在我的毕业设计中,我选择了维纳滤波作为研究对象,旨在探究其在图像处理中的应用。

首先,我对维纳滤波的原理进行了深入的学习和理解。

维纳滤波是一种最小均方误差滤波器,其基本思想是通过最小化信号与噪声之间的均方误差,来实现对信号的优化处理。

在图像处理中,维纳滤波可以通过对图像进行频域变换,将信号和噪声分离,然后对信号进行加权平均,从而去除噪声的影响。

接着,我开始了实验部分的工作。

我选取了一些常见的图像,包括自然风景、人物肖像等,作为实验对象。

首先,我使用了一些常见的图像处理软件,如MATLAB、OpenCV等,对原始图像进行了预处理,包括去噪、平滑等操作,以便于后续的维纳滤波处理。

然后,我使用了维纳滤波算法对预处理后的图像进行了处理。

在实验过程中,我采用了不同的参数设置,如滤波器大小、信噪比等,以比较不同参数对滤波效果的影响。

通过对比实验结果,我发现在一定范围内,滤波器大小和信噪比对维纳滤波效果有一定的影响,但并不是绝对的,需要根据具体情况进行调整。

在实验过程中,我还发现维纳滤波在一些特定情况下可能会出现一些问题。

例如,在图像中存在边缘、纹理等细节信息时,维纳滤波可能会导致图像模糊,失去一些细节。

为了解决这个问题,我尝试了一些改进的方法,如结合边缘检测算法、纹理增强算法等,以提高滤波效果。

最后,我对实验结果进行了分析和总结。

通过对比不同图像的处理效果,我发现维纳滤波在去除噪声方面具有一定的优势,可以有效地提取出图像中的有用信息。

然而,在处理一些特殊情况下的图像时,维纳滤波的效果可能会受到一些限制,需要结合其他算法进行改进。

综上所述,我的毕业设计主题是维纳滤波的应用研究。

通过对维纳滤波原理的学习和实验的开展,我对维纳滤波的工作原理和应用场景有了更深入的了解。

维纳滤波器的设计

维纳滤波器的设计

一、实验题目维纳滤波器的设计(结维纳霍夫方程,最小的均方误差) 维纳-霍夫方程矩阵形式已知期望信号与观测数据的互相关函数及观测数据的自相关函数二、实验要求:设计一维纳滤波器。

(1)产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。

估计()i x n ,1,2,3i =的AR 模型参数。

X (n )=w(n)+…+bw(n-q)假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。

三、实验原理:维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小,实质是解维纳-霍夫方程。

假设滤波系统是一个线性时不变系统,它的()h n 和输入信号都是复函数, 设()()()h n a n jb n =+ n=0,1,…考虑系统的因果性,可得到滤波器的输出()()()()()0y n h n x n h m x n m m +∞=*=-∑=n=0,1,…设期望信号d (n ),误差信号()e n 及其均方误差()2E e n ⎡⎤⎢⎥⎣⎦分别为()()()()()e n d n y n s n y n =-=-()()()()()()2220E e n E d n yn E d n h m x n m m ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦+∞=-=--∑= 要使均方误差为最小,需满足:1xxxd -=h R R()20E e n h j⎡⎤⎢⎥⎣⎦∂=∂由上式可以推导得到()()0E x n j e n *⎡⎤⎢⎥⎣⎦-= 上式说明,均方误差达到最小值的充要条件是误差信号与任一进入估计的输入信号正交,这就是正交性原理。

将()()0E x n j e n *⎡⎤⎢⎥⎣⎦-=展开,得 ()()()0dx xx m r k h m r n m +∞*=-=-∑k=0,1,…对两边取共轭,并利用相关函数的性质()()yx xy r k r k *-=,得()()()()()0xx xd xx m k m k m r k r h r h k +∞==-=*∑k=0,1,…此式称为维纳-霍夫(Wiener-Hopf)方程。

