函数的奇偶性与周期性练习题
函数的奇偶性与周期性精选习题(含解析)

1 / 9函数的奇偶性与周期性精选习题一、选择题1.(奇偶性与反函数结合求值)已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2y log x =的图象关于y x =对称,则()()12g g -+-=( ). A .-7B .-9C .-11D .-132.(利用奇偶函数的对称性求值)已知函数2()cos 2121x f x x x π⎛⎫=-++ ⎪+⎝⎭,则()f x 的最大值与最小值的和为 A .0B .1C .2D .43.(利用函数的奇偶性判断图象)函数()21sin 1xx e f x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ) A . B .C .D .4.(利用奇偶性单调性比较大小)设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A .13()()(1)32f f f <<B .31(1)()()23f f f <<C .13(1)()()32f f f <<D .31()(1)()23f f f <<5.(利用奇偶性周期性求函数值)已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-26.(利用奇偶性周期性判断方程根的个数)函数()f x 对于任意实数x ,都()()f x f x -=与2 / 9(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是( )A .2020B .2019C .1010D .10097.(利用奇偶性周期性求字母范围)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 20(1)a f x x a -+=>在区间(]2,6-内恰有三个不同实根,则实数a 的取值范围是( ) A.B.)2C.2⎤⎦D.2⎤⎦二、填空题8.(利用奇偶性解不等式)已知()f x 是R 上的偶函数,且当0x ≥时,()23f x x x =-,则不等式()22f x -≤的解集为___.9.(奇偶性与导函数结合)已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',对定义域内的任意x ,都有()()22f x xf x '+<成立,则使得()()22424x f x f x -<-成立的x 的取值范围为_____.10(由函数图象判断周期性求函数值)如图,边长为1的正方形ABCD ,其中边DA 在x 轴上,点D 与坐标原点重合,若正方形沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转.设顶点C (x ,y )滚动时形成的曲线为y =f (x ),则f (2019)=________.3 / 9函数的奇偶性与周期性精选习题解析一、选择题1.(奇偶性与反函数结合求值)已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2y log x =的图象关于y x =对称,则()()12g g -+-=( ). A .-7 B .-9C .-11D .-13【答案】C【解析】∵x >0时,f (x )的图象与函数y =log 2x 的图象关于y =x 对称; ∴x >0时,f (x )=2x ;∴x >0时,g (x )=2x +x 2,又g (x )是奇函数;∴g (﹣1)+g (﹣2)=﹣[g (1)+g (2)]=﹣(2+1+4+4)=﹣11. 故选C .2.(利用奇偶函数的对称性求值)已知函数2()cos 2121x f x x x π⎛⎫=-++ ⎪+⎝⎭,则()f x 的最大值与最小值的和为 A .0 B .1C .2D .4【答案】C【解析】对()f x 整理得,()22cos 21sin 21211x x f x x x x x π⎛⎫=-++=++ ⎪++⎝⎭ 而易知2sin 2,1xy x y x ==+都是奇函数, 则可设()()21sin 21g x f x x xx =-++=,可得()g x 为奇函数,即()g x 关于点()0,0对称所以可知()()1f x g x =+关于点()0,1对称,所以()f x 的最大值和最小值也关于点()0,1,因此它们的和为2. 故选C 项.3.(利用函数的奇偶性判断图象)函数()21sin 1xx e f x ⎛⎫=-⎪+⎝⎭的图象大致形状为( )4 / 9A .B .C .D .【答案】A【解析】()211sin sin 11x x xe xf x x e e -⎛⎫=-=⋅ ⎪++⎝⎭, ()()()()11sin sin sin 1111x x xx x xe e e x x xf x f x e e e----=⋅-=⋅---=++⋅=+, 所以()f x 为偶函数,排除CD ;()221s 202in 1e e f -=⋅<+,排除B ,故选:A4.(利用奇偶性单调性比较大小)设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A .13()()(1)32f f f <<B .31(1)()()23f f f <<C .13(1)()()32f f f <<D .31()(1)()23f f f <<【答案】A【解析】Q ()f x 为奇函数,()()f x f x ∴-=-,又Q (2)()f x f x +=-11f f ,f (1)f (1)33⎛⎫⎛⎫∴=--=-- ⎪ ⎪⎝⎭⎝⎭,3112222f f f ⎛⎫⎛⎫⎛⎫=-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5 / 9又1111023--<-<-≤Q …,且函数在区间[1,0)-上是增函数, 11f (1)f f 023⎛⎫⎛⎫∴-<-<-< ⎪ ⎪⎝⎭⎝⎭,11f (1)f f 23⎛⎫⎛⎫∴-->-->-- ⎪ ⎪⎝⎭⎝⎭31(1)23f f f ⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭,故选A.5.(利用奇偶性周期性求函数值)已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-2【答案】C【解析】由()()53f x f x +=-,得()()8f x f x +=,所以()f x 是周期为8的周期函数,当[)0,4x ∈时,()()2log 2f x x =+,所以()()()76696822f f f =⨯-=-,又()f x 是定义在R 上的偶函数所以()()222log 42f f -===.故选C 。
第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习

分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。
高考数学考点练习第二章函数导数及其应用7函数的奇偶性与周期性试题理

