函数的奇偶性练习题
函数奇偶性练习题高一

函数奇偶性练习题高一一、判断函数的奇偶性1. 判断函数 $f(x) = x^3 3x$ 的奇偶性。
2. 判断函数 $f(x) = \frac{1}{x}$ 的奇偶性。
3. 判断函数 $f(x) = \sqrt{x^2 + 1}$ 的奇偶性。
4. 判断函数 $f(x) = x^2 x^4$ 的奇偶性。
5. 判断函数 $f(x) = \cos(x)$ 的奇偶性。
二、证明函数的奇偶性6. 证明函数 $f(x) = x^2 + x$ 是偶函数。
7. 证明函数 $f(x) = x^3 x$ 是奇函数。
8. 证明函数 $f(x) = \ln(x^2)$ 是偶函数。
9. 证明函数 $f(x) = \tan(x)$ 是奇函数。
10. 证明函数 $f(x) = e^{x^2}$ 是偶函数。
三、求给定函数的奇偶部分11. 求函数 $f(x) = x^4 2x^2 + 1$ 的奇偶部分。
12. 求函数 $f(x) = \sin(x) + \cos(x)$ 的奇偶部分。
13. 求函数 $f(x) = x^5 3x^3 + 2x$ 的奇偶部分。
14. 求函数 $f(x) = \frac{1}{x^2 + 1}$ 的奇偶部分。
15. 求函数 $f(x) = \sqrt{x} \frac{1}{\sqrt{x}}$ 的奇偶部分。
四、综合运用16. 已知函数 $f(x) = ax^3 + bx^2 + cx + d$,若 $f(x)$ 是偶函数,求 $a$、$b$、$c$ 的关系。
17. 已知函数 $f(x) = ax^4 + bx^3 + cx^2 + dx + e$,若$f(x)$ 是奇函数,求 $a$、$b$、$c$、$d$ 的关系。
18. 设函数 $f(x)$ 是奇函数,且 $f(1) = 2$,求 $f(1)$ 的值。
19. 设函数 $f(x)$ 是偶函数,且 $f(2) = 3$,求 $f(2)$ 的值。
20. 已知函数 $f(x) = x^3 + g(x)$ 是奇函数,求 $g(x)$ 的表达式。
函数的奇偶性练习题附标准答案资料全

函数的奇偶性1.函数f (x )=x(-1﹤x ≦1)的奇偶性是( )A .奇函数非偶函数B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值围是 ( )A.(-¥,2)B. (2,+¥)C. (-¥,-2)È(2,+¥)D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性:(1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2(3) f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。
7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值围8.已知函数21()(,,)ax f x a b c N bx c+=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数,(1)求a,b,c 的值;(2)当x ∈[-1,0)时,讨论函数的单调性.9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,数k 的取值围. 10下列四个命题:(1)f (x )=1是偶函数;(2)g (x )=x 3,x ∈(-1,1]是奇函数;(3)若f (x )是奇函数,g (x )是偶函数,则H (x )=f (x )·g (x )一定是奇函数;(4)函数y =f (|x |)的图象关于y 轴对称,其中正确的命题个数是 ( ) A .1B .2C .3D .411下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A.()sin f x x =B.()1f x x =-+C.()1()2x x f x a a -=+ D.2()2xf x lnx-=+ 12若y =f (x )(x ∈R )是奇函数,则下列各点中,一定在曲线y =f (x )上的是( ) A .(a ,f (-a )) B .(-sin a ,-f (-sin a ))C .(-lg a ,-f (lg a1))D .(-a ,-f (a ))13. 已知f (x )=x 4+ax 3+bx -8,且f (-2)=10,则f (2)=_____________。
函数的奇偶性练习题

函数的奇偶性练习题1. 函数f(x)在定义域上是否是奇函数还是偶函数?解析:要判断函数的奇偶性,需要分析函数在x和-f(x)两点处的取值情况。
2. 函数g(x) = x^3 - x是奇函数还是偶函数?解析:首先,我们分别计算g(x)和g(-x)的值。
当x = 1时,g(1) = 1^3 - 1 = 0;当x = -1时,g(-1) = (-1)^3 - (-1) = -2。
由于g(1) = 0,且g(-1) = -2,即当x = 1时,g(x) = -g(-x)成立。
因此,函数g(x)是奇函数。
3. 函数h(x) = x^4 - x^2是奇函数还是偶函数?解析:同样地,我们分别计算h(x)和h(-x)的值。
当x = 1时,h(1) = 1^4 - 1^2 = 0;当x = -1时,h(-1) = (-1)^4 - (-1)^2 = 0。
由于h(1) = h(-1) = 0,即当x = 1和x = -1时,h(x) = h(-x)成立。