维纳滤波复原实验报告

维纳滤波复原实验报告

维纳滤波复原实验报告一、实验介绍维纳滤波是一种常用的图像复原技术,可以通过提供滤波器来降低图像的噪声和估计原始图像。

本次实验旨在通过使用维纳滤波器来复原被噪声污染的图像。

二、实验方法1. 实验准备首先需要准备一个带有噪声的图像作为输入图像,以及一个用作参考的干净图像。

通过加载图像,可以将两幅图像转换为灰度图像来简化处理。

2. 维纳滤波器的建立维纳滤波器可以通过以下公式来构建:H(u, v) = \frac{1}{H(u, v)} \cdot \frac{{ F(u, v) ^2}}{{ F(u, v) ^2 + S_n(u, v)}} 其中,H(u, v)是滤波器的频域函数,F(u, v)是输入图像的傅里叶变换,S_n(u, v)是噪声功率谱。

通过计算输入图像的傅里叶变换,以及噪声功率谱,可以根据上述公式来生成维纳滤波器。

3. 图像复原将输入图像通过傅里叶变换转换到频域,然后与维纳滤波器相乘,最后再进行傅里叶反变换,即可得到复原后的图像。

三、结果与讨论在实验中,我们使用了一幅被高斯噪声污染的图像作为输入图像,并使用了一个无噪声的参考图像。

通过对输入图像进行傅里叶变换,我们得到了输入图像的频域表示。

接着,根据输入图像和参考图像的功率谱,我们生成了对应的维纳滤波器。

最后,我们将输入图像通过傅里叶变换转换到频域,然后与维纳滤波器相乘,再进行傅里叶反变换,得到了复原后的图像。

实验结果显示,通过应用维纳滤波器,最终得到的复原图像与参考图像相比较为接近,且噪声得到了明显的减少。

这证明了维纳滤波的有效性和可行性。

然而,维纳滤波也存在一些限制。

由于维纳滤波是一种线性滤波方法,当输入图像中存在较大的模糊或失真时,滤波器可能无法恢复出清晰的图像。

此外,既有的维纳滤波器还无法处理复杂的噪声类型,如椒盐噪声或周期性噪声。

四、实验总结本次实验通过使用维纳滤波器来复原被噪声污染的图像,展示了维纳滤波的效果和限制。

维纳滤波是一种常用的图像复原技术,能够有效地降低图像噪声并估计原始图像。

维纳滤波 信号处理

维纳滤波 信号处理

维纳滤波信号处理维纳滤波是一种常用的信号处理技术,它可以有效地去除噪声,提高信号的质量。

维纳滤波的原理是基于信号与噪声的统计特性,通过对信号和噪声的分析,可以得到一个最优的滤波器,使得滤波后的信号尽可能地接近原始信号。

维纳滤波的应用非常广泛,例如在图像处理、语音处理、雷达信号处理等领域都有着重要的应用。

在图像处理中,维纳滤波可以去除图像中的噪声,提高图像的清晰度和质量;在语音处理中,维纳滤波可以去除语音信号中的噪声,提高语音的可听性和识别率;在雷达信号处理中,维纳滤波可以去除雷达信号中的噪声,提高雷达信号的探测性能。