考点测试7 函数的奇偶性与周期性一、基础小题1.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称答案 C解析 f (x )=1x-x 是奇函数,所以图象关于原点对称.2.下列函数中,在其定义域内是偶函数又在(-∞,0)上单调递增的是( ) A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x |D .f (x )=sin x答案 C解析 f (x )=x 2和f (x )=2|x |是偶函数,但在(-∞,0)上单调递减,f (x )=sin x 为奇函数,f (x )=log 21|x |是偶函数,且在(-∞,0)上单调递增,故选C. 3.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为( )A .-14B .14C .12D .-12答案 B解析 解法一:设x <0,则-x >0,所以f (-x )=x 2+x ,又函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝ ⎛⎭⎪⎫x +122+14,所以当x <0时,函数f (x )的最大值为14.故选B.解法二:当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.故选B.4.已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f x,若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数答案 A解析 由题意知f (x +2)=1fx +1=f (x ),所以f (x )的周期为2,又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数,则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数,故选A.5.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12 的值为( ) A .2 B .-2 C .0 D .2log 213答案 A解析 由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则f ⎝ ⎛⎭⎪⎫12-1+f ⎝ ⎛⎭⎪⎫-12-1=0,所以f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2. 6.已知f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 ∵f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,∴f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫21+x +a +lg⎝ ⎛⎭⎪⎫21-x +a =0,解得a =-1,即f (x )=lg 1+x 1-x ,由f (x )=lg 1+x 1-x <0,得0<1+x 1-x <1,解得-1<x <0,故选A.7.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23 答案 A解析 由于函数f (x )在区间[0,+∞)上单调递增,且f (x )为偶函数,则由f (2x -1)<f ⎝ ⎛⎭⎪⎫13,得-13<2x -1<13,解得13<x <23.故x 的取值范围是⎝ ⎛⎭⎪⎫13,23. 8.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )f (y ),且f (0)≠0,则f (x )( ) A .为奇函数 B .为偶函数 C .为非奇非偶函数 D .奇偶性不能确定答案 B解析 令x =y =0,则2f (0)=2f 2(0),又f (0)≠0,所以f (0)=1.令x =0,则f (y )+f (-y )=2f (0)f (y ),即f (-y )=f (y ),所以函数f (x )是偶函数.9.函数f (x )=π2-sin x3+|x |的最大值是M ,最小值是m ,则f (M +m )的值等于( )A .0B .2πC .πD .π2答案 D解析 设h (x )=sin x3+|x |,则h (-x )=-h (x ),所以h (x )是一个奇函数,所以函数h (x )的最大值和最小值的和是0,所以M +m =π,所以f (M +m )=π2.10.已知f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+ax ,x <0为偶函数,则y =log a (x 2-4x -5)的单调递增区间为( )A .(-∞,-1)B .(-∞,2)C .(2,+∞)D .(5,+∞)答案 D解析 因为f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+ax ,x <0为偶函数,所以f (-1)=f (1),即1-a =1-2,所以a =2,则y =log 2(x 2-4x -5),令t =x 2-4x -5,其对称轴为x =2,由x 2-4x -5>0,得x <-1或x >5.由复合函数的单调性知,y =log a (x 2-4x -5)的单调递增区间为(5,+∞).11.已知定义在R 上的函数f (x )是奇函数,且f (x )在(-∞,0)上是减函数,f (2)=0,g (x )=f (x +2),则不等式xg (x )≤0的解集是( )A .(-∞,-2]∪[2,+∞)B .[-4,-2]∪[0,+∞)C .(-∞,-4]∪[-2,+∞)D .(-∞,-4]∪[0,+∞) 答案 C解析 依题意,如图所示,实线部分为g (x )的草图,则xg (x )≤0⇔⎩⎪⎨⎪⎧x ≥0,gx ≤0或⎩⎪⎨⎪⎧x ≤0,g x ≥0,由图可得xg (x )≤0的解集为(-∞,-4]∪[-2,+∞).12.已知a 为常数,函数f (x )=x 2-4x +3.若函数f (x +a )为偶函数,则a =________,f (f (a ))=________.答案 2 8解析 由函数f (x +a )为偶函数,得f (x +a )=f (-x +a ),解得a =2,所以f (f (a ))=f (f (2))=f (-1)=8.二、高考小题13.[2015·广东高考]下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x+12xD .y =x +e x答案 D解析 选项A 中的函数是偶函数;选项B 中的函数是奇函数;选项C 中的函数是偶函数;只有选项D 中的函数既不是奇函数也不是偶函数.14.[2014·全国卷Ⅰ]设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案 C解析 由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )·g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|·g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|·g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.15.[2016·山东高考]已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2答案 D解析 当x >12时,由f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,可得f (x )=f (x +1),所以f (6)=f (1),而f (1)=-f (-1),f (-1)=(-1)3-1=-2,所以f (6)=f (1)=2,故选D.16.