因此,函数h(x)是偶函数。
4. 函数i(x) = sin(x)是奇函数还是偶函数?解析:对于三角函数,我们需要利用其周期性质进行判断。
由于sin(x)的周期是2π,即sin(x + 2πk) = sin(x)(k为整数)。
考虑到奇函数关于原点对称,我们将其分为两种情况进行分析:当x = 0时,sin(0) = 0;当x = π时,sin(π) = 0。
由于sin(0) = sin(π) = 0,即当x = 0和x = π时,sin(x) = sin(-x)成立。
因此,函数i(x)是奇函数。
5. 函数j(x) = x^2 + 1是奇函数还是偶函数?解析:对于函数j(x),我们分别计算j(x)和j(-x)的值。
当x = 1时,j(1) = 1^2 + 1 = 2;当x = -1时,j(-1) = (-1)^2 + 1 = 2。
由于j(1) = j(-1) = 2,即当x = 1和x = -1时,j(x) = j(-x)成立。
函数的奇偶性练习题[(附答案)

函数的奇偶性1.函数f 〔*〕=*(-1﹤*≦1)的奇偶性是〔 〕 A .奇函数非偶函数B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数2. 函数f 〔*〕=a*2+b*+c 〔a ≠0〕是偶函数,则g 〔*〕=a*3+b*2+c*是( 〕A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数3.假设函数f (*)是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (*)<0的*的取值*围是 ( ) A.(-,2)B. (2,+)C. (-,-2)(2,+)D. (-2,2)4.函数f (*)是定义在(-∞,+∞)上的偶函数.当*∈(-∞,0)时,f (*)=*-*4,则 当*∈(0.+∞)时,f (*)=.5. 判断以下函数的奇偶性:(1)f (*)=lg (12+x -*);(2)f (*)=2-x +x -2(3) f 〔*〕=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x6.g (*)=-*2-3,f (*)是二次函数,当*∈[-1,2]时,f (*)的最小值是1,且f (*)+g (*)是奇函数,求f (*)的表达式。
7.定义在〔-1,1〕上的奇函数f 〔*〕是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值*围8.函数21()(,,)ax f x a b c N bx c+=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数,(1)求a,b,c 的值;(2)当*∈[-1,0)时,讨论函数的单调性.9.定义在R 上的单调函数f (*)满足f (3)=log 23且对任意*,y ∈R 都有f (*+y )=f (*)+f (y ).(1)求证f (*)为奇函数;(2)假设f (k ·3x )+f (3x -9x -2)<0对任意*∈R 恒成立,**数k 的取值*围.10以下四个命题:〔1〕f 〔*〕=1是偶函数;〔2〕g 〔*〕=*3,*∈〔-1,1]是奇函数;〔3〕假设f 〔*〕是奇函数,g 〔*〕是偶函数,则H 〔*〕=f 〔*〕·g 〔*〕一定是奇函数;〔4〕函数y =f 〔|*|〕的图象关于y 轴对称,其中正确的命题个数是 〔 〕A .1B .2C .3D .411以下函数既是奇函数,又在区间[]1,1-上单调递减的是( )A.()sin f x x =B.()1f x x =-+C.()1()2x x f x a a -=+D.2()2x f x ln x-=+ 12假设y =f 〔*〕〔*∈R 〕是奇函数,则以下各点中,一定在曲线y =f 〔*〕上的是〔 〕A .〔a ,f 〔-a 〕〕B .〔-sin a ,-f 〔-sin a 〕〕C .〔-lg a ,-f 〔lg a1〕〕 D .〔-a ,-f 〔a 〕〕13. f 〔*〕=*4+a*3+b*-8,且f 〔-2〕=10,则f 〔2〕=_____________。
函数的奇偶性问题练习题(含答案)

...函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,...可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.f (x )是定义在(-∞,-5]Y [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0, ∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
函数奇偶性之高考真题48道

函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.资料下载来源——高中数学优质资料群群号:114265753916.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
高三数学函数的奇偶性试题