维纳滤波的实现方法有很多种,其中最常用的是基于频域的维纳滤波和基于时域的维纳滤波。

基于频域的维纳滤波是将信号和噪声分别转换到频域,然后对它们进行滤波,最后将滤波后的信号转换回时域。

基于时域的维纳滤波则是直接在时域上对信号进行滤波,它的优点是实现简单,但是对于非平稳信号的处理效果不如基于频域的维纳滤波。

维纳滤波的效果受到多种因素的影响,例如信噪比、滤波器的参数设置等。

在实际应用中,需要根据具体的信号特点和噪声特点来选择合适的滤波器参数,以达到最优的滤波效果。

此外,维纳滤波还有一些改进算法,例如自适应维纳滤波、小波维纳滤波等,它们可以进一步提高维纳滤波的效果。

总之,维纳滤波是一种非常重要的信号处理技术,它可以有效地去除噪声,提高信号的质量。

在实际应用中,需要根据具体的信号特点和噪声特点来选择合适的滤波器参数,以达到最优的滤波效果。

未来,随着信号处理技术的不断发展,维纳滤波将会在更多的领域得到应用,并不断提高其滤波效果和处理速度。

中科院数字信号处理作业维纳滤波

中科院数字信号处理作业维纳滤波

中科院数字信号处理作业维纳滤波数字信号处理实验⼀⼀、实验⽬的1、掌握FIR 维纳滤波器的基本原理2、设计FIR 维纳滤波器,对加噪声的信号进⾏滤波处理;⼆、实验原理设期望信号为()S n ,噪声信号为()V n ,则观测信号为()()()X n S n V n =+,为了设计滤波器的最佳传递函数,要先求出期望信号与观测数据的互相关函数xs R 和观测数据的⾃相关函数xx R ,然后利⽤公式-1opt h xs xs R R =求出最佳传递函数,再对信号进⾏()X n 进⾏滤波处理。

三、实验内容及要求1、在直⾓坐标系产⽣⼀个围绕原点做半径为1的圆;2、产⽣均值为0,⽅差分别为0.05和0.06的⾼斯噪声500个;3、将两种杂声分别加在圆的x 、y ⽅向;4、设计FIR 滤波器,根据要求的误差范围不断改变滤波器的阶数,直⾄满⾜误差允许值;5、分别绘制出x ⽅向和y ⽅向的期望信号、噪声信号、观测信号、滤波后的信号、误差信号的曲线图;6、在同⼀幅图中绘制出期望信号、观测信号和滤波后点⽬标的运动轨迹四、实验结果及分析1、在滤波器阶数分别为100和400时,X 轴⽅向的期望信号、噪声信号、观测信号、滤波后信号和误差信号分别如图1和图2所⽰。

图1 X 轴⽅向各个信号滤波器阶数为100图2 X轴⽅向各个信号滤波器阶数为4002、在滤波器阶数分别为100和400时,Y轴防线的期望信号、噪声信号、观测信号、滤波后信号和误差信号如图2所⽰。

图3 Y轴⽅向各个信号滤波器阶数为100图4 Y轴⽅向各个信号滤波器阶数为4003、在滤波器阶数分别为100和400时,期望信号、观测信号和滤波信号在⼀张图中显⽰的结果如图5和图6所⽰,其中红⾊的线为期望信号、绿⾊的线为加噪后的信号、蓝⾊的线为滤波后的信号。

图5 滤波器阶数为100 图6 滤波器阶数为4004、滤波器的阶数与误差的关系表如表1所⽰表1 滤波器阶数与误差对照表滤波器阶数 50 100 200 300 400 x ⽅向误差 0.028512 0.014955 0.012172 0.008156 0.007988 y ⽅向误差 0.0291100.018449 0.005544 0.006908 0.006098 总误差 0.040747 0.023749 0.013375 0.010688 0.010050由实验结果可以看出,滤波器的阶数越⾼,滤波的效果越好。

维纳滤波器的设计及Matlab仿真实现

维纳滤波器的设计及Matlab仿真实现

Wiener 滤波器的设计及Matlab 仿真实现1.实验原理在许多实际应用中,人们往往无法直接获得所需的有用信号,能够得到的是退化了或失真了的有用信号。

例如,在传输或测量信号s(n)时,由于存在信道噪声或测量噪声v(n),接受或测量到的数据x(n)将与s(n)不同。

为了从x(n)中提取或恢复原始信号s(n),需要设计一种滤波器,对x(n)进行滤波,使它的输出y(n)尽可能逼近s(n),成为s(n)的最佳估计,即y(n) = )(ˆn s。

这种滤波器成为最优滤波器。

Wiener 滤波器是“理想”意义上的最优滤波器,有一个期望响应d(n),滤波器系数的设计准则是使滤波器的输出y(n)(也常用)(ˆn d表示)是均方意义上对期望响应的最优线性估计。

Wiener 滤波器的目的是求最优滤波系数],,,,,,[,1,0,1, k o o o o w w w w w ,从而使])(ˆ)([])([)(22n d n d E n e E n J 最小。

通过正交性原理,导出)()(k r k i r w xd x i oi , 2,1,0,1, k该式称为Wiener-Hopf 方程,解此方程,可得最优权系数},2,1,0,1,,{ i w oi 。