[2015·全国卷Ⅰ]若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 由已知得f (-x )=f (x ),即-x ln (a +x 2-x )=x ln (x +a +x 2),则ln (x +a +x 2)+ln (a +x 2-x )=0,∴ln [(a +x 2)2-x 2]=0,得ln a =0, ∴a =1.17.[2016·四川高考]已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________. 答案 -2解析 ∵f (x )是定义在R 上的奇函数, ∴f (x )=-f (-x ).又∵f (x )的周期为2,∴f (x +2)=f (x ), ∴f (x +2)=-f (-x ),即f (x +2)+f (-x )=0,令x =-1, 得f (1)+f (1)=0,∴f (1)=0.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2, ∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 18.[2016·江苏高考]设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是____________. 答案 -25解析 ∵f (x )是周期为2的函数, ∴f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12, f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92, 所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12, 即-12+a =110,解得a =35,则f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.三、模拟小题19.[2017·大连测试]下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1答案 C解析 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.20.[2016·陕西一检]若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件答案 A解析 f (x )在R 上为奇函数⇒f (0)=0;f (0)=0⇒/f (x )在R 上为奇函数,如f (x )=x 2,故选A.21.[2017·山东青岛模拟]奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2 答案 A解析 ∵f (x +1)为偶函数,f (x )是奇函数,∴f (-x +1)=f (x +1),f (x )=-f (-x ),f (0)=0, ∴f (x +1)=f (-x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.22.[2017·江西三校联考]定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f x 1-f x 2x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 答案 A解析 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0,∴f (x )在(-∞,0)上是减函数.又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数.∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.23.[2017·贵州适应考试]已知f (x )是奇函数,g (x )=2+f xf x,若g (2)=3,则g (-2)=________.答案 -1解析 ∵g (2)=2+f 2f 2=3,∴f (2)=1.又f (-x )=-f (x ),∴f (-2)=-1,∴g (-2)=2+f -2f -2=2-1-1=-1.24.[2017·湖北名校联考]已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (-1)=2,则f (2017)=________.答案 2解析 由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),∴f (x )是周期T =8的偶函数,∴f (2017)=f (1+252×8)=f (1)=f (-1)=2.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.[2017·河南联考]设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解 (1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴f (x )是以4为周期的周期函数. ∴f (π)=f (-1×4+π)=f (π-4) =-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.2.[2017·安徽合肥质检]已知函数f (x ) =⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].3.[2016·福州一中月考]已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式.解 (1)证明:由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ),故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1], f (x )=-f (-x )=--x ,故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0], f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,f (x )=--x -4.4.[2017·湖南师大附中月考]已知函数f (x )的定义域是满足x ≠0的一切实数,对定义域内的任意x 1,x 2都有f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.求证:(1)f (x )是偶函数;(2)f (x )在(0,+∞)上是增函数.证明 (1)令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. 令x 1=x 2=-1,得f (1)=2f (-1),∴f (-1)=0, 令x 1=-1,x 2=x ,得f (-x )=f (-1·x )=f (-1)+f (x )=f (x ),∴f (x )是偶函数.(2)设x 2>x 1>0,则f (x 2)-f (x 1)=f ⎝⎛⎭⎪⎫x 1·x 2x 1-f (x 1)=f (x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x1.∵x 2>x 1>0,∴x 2x 1>1,∴f ⎝ ⎛⎭⎪⎫x 2x 1>0,即f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.。
函数的奇偶性与周期性典型例题

函数的奇偶性和周期性
例1、 已知为定义在上的奇函数,当时,,求的
表达式.
