实验四iir数字滤波器的设计实验报告

合集下载

实验四IIR数字滤波器的设计实验报告

实验四IIR数字滤波器的设计实验报告

实验四I I R数字滤波器的设计实验报告Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四 IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1.脉冲响应不变法用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则2.双线性变换法S平面与z平面之间满足以下映射关系:s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =, δ=, =, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num =den = 1系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

实验四IIR数字滤波器设计实验报告

实验四IIR数字滤波器设计实验报告

实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。

本次实验就是探究IIR数字滤波器的设计和分析。

在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。

在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。

经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。

在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。

而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。

一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。

它通常由差分方程和差分方程的系数表示。

IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。

根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。

常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。

在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。

二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。

阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。

3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。

可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。

4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。

常见的滤波器结构有直接形式I、直接形式II、级联形式等。

5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。

常见的参数化方法有差分方程法、极点/零点法、增益法等。

6.根据参数化的滤波器模型,计算出所有的滤波器系数。

(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。

2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。

实验四IIR数字滤波器设计及软件实现实验报告(word文档)

实验四IIR数字滤波器设计及软件实现实验报告(word文档)

实验四 IIR 数字滤波器设计及软件实现实验报告实验四 IIR 数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法;(2)学会调用 MATLAB信号办理工具箱中滤波器设计函数(或滤波器设计解析工具fdatool)设计各种IIR 数字滤波器,学会依照滤波需求确定滤波器指标参数。

(3)掌握 IIR 数字滤波器的 MATLAB实现方法。

(3)经过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的看法。

二、实验原理设计 IIR 数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标变换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数变换成数字滤波器的系统函数。

MATLAB信号办理工具箱中的各种IIR 数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1、cheby2和ellip能够分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫 2 和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR 数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号办理工具箱函数filter对给定的输入信号x(n) 进行滤波,获取滤波后的输出信号y(n )。

三、实验内容及步骤(1)调用信号产生函数mstg 产生由三路控制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特点曲线,如图所示。

由图可见,三路信号时域混叠无法在时域分别。

但频域是分其他,因此能够经过滤波的方法在频域分别,这就是本实验的目的。

图三路调幅信号st 的时域波形和幅频特点曲线( 2)要求将st 中三路调幅信号分别,经过观察st 的幅频特点曲线,分别确定能够分实验四 IIR 数字滤波器设计及软件实现实验报告离 st 中三路控制载波单频调幅信号的三个滤波器 (低通滤波器、 带通滤波器、 高通滤波器)的通带截止频率和阻带截止频率。

实验四 IIR数字滤波器的设计

实验四  IIR数字滤波器的设计

电气与信息工程学院数字信号处理实验报告学生姓名班级电子信息工程学号指导教师2019.12实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期上机实验内容:(1)fc=0.3KHz,δ=0.8dB,fr=0.2KHz, At=20dB,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

iir滤波器设计实验报告

iir滤波器设计实验报告

iir滤波器设计实验报告IIR滤波器设计实验报告一、实验目的本实验旨在通过实际操作,掌握IIR滤波器的基本设计方法,了解滤波器性能参数对滤波效果的影响,加深对滤波器理论的理解。