Wiener-Hopf 方程的矩阵形式为xd o x r w R ,解方程求得xd x o r R w 12.设计思路下面我们通过具体的例子来说明Wiener 滤波器的设计方法:考虑如下图所示的简单通信系统。

其中,产生信号S(n)所用的模型为)95.01/(1)(11 z z H ,激励信号为)3.0,0(~)(WGN n w 。

信号s(n)通过系统函数为)85.01/(1)(12 z z H 的信道,并被加性噪声)1.0,0(~)(WGN n v 干扰,v(n)与w(n)不相关。

确定阶数M=2的最优FIR 滤波器,以从接收到的信号x(n) = z(n) + v(n)中尽可能恢复发送信号s(n),并用MATLAB 进行仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 维纳滤波
1. 实验内容
设计一个维纳滤波器:
(1) 产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪,(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。

(2) 估计()i x n ,1,2,3i =的AR 模型参数。

假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。

2. 实验原理
滤波目的是从被噪声污染的信号中分离出有用的信号来,最大限度地抑制噪声。

对信号进行滤波的实质就是对信号进行估计。

滤波问题就是设计一个线性滤波器,使得滤波器的输出信号()y n 是期望响应()s n 的一个估计值。

下图就是观测信号的组成和信号滤波的一般模型。

观测信号()()()x n s n v n =+ 信号滤波的一般模型
维纳滤波解决从噪声中提取信号的滤波问题,并以估计的结果与真值之间的误差均方值最小作为最佳准则。

它根据()()(),1,
,x n x n x n m --估计信号的当前
值,它的解以系统的系统函数()H z 或单位脉冲()h n 形式给出,这种系统常称为最佳线性滤波器。

维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小。

假设滤波系统()h n 是一个线性时不变系统,它的()h n 和输入信号都是复函数,设
()()()h n a n jb n =+ 0,1,
n
=
考虑系统的因果性,可得到滤波器的输出
()()()()()0
*m y n h n x n h m x n m +∞
===-∑ 0,1,
n
=
设期望信号()d n ,误差信号()e n 及其均方误差()2
E e n ⎡⎤⎣⎦
分别为
()()()()()e n d n y n s n y n =-=-
()()()()()()22
2
0m E e n E d n y n E d n h m x n m ∞=⎡⎤
⎡⎤⎡⎤=-=--⎢⎥⎣⎦⎣
⎦⎢⎥⎣⎦
∑ 要使均方误差为最小,需满足:
()()
2
0E e n h j ⎡⎤∂⎣⎦=∂ 整理得()()0E x n j e n *⎡⎤-=⎣⎦,等价于()()0E x n j e n *
⎡⎤-=⎣⎦
上式说明,均方误差达到最小值的充要条件使误差信号与任一进入估计的输入信号正交,这就是正交性原理。

将()()0E x n j e n *
⎡⎤-=⎣⎦展开,得
()()()()00m E x n k d n h m x m +∞
***
=⎡⎤⎛⎫--=⎢⎥ ⎪⎝⎭⎣
⎦∑
整理得 ()()()0
dx xx m r k h m r m k +∞
*=-=-∑ 0,1,2,
k
= 等价于()()()()()0
dx xx xx m r k h m r k m h k r k +∞
==-=*∑ 0,1,2,
k
=
此式称为维纳-霍夫(Wiener-Holf )方程。

解此方程可得到最优权系数
012,,,
h h h ,此式是Wiener 滤波器的一般方程。

定义
121M M h h h h ⨯⎡⎤
⎢⎥
⎢⎥=⎢⎥
⎢⎥
⎣⎦()()()1011xd xd xd xd M r r R r M ⨯⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦
()()()()()()()()
()011102120xx xx xx xx
xx xx xx xx xx xx M M
r r r M r r r M R r M r M r *
*
*
⨯⎡⎤
-⎢
⎥-⎢⎥=⎢⎥⎢⎥
--⎢⎥⎣⎦
则维纳-霍夫方程可写成矩阵形式
xd xx R R h =求逆,得1
xx xd h R R -=
此式表明,已知期望信号与观测数据的互相关函数及观测数据的自相关函数时,可以通过矩阵求逆运算,得到维纳滤波器的最佳解。