思路点拨:().00上,这是解题的关键的解析式转化到时将<>x x f x 解:∵
为奇函数,且在处有定义0=x ∴ 当 时, ∵
为奇函数 ∴
∴ ∴()()()()⎪⎩
⎪⎨⎧<--=>-=000022x x x x x x x x f
解题回顾:若一个函数具有奇偶性,则不论这个函数是奇函数还是偶函数,它的定义域一定关于原点对称。
如果一个函数定义域不关于原点对称,那么它就失去了奇函数或是偶函数的条件,即这个函数既不是奇函数又不是偶函数。
变式:已知为定义在上的偶函数,当0≤x 时,,求的
表达式.
例2、 已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有
()()x f x f =+4,若()263=f ,求()()75f f 与的大小关系 思路点拨:解此题的关键由()()x f x f =+4知函数的周期是4. 解:对一切x R ∈,总有f (x+4)=f (x ),故函数)(x f 是周期为4的函数,因此,,2)1(=-f 又函数f (x )是定义在R 上的奇函数,所以,.2)7(,2)5(,2)1(=-=∴-=f f f )7()5(f f <∴。
变式1、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()x f x f -=+2,若()263=f ,则()()75f f 与的大小关系是
变式2、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()
x f x f 12=+,若()263=f ,求()()75f f 与的大小关系。
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
函数的奇偶性、对称性、周期试题

函数的奇偶性、对称性、周期试题+==⨯f1ff-=f335)4)4()1(6((-=2014)考点:函数的性质6.设)(x f是定义在实数集R上的函数,且满足下列关系)(x20)(fx-,则)(x f=-f++,)20)(10(x10ff-=x是().A.偶函数,但不是周期函数B.偶函数,又是周期函数C.奇函数,但不是周期函数D.奇函数,又是周期函数【答案】D【解析】试题分析:∵f(20-x)=f[10+(10-x)]=f[10-(10-x)]=f(x)=-f(20+x).∴f(20+x)=-f(40+x),结合f(20+x)=-f(x)得到f (40+x)=f(x)∴f(x)是以T=40为周期的周期函数;又∵f(-x)=f(40-x)=f(20+(20-x)=-f (20-(20-x))=-f(x).∴f(x)是奇函数.故选:D考点:本题考查函数的奇偶性,周期性点评:解决本题的关键是准确理解相关的定义及其变形,即满足f(x+T)=f(x),则f(x)是周期函数,函数的奇偶性,则考虑f(x)与f(-x)的关系7.设f (x )定义R 上奇函数,且y =f (x )图象关于直线x =13对称,则f (-23)=( ) A .-1 B .1 C .0D .2【答案】C【解析】 试题分析:由题意可得,2()(),()()3f x f x f x f x -=-=-,所以22()()(0)033f f f -=-=-=,选C.考点:函数的奇偶性及对称性.8.已知)(x f 在R 上是奇函数,且满足)()4(x f x f =+,当)2,0(∈x 时,22)(x x f =,则)7(f 的值为 ( ) A .2- B .2 C .98-D .98【答案】A【解析】 试题分析:)()4(x f x f =+,根据周期函数定义可知()f x 是周期为4的周期函数,∴()()()7181f f f =-+=-,又根据函数()f x 是奇函数,可得()1f -=()1f -,因为()10,2∈,所以()211212f -=-⨯⨯=-.故正确答案为选项A.考点:周期函数的定义和性质;奇函数定义和性质.9.已知定义在R 上的函数()f x ,对任意x R ∈,都有()()()63f x f x f +=+成立,若函数()1y f x =+的图象关于直线1x =-对称,则()2013()f =A .0B .2013C .3D .2013-【答案】A .【解析】试题分析:由题意得(2013)(20133356)335(3)336(3)f f f f =-⨯+⨯=,又有函数()1y f x =+的图象关于直线1x =-对称,则函数()f x 图像关于y 轴对称,即(3)(3)f f =-,还有(3+6)(3)(3)f f f -=-+,得(3)=0f -,则(2013)336(3)=336(3)0f f f =-=,故选A .考点:函数的性质.10.设偶函数()f x 对任意x R ∈都有()()13f x f x +=- ,且当[]3,2x ∈--时,()4f x x =,则()107.5f =( )A .10B .110C .