高三数学函数的奇偶性试题1.设是定义在上的奇函数,当时,,则的图像与圆的公共点的个数是()A.个B.个C.个D.个【答案】B【解析】根据奇函数的定义,可知x<0时,f(x)=x-1直接检验可得x>0是与圆有一个公共点,x<0时没有公共点,但注意到奇函数中f(0)=0恰好在圆周上,所以两者有两个公共点.选B【考点】函数的奇偶性,图像的公共点2.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x,则f(log94)的值为()A.-2B.C.D.2【答案】B【解析】根据对数性质,f(log94)=f(log32)因为f(x)是奇函数,于是f(log32)=-f(-log32)=-f(log3),且log3<0故f(log94)=-f(log3)=-【考点】函数的奇偶性,分段函数3.已知奇函数f (x)和偶函数g(x)分别满足,,若存在实数a,使得成立,则实数b的取值范围是A.(-1,1)B.C.D.【答案】C,【解析】由f (x)的解析式知,当0≤<1时,f (x)=是增函数,其值域为[0,1],当≥1时,f (x)=是减函数,值域为(0,1],故当≥0时,值域为[0,1],因为f (x)是奇函数,根据奇函数的对称性知,当≤0时,值域为[-1,0],所以f (x)的最小值为-1,由存在实数a,使得成立知,>=-1,①当≥0时,,解得,因为g(x)是偶函数,由偶函数的对称性知,当b≤0时,不等式的解为,所以实数b的取值范围是,故选C.【考点】函数奇偶性,指数函数与幂函数图像性质,含参数不等式成立问题4.已知,.现有下列命题:①;②;③.其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【答案】A【解析】对①,,成立;对②,左边的可以取除之外的任意值,而右边的,故不成立;注:.当时成立.对③,,所以在内单调递增,且在处的切线为.作出图易知③成立法二、根据图象的对称性,可只考虑的情况. 时,,则,所以,所以③成立.标准答案选A,笔者认为有错,应该选C.题干中的应理解为函数的定义域,而不是后面三个命题中的范围,因为在它的前面是逗号.如果前是句号,则选A.【考点】1、函数的奇偶性;2、对数运算;3、函数与不等式.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】设x<0,则-x>0.∵当x≥0时,f(x)=x2-4x,∴f(-x)=(-x)2-4(-x).∵f(x)是定义在R上的偶函数,∴f(-x)=f(x),∴f(x)=x2+4x(x<0),∴f(x)=由f(x)=5得或∴x=5或x=-5.观察图像可知由f(x)<5,得-5<x<5.∴由f(x+2)<5,得-5<x+2<5,∴-7<x<3.∴不等式f(x+2)<5的解集是{x|-7<x<3}.7.(5分)(2011•湖北)若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=()A.e x﹣e﹣x B.(e x+e﹣x)C.(e﹣x﹣e x)D.(e x﹣e﹣x)【答案】D【解析】根据已知中定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,根据奇函数和偶函数的性质,我们易得到关于f(x)、g(x)的另一个方程:f(﹣x)+g(﹣x)=e﹣x,解方程组即可得到g(x)的解析式.解:∵f(x)为定义在R上的偶函数∴f(﹣x)=f(x)又∵g(x)为定义在R上的奇函数g(﹣x)=﹣g(x)由f(x)+g(x)=e x,∴f(﹣x)+g(﹣x)=f(x)﹣g(x)=e﹣x,∴g(x)=(e x﹣e﹣x)故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f(x)、g(x)的另一个方程:f(﹣x)+g(﹣x)=e﹣x,是解答本题的关键.8.已知函数是定义在R上的可导函数,其导函数记为,若对于任意实数x,有,且为奇函数,则不等式的解集为()A.B.C.D.【答案】B【解析】令,所以在R上是减函数,又为奇函数,所以,所以,所以原不等式可化为,所以,故选B.【考点】导数的综合应用问题9.已知且,若,则 .【答案】【解析】由得,令,则,又由得,而函数是奇函数,∴,即,.【考点】奇函数的性质.10.已知定义在上的函数满足为奇函数,函数关于直线对称,则下列式子一定成立的是()A.B.C.D.【答案】B【解析】因为为奇函数,所以,则.又因为关于直线对称,所以关于对称,所以,则,于是8为函数的周期,所以,故选B.【考点】1、抽象函数;2、函数的奇偶性;3、函数的对称性;4、函数的周期性.11.已知函数是定义在上的偶函数,为奇函数,,当时,logx,2则在内满足方程的实数为A.B.C.D.【答案】C【解析】由f(x+1)为奇函数,可得f(x)=-f(2-x).由f(x)为偶函数可得f(x)=f(x+4),故 f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x-8)=log2(x-8).由log2(x-8)+1=0,得x的值.当9<x<10时,求得x无解,从而得出结论.【考点】函数性质的综合应用.12.已知定义域为R的函数f(x)=是奇函数,则a=________.【答案】2【解析】因为函数f(x)=是定义域为R的奇函数,所以f(-1)=-f(1),即=-,解得a=2.13.函数是上的奇函数,是上的周期为4的周期函数,已知,且,则的值为___________.【答案】2【解析】本题就是要待计算式中的每个式子计算化简,由已知,,因此,,,,,从而已知式为,∴.【考点】奇函数与周期函数的定义.14.函数,若,则()A.2018B.-2009C.2013D.-2013【答案】C【解析】因为函数为偶函数,.【考点】函数的奇偶性.15.若函数,则函数()A.是偶函数,在是增函数B.是偶函数,在是减函数C.是奇函数,在是增函数D.