二、实验原理IIR滤波器(Infinite Impulse Response)是一种离散时间滤波器,其系统函数具有无限长的时间响应。

IIR滤波器设计方法主要包括冲激响应不变法和双线性变换法。

本实验采用冲激响应不变法进行设计。

三、实验步骤1. 确定滤波器性能参数:根据实际需求,确定滤波器的类型(低通、高通、带通、带阻)、通带边缘频率、阻带边缘频率、通带波动和阻带衰减等性能参数。

2. 计算滤波器系数:根据冲激响应不变法,利用Matlab编程计算滤波器系数。

具体过程包括定义系统函数、计算冲激响应、计算频率响应等步骤。

3. 编写滤波器程序:根据计算出的滤波器系数,编写IIR滤波器程序。

程序应实现输入信号的滤波处理,并输出滤波后的信号。

4. 测试滤波器性能:对编写的滤波器程序进行测试,观察其滤波效果,分析性能参数对滤波效果的影响。

5. 优化滤波器性能:根据测试结果,对滤波器性能参数进行调整,优化滤波效果。

四、实验结果及分析通过本次实验,我们成功地设计并实现了IIR滤波器。

在测试过程中,我们观察到了滤波器对不同频率信号的过滤效果,并分析了性能参数对滤波效果的影响。

具体来说,通带边缘频率决定了滤波器对低频信号的过滤程度,阻带边缘频率则影响对高频信号的过滤程度。

通带波动和阻带衰减则分别反映了滤波器在通带和阻带的波动程度和衰减程度。

通过对这些性能参数的调整,我们可以实现对不同类型信号的有效过滤。

五、实验总结通过本次实验,我们深入理解了IIR滤波器的工作原理和设计方法,掌握了Matlab编程在滤波器设计中的应用。

实验过程中,我们不仅学会了如何根据实际需求选择合适的性能参数,还学会了如何调整这些参数以优化滤波效果。

此外,我们还观察到了不同性能参数对滤波效果的影响,加深了对滤波器理论的理解。

matlab实验报告 IIR数字滤波器设计

matlab实验报告 IIR数字滤波器设计

实验报告姓名:李鹏博 实验名称: IIR 数字滤波器设计 学号:2011300704 课程名称: 数字信号处理 班级:03041102 实验室名称: 航海西楼303 组号: 1 实验日期: 2014.06.20一、实验目的、要求掌握IIR 数字滤波器设计的冲激响应不变法和双线性变换法。

掌握IIR 数字滤波器的计算机编程实现方法,即软件实现。

二、实验原理为了从模拟滤波器设计IIR 数字滤波器,必须先设计一个满足技术指标的模拟滤波器,然后将其数字化,即从s 平面映射到z 平面,得到所需的数字滤波器。

虽然IIR 数字滤波器的设计本质上并不取决于连续时间滤波器的设计,但是因为在许多应用中,数字滤波器就是用来模仿模拟滤波器功能的,所以由模拟滤波器转化为数字滤波器是很自然的。

因此,由模拟滤波器设计数字滤波器的方法准确、简便,是目前最普遍采用的方法。

三、实验环境PC 机,Windows XP ,office 2003,Matlab 软件。

四、实验过程、数据记录、分析及结论实验过程1.编程设计滤波器,用冲激响应不变法设计IIR 数字滤波器。

2.编程设计滤波器,用双线性变换法设计IIR 数字滤波器。

3.求脉冲响应、频率响应以及零极点。

4.编程滤波,求滤波器输出,完成对不同频率的多个正弦信号的滤波。

实验步骤根据所给定的技术指标进行指标转换。

112c c f πΩ=,222c c f πΩ=,112s s f πΩ=,222s s f πΩ=,21p c c B Ω==Ω-Ω,221222s s s s s B Ω-ΩΩΩ=Ω,3,18p s αα=-=-。

根据指标设计Butterworth 模拟低通滤波器。

调用函数[n,wn]=buttord(wp,ws,rp,rs,’s ’)确定阶次。

调用函数[zl,pl,kl]=buttap(n),求低通原型的模型。

调用函数[bl,al]=zp2tf(zl,pl,kl)实现模型转换。

实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。

由图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换 ,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期(1)=, δ=, =, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num =den = 1系统函数: 123412340.0304 -0.1218z 0.1827z -0.1218z 0.0304z H(z)= 1.0000+1.3834z +1.4721z + 0.8012z +0.2286z --------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

δ=,fr=,At=30Db,满足设计要求(2)fc=,δ=1dB,fr=,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一Butterworth数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。

比较这两种方法的优缺点。

MATLAB源程序:T = ;fs = 1000;fc = 200;fr = 300;wp1 = 2*pi*fc;wr1 = 2*pi*fr;[N1,wn1] = buttord(wp1,wr1,1,25,'s')[B1,A1] = butter(N1,wn1,'s');[num1,den1] = impinvar(B1,A1,fs);%脉冲响应不变法[h1,w] = freqz(num1,den1);wp2 = 2*fs*tan(2*pi*fc/(2*fs))wr2 = 2*fs*tan(2*pi*fr/(2*fs))[N2,wn2] = buttord(wp2,wr2,1,25,'s')[B2,A2] = butter(N2,wn2,'s');[num2,den2] = bilinear(B2,A2,fs);%双线性变换法[h2,w] = freqz(num2,den2);f = w/(2*pi)*fs;plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');axis([0,500,-100,10]);grid;xlabel('频率/Hz ');ylabel('幅度/dB')title('巴特沃思数字低通滤波器');legend('脉冲相应不变法','双线性变换法',1);结果分析:脉冲响应不变法的低通滤波器系统函数:num1den1 1 987654321876543210.0004z 0.0060z 0.0450z 0.2045z 0.6309z 1.3869z 2.2053z 2.5324z 1.9199z 1 3.6569z 0.0002z 0.0075z 0.0611z 0.1444z 0.0995z 0.0153z 0.0002z 2.3647------------------+-+-+-+-++++++++-=)(z H双线性变换法设计的低通滤波器系统函数:num2den2 16543216543210025.00208.01501.02989.09130.06019.010176.01072.02681.03575.02681.00.10720179.0)(------------+-+-+-++++++=z z z z z z z z z z z z z H分析:脉冲响应不变法的频率变化是线性的,数字滤波器频谱响应出现了混叠,影响了过渡带的衰减特性,并且无传输零点;双线性变化法的频率响应是非线性的,因而消除了频谱混叠,在f=500Hz出有一个传输零点。