3. 实验结果及分析
(1)当L=200,N=6
信噪比为20dB 的滤波效果
信噪比为10dB的滤波效果
信噪比为6dB的滤波效果(2)当L=200,N=60
信噪比为20dB的滤波效果
信噪比为10dB的滤波效果
信噪比为6dB的滤波效果(3)当L=600,N=6
信噪比为20dB的滤波效果
信噪比为10dB的滤波效果
信噪比为6dB的滤波效果
实验分析:别取信号长度为200、600,滤波器长度为6、60,加噪信噪比为20dB、10dB、6dB,组合进行实验。

每组实验得到的最小均方误差统计如下表。

由此表可以看出,信号长度越长,最小均方误差(绝对值)越大,精度越差;在信噪比较大(误差影响较小)的滤波过程中,滤波器长度约长,最小均方误差(绝对值)越小,精度越好。

表1 最小均方误差统计表
对于相同信号和滤波器(这里取L=200,N=6),信噪比越大,最小距离误差约小;而当信噪比较小时,信号与噪声值接近,导致滤波效果受到影响,最小距离误差变大。

4. 源代码
clear;
clc;
%初始化变量
L=200;
%信号长度
N=6;
%滤波器的阶次
a=0.96;
wn=randn(L,1);
%wn为用于生成信号的噪声信号,随机生成一个L*1矩阵,生成矩阵的元素值在%区间(0.0,1.0)之间
sn=zeros(L,1);
%sn为信号,生成一个L*1的零矩阵
hn=zeros(N,1);
%hn为系统单位脉冲响应生成一个N*1的零矩阵
rxx=zeros(N,1);
%rxx为自相关函数,生成一个N*1的零矩阵
rxd=zeros(N,1);
%rxd为互相关函数,生成一个N*1的零矩阵
yn=zeros(L,1);
%yn为输出信号,生成一个L*1的零矩阵
xt=zeros(L+N,1);
%生成一个(L+N)*1的零矩阵
gn=zeros(L,1);
%gn为yn与sn最小距离误差信号,生成一个L*1的零矩阵
%根据给定公式s(n)=as(n-1)+w(n),生成理想信号
for i=2:L
sn(i,1)=a*sn(i-1,1)+wn(i,1);
end
sn(1,1)=wn(1,1);
subplot(2,2,1);
plot(sn,'r'),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('sn')
%生成期望信号方差cd
cd=(var(wn))/(1-a^2);
%对信号加噪
x1=awgn(sn,20);
x2=awgn(sn,10);
x3=awgn(sn,6);
subplot(2,2,2)
plot(x3,'g'),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('x3');
%生成输入信号与理想信号的互相关函数,此处x1为输入信号,sn为期望信号for i=1:N,
for m=i:1:L,
rxd(i,1)=rxd(i,1)+x3(m,1)*sn(m-i+1,1);
end
end
%生成输入信号的自相关函数
for i=1:N,
for m=i:1:L,
rxx(i,1)=rxx(i,1)+x3(m,1)*x3(m-i+1,1);
end
end
%将自相关函数生成托普勒斯矩阵
rxx1=toeplitz(rxx);
%生成逆矩阵
irxx=inv(rxx1);
%生成滤波器系数h(n)
hn=irxx*rxd;
for i=1:L
xt(i+N,1)=x3(i,1);
end
%实现滤波
for i=1:L,
for m=1:N,
yn(i,1)=yn(i,1)+xt(i+N+1-m,1)*hn(m,1);
end
end
%计算最小均方误差信号en
en=0;
en=cd-(rxd')*hn;
%生成最小距离误差信号gn
gn=yn-sn;
%画出滤波后的信号时域图
subplot(2,2,3);
plot(yn),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('yn');
%画出理想信号与输出信号对比图
subplot(2,2,4);
plot(sn,'r'),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('sn与yn对比');
hold on;
plot(yn,'b'),axis([0 200 -10 10]);
hold off;
%画出最小距离误差信号图
figure;
plot(gn),axis([0 200 -2 2]),xlabel('时间'),ylabel('幅度'),title('gn');。

相关文档
最新文档