是奇函数,在是减函数【答案】A【解析】由定义易得,函数为奇函数.求导得:.(这里之所以在分子提出来,目的是便于将分子求导)再令,则.当时,,所以在时单调递减,,从而.所以在上是减函数,由偶函数的对称性知,在上是增函数.巧解:由定义易得,函数为奇函数.结合选项来看,函数在上必单调,故取特殊值来判断其单调性. ,,所以在上是减函数,由偶函数的对称性知,在上是增函数.选A【考点】函数的性质.16.已知函数为奇函数,且当时,,则( )A.2B.0C.1D.﹣2【答案】D【解析】.【考点】奇函数的性质及应用17.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.18.设是周期为2的奇函数,当时,,则 .【答案】【解析】因为是周期为2的奇函数,所以.【考点】函数的基本性质.19.已知一个奇函数的定义域为则=___________.【答案】【解析】奇函数的定义域要关于原点对称,于是对应于,所以.【考点】奇函数的概念.20.定义在上的偶函数满足且,则的值为()A.B.C.D.【答案】B【解析】,故函数是以为一个周期的周期函数,,故选B.【考点】1.函数的周期性;2.函数的奇偶性21.已知可以表示为一个奇函数与一个偶函数之和,若不等式对于恒成立,则实数的取值范围是____________.【答案】【解析】依题意,g(x)+h(x)= .....(1),∵g(x)是奇函数,∴g(-x)=-g(x);∵h(x)是偶函数,∴h(-x)=h(x);∴g(-x)+h(-x)="h(x)-g(x)=" (2)解(1)和(2)组成的方程组得h(x)=,g(x)=∴ag(x)+h(2x)=a +,∴a· +≥0在x∈[1,2]恒成立令t=,∴=,当x∈[1,2]时,t∈[2,4],∴原不等式化为a(t-)+(t2+)≥0在t∈[2,4]上恒成立,由不等式a(t-)+(t2+)≥0,可得a(t-)≥-(t2+),∵当t∈[2,4]时,t-t>0恒成立,∴a≥ == ,即a≥在t∈[2,4]上恒成立,令u=t-,求导得=1+>0恒成立,∴u=t-在t∈[2,4]上单调递增∴u∈[ ],令f(u)=u+,u∈[],求导得(u)=1->0在u∈[]上恒成立,∴f(u)在u∈[]上单调递增即当u=,f(u)取最小值f()= ,当u=时,可解得t=2(另一根不在t∈[2,4]内故舍去)∴当t=2时,取最小值为,即取最大值为-,∴a≥-,当t=2,x=1时取等号,∴a的最小值为-.【考点】1.函数的奇偶性;2.不等式的性质;3.导数的性质.22.已知函数(为常数)是奇函数,则实数为()A.1B.C.3D.【答案】D【解析】函数在处有意义,所以,得.【考点】函数的奇偶性.23.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性24.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。
函数奇偶性经典例题

函数的奇偶性一、典型例题例1 判断下列函数的奇偶性(1)1()(1)1x f x x x +=-- (2)2lg(1)()|2|2x f x x -=--(3)22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩ (4)22()11f x x x =--(5)()11f x x x =-+- (6)2211()11x x f x x x ++-=+++例2 已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3()(1)f x x x =+,则()f x 的解析式为________________.例 3 ①已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是________________.②已知()f x 是奇函数,满足()()2f x f x += ,当[]0,1x ∈时,()21xf x =- ,则=)2(f _____,21log 24f ⎛⎫ ⎪⎝⎭的值是_________ .例 4 ()f x 和()g x 的定义域都是非零实数,()f x 是偶函数,()g x 是奇函数,且21()()1f xg x x x +=-+,求()()f x g x 的取值范围。
二、课后练习1、判断下列函数的奇偶性(1)x xy a a -=+ (2)x xy a a-=-(3)x x x xa a y a a ---=+ (4)11x x a y a -=+(5)1log 1a x y x-=+ (6)2log (1)a y x x =+-(7)若0,1,()a a F x >≠是一个奇函数,讨论11()()12xG x F x a ⎛⎫=+ ⎪-⎝⎭的奇偶性。