-10D .110-【答案】B【解析】试题分析:因为()()13f x f x +=-,所以()()6f x f x +=,所以函数()f x 是周期为6的周期函数,又()()111860.5(0.5)(0.5)(2.5)( 2.5107.5)f f f f f f ⨯-==-=-=--=,而( 2.5)10f -=-,故()107.5f =110,故选B .考点:函数的性质.11.函数()f x 的定义域为R ,若函数()f x 的周期6.当31x -≤<-时,()()22f x x =-+,当13x -≤<时,()f x x =.则()()()122013f f f ++⋅⋅⋅⋅⋅⋅+()+2014f =( )A .337B .338C .1678D .2012【答案】A【解析】试题分析:由已知得(1)1f =,(2)2f =,(3)(3)1f f =-=-,(4)(2)0f f =-=,(5)(1)1f f =-=-,(6)(0)0f f ==,故()()()1261f f f ++⋅⋅⋅⋅⋅⋅+=,()()()122013f f f ++⋅⋅⋅⋅⋅⋅+()+2014f =335+()()()()1234f f f f +++=337.考点:函数周期性.考点:函数的图象、周期性、对称性.13.已知函数f(x)在定义域上的值不全为零,若函数f(x+1)的图象关于( 1, 0 )对称,函数f(x+3)的图象关于直线x=1对称,则下列式子中错误的是( )A.()()f x f x -=B.(2)(6)f x f x -=+C.(2)(2)0f x f x -++--=D.(3)(3)0f x f x ++-=【答案】D【解析】试题分析:∵函数(1)f x +的图象关于()1,0对称,∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+, ∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴令()(3)G x f x =+,∵其图象关于直线1=x 对称,∴()()2G x G x +=-, 即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=∴()()f x f x -=;∴A 对;由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对;由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对; 若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错. 考点:函数的图象与图象变化.15.设()f x 是定义在R 上且以5为周期的奇函数,若23(2)1,(3),3a a f f a ++>=-则a 的取值范围是( ).A 、(,2)-∞B 、()()3,02, -∞-C 、(0,3) D 、()()3,02, ∞-【答案】B【解析】试题分析:由题意,得:)()5(),()(x f x f x f x f =+-=-,所以1)2()2()3(-<-=-=f f f , 即1332-<-++a a a ,0322<-+∴a a a ,0)3)(2(<-+a a a ,302<<-<∴x a 或.考点:函数的奇偶性、周期性.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)16.定义在R上的偶函数f(x)满足对任意x ∈R,都有f(x+8)=f(x)+f(4),且x ∈[0,4]时,f(x)=4-x,则f(2 015)的值为________.【答案】3【解析】试题分析:因为定义在R上的偶函数()f x满足对任意x R∈,都有(8)()(4)+=+,f x f x f令4x=-,则(4)(4)(4)f f-===-+,故(4)(4)0f f f所以()f x f x+=,故函f x满足对任意x R∈,都有(8)()数()T=f x的周期8所以(2015)(25281)(1)(1)413=⨯-=-==-=f f f f故答案为3.考点:函数的周期性和奇偶性.18.定义在实数集R上的函数()f x满足()()20-=,现有以下三种叙f x f x4++=,且()()f x f x述:①8是函数()f x的一个周期;②()x=对称;f x的图象关于直线2③()f x是偶函数。
函数奇偶性与周期综合训练含详解

B.当 x 4,5 时, f x 2x 52
C.当 x 2,3 时, f x 单调递减
D.a 的取值范围是 0,
2 2
9.已知 f x 是定义域为 (, ) 的奇函数, f x 1是偶函数,且当 x 0,1 时,
f x x x 2 ,则( )
A. f x 是周期为 2 的函数
五、解答题 20.设 f (x) 是定义在实数集 R 上的奇函数,且对任意实数 x 恒满足 f (x 2) f (x) ,当 x [0, 2]时, f ( x) 2x x2 .