脉冲响应不变法的一个重要特点是频率坐标的变换是线性的,ω=ΩΤ,ω与Ω是线性关系:在某些场合,要求数字滤波器在时域上能模仿模拟滤波器的功能时,如要实现时域冲激响应的模仿,一般使用脉冲响应不变法。

脉冲响应不变法的最大缺点:有频谱周期延拓效应,因此只能用于带限的频响特性,如衰减特性很好的低通或带通,而高频衰减越大,频响的混淆效应越小,至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中,此时可增加一保护滤波器,滤掉高于的频带,再用脉冲响应不变法转换为数字滤波器,这会增加设计的复杂性和滤波器阶数,只有在一定要满足频率线性关系或保持网络瞬态响应时才采用。

双线性变换法的主要优点是S平面与Z平面一一单值对应,s平面的虚轴(整个jΩ)对应于Z平面单位圆的一周,S平面的Ω=0处对应于Z 平面的ω=0处,Ω= ∞处对应于Z平面的ω= π处,即数字滤波器的频率响应终止于折叠频率处,所以双线性变换不存在混迭效应。

双线性变换缺点: Ω与ω成非线性关系,导致:a. 数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变,(使数字滤波器与模拟滤波器在响应与频率的对应关系上发生畸变)。

b. 线性相位模拟滤波器经双线性变换后,得到的数字滤波器为非线性相位。

c.要求模拟滤波器的幅频响应必须是分段恒定的,故双线性变换只能用于设计低通、高通、带通、带阻等选频滤波器。

(3)利用双线性变换法分别设计满足下列指标的Butterworth型、Chebyshev型和椭圆型数字低通滤波器,并作图验证设计结果:fc= ,δ≤,fr=2kHz ,At≥40dB, fs=8kHz,比较这种滤波器的阶数。

MATLAB源程序:clear all;wc=2*pi*1200;wr=2*pi*2000;rp=;rs=40;fs=8000;w1=2*fs*tan(wc/(2*fs));w2=2*fs*tan(wr/(2*fs));[Nb,wn]=buttord(w1,w2,rp,rs,'s') %巴特沃思[B,A]=butter(Nb,wn,'s');[num1,den1]=bilinear(B,A,fs);[h1,w]=freqz(num1,den1);[Nc,wn]=cheb1ord(w1,w2,rp,rs,'s') %切比雪夫[B,A]=cheby1(Nc,rp,wn,'s');[num2,den2]=bilinear(B,A,fs);[h2,w]=freqz(num2,den2);[Ne,wn]=ellipord(w1,w2,rp,rs,'s') %椭圆型[B,A]=ellip(Ne,rp,rs,wn,'low','s');[num3,den3]=bilinear(B,A,fs);[h3,w]=freqz(num3,den3);f=w/(2*pi)*fs;plot(f,20*log10(abs(h1)),'-',f,20*log10(abs(h2)),'--',f,20*log10(abs(h3)),':') ;axis([0,4000,-100,10]);grid;xlabel('Frequency in Hz'); ylabel('Gain in dB');title('三种数字低通滤波器');legend('巴特沃思数字低通滤波器','切比雪夫数字低通滤波器','椭圆数字低通滤波器',3);巴特沃思数字低通滤波器的系统函数系数:num1=den1=切比雪夫数字低通滤波器的系统函数系数:num2=den2= 1椭圆数字低通滤波器的系统函数系数:num3=den3= 1程序结果图:分析:设计结果表明,巴特沃思数字低通滤波器、切比雪夫数字低通滤波器、椭圆数字低通滤波器的阶数分别是9、5、4阶。

可见,对于给定的阶数,椭圆数字低通滤波器的阶数最少(换言之,对于给定的阶数,过渡带最窄),就这一点来说,他是最优滤波器。

由图表明,巴特沃思数字低通滤波器过渡带最宽,幅频响应单调下降;椭圆数字低通滤波器过渡带最窄,并具有等波纹的通带和阻带响应;切比雪夫数字低通滤波器的过渡带介于两者之间。

相关文档
最新文档