(1)求证: f (x) 是周期函数; (2)当 x [2, 4] 时,求 f (x) 的解析式; (3)计算: f (0) f (1) f (2) f (2021) .
试卷第 2页,总 3页
17.已知函数 f (x) 是定义在 R 上的奇函数,且 f x 2 f x ,则T ________,当
0 x 1时 f (x) x(x 1) ,则 f 4 f 5 等于________.
18.定义在 R 上的奇函数 f (x) 又是周期为 4 的周期函数,已知在区间[2, 0) (0, 2] 上,
15.设函数 f x 的定义域为 R, f x 1为奇函数, f x 2 为偶函数,当 x 1, 2 时,
f
(x)
ax 2
b
.若
f
0
f
3
6 ,则
f
13 3
_________.
四、双空题 16.已知函数 f (x) 是 R 上的奇函数,并且是周期为 3 的周期函数,若 f (1)=2 ,则 f (2)= ________; f (2019)= ________.
8.已知定义在 R 上的函数 f x 满足 f x f x 0 , f x 2 f x 0 ,且当
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性与周期性
1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( )
A. -2
B.-1
C. 0
D. 1
2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π
+=x y ,④)42tan(π
-=x y 中,最小正周期为π的所有函数为
A.①②③
B. ①③④
C. ②④
D. ①③
3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是
A. )()(x g x f 是偶函数
B. )(|)(|x g x f 是奇函数
C. |)(|)(x g x f 是奇函数
D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时
2()1f x x =-,则7()2
f 的值为 A 34- B 34 C 12- D 12
5.下列函数为偶函数的是
A. sin y x =
B. 3y x =
C. x y e =
D. y =
6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5
()2
f -= (A) -
12 (B)1 4- (C)14 (D)12
7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=
8.下列函数为偶函数的是()
A.()1f x x =-
B.()2f x x x =+
C.()22x x f x -=-
D.()22x x
f x -=+
9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______.
10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = .
11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .
试卷答案
1.D
2.A :由cos y x =是偶函数可知cos 2cos2y x x == ,最小正周期为π, 即①正确;
y =| cos x |的最小正周期也是π ,即②也正确;cos 26y x π⎛⎫=+ ⎪⎝
⎭最小正周期为π,即③正确;tan(2)4y x π=-的最小正周期为2
T π=,即④不正确. 即正确答案为①②③,选A
3.C 设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.
4.B
5.D
选项 A 、B 为奇函数,选项C 为非奇非偶函数,对于D 有
()()f x f x -===。
6.A.
本题主要考查了函数的奇偶性和周期性,难度较低.
因为函数为2T =的奇函数,所以51
1()()()22
2
f f f -=-=-,又因为01x ≤≤ 的函数解析式为()2(1)f x x x =-,求得51()22f -=-. 7.B
本题主要考查了函数的单调性、奇偶性和函数图像的翻折变换,难度较小.选项A 为奇函数,C 、D 在),0(+∞均为减函数,故选B.
8.D
利用奇偶性的判断法则:
()()()()()()f x f x f x f x f x f x -=-⇒-=⇒为奇函数为偶函数。
即可得到答案为D 。
考察
最简单的奇偶性判断.
9.3 3
)1-(∴3)3()1(∴2)()1()1-()(=====∴f f f x x f f f x f 对称图像关于为偶函数 10.4=a
因为函数)4)(()(-+=x a x x f 为偶函数,所以)()(x f x f =-,由a x a x x a x x f 4)4()4)(()(2--+=-+=,得a x a x a x a x 4)4(4)4(22--+=---,即4,04==-a a 。
11.6
本题考查抽象函数求值问题,难度中等。
由题知(2)(2)9g f -=-+,(2)(2)96f g -=--=-,(2)(2)f f -=-,所以(2)6f =。