2、设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++ (b 为常数),则(1)f -=( )(A) 3 (B) 1 (C)-1 (D)-3 3、已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, (1)求证:()f x 是奇函数; (2)若(3)f a -=,用a 表示(12)f4、已知3()sin 4f x a x b x =++(,a b 为实数)且3(lg log 10)5f =,则(lglg3)f =____5、函数1(1)1y x x =≠±-可以表示成一个偶函数()f x 与一个奇函数()g x 的和,则()f x =____6、已知)(x f y =是偶函数,当0>x 时,2)1()(-=x x f ;若当⎥⎦⎤⎢⎣⎡--∈21,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为( ) A.1 B. 21 C. 31 D. 43。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性1.函数f (x )=x(-1﹤x ≦1)的奇偶性是( ) A .奇函数非偶函数 B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数3. (2005重庆)若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 ( )A.(-¥,2)B. (2,+¥)C. (-¥,-2)È(2,+¥)D. (-2,2)4.(2006春上海) 已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= .5. 判断下列函数的奇偶性:(1)f (x )=lg (12+x -x );(2)f (x )=2-x +x -2(3) f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。
7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值范围8.已知函数21()(,,)ax f x a b c N bx c+=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数,(1)求a,b,c 的值;(2)当x ∈[-1,0)时,讨论函数的单调性.9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ).(1)求证f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.10下列四个命题:(1)f (x )=1是偶函数;(2)g (x )=x 3,x ∈(-1,1]是奇函数;(3)若f (x )是奇函数,g (x )是偶函数,则H (x )=f (x )·g (x )一定是奇函数;(4)函数y =f (|x |)的图象关于y 轴对称,其中正确的命题个数是 ( )A .1B .2C .3D .411(2005山东)下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A.()sin f x x =B.()1f x x =-+C.()1()2x x f x a a -=+ D.2()2x f x ln x -=+ 12若y =f (x )(x ∈R )是奇函数,则下列各点中,一定在曲线y =f (x )上的是( )A .(a ,f (-a ))B .(-sin a ,-f (-sin a ))C .(-lg a ,-f (lg a 1)) D .(-a ,-f (a ))13. 已知f (x )=x 4+ax 3+bx -8,且f (-2)=10,则f (2)=_____________。
14.已知22()21x x a a f x ⋅+-=+是R 上的奇函数,则a = 15.若f (x )为奇函数,且在(-∞,0)上是减函数,又f (-2)=0,则xf (x )<0的解集为________16.已知y=f (x )是偶函数,且在),0[+∞上是减函数,则f (1-x 2)是增函数的区间是17.已知)21121()(+-=x x x f (1)判断f (x )的奇偶性;(2)证明f (x )>0。
函数的奇偶性(解答部分)1.【提示或答案】 D【基础知识聚焦】掌握函数奇偶性的定义。
2.【提示或答案】A【基础知识聚焦】考查奇偶性的概念3.【提示或答案】D【基础知识聚焦】考查奇偶性的概念及数形结合的思想【变式与拓展】1:f(x)是定义在R 上的偶函数,它在),0[+∞上递减,那么一定有( )A .)1()43(2+->-a a f fB .)1()43(2+-≥-a a f fC .)1()43(2+-<-a a f fD .)1()43(2+-≤-a a f f【变式与拓展】2:奇函数f(x )在区间[3,7]上递增,且最小值为5,那么在区间[-7,-3] 上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-54. 【提示或答案】f (x )=-x -x 4【变式与拓展】已知f (x )是定义在R 上的奇函数,x >0时,f (x )=x 2-2x +3,则f(x )=________________。
【基础知识聚焦】利用函数性质求函数解析式5.【提示或答案】解(1)此函数的定义域为R .∵f (-x )+f (x )=lg x x )=lg 1=0∴f (-x )=-f (x ),即f (x )是奇函数。
(2)此函数定义域为{2},故f (x )是非奇非偶函数。
(3)∵函数f (x )定义域(-∞,0)∪(0,+∞),当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0).当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0).故函数f (x )为奇函数.【基础知识聚焦】考查奇偶性的概念并会判断函数的奇偶性6.解:设2()f x ax bx c =++则2()()(1)3f x g x a x bx c +=-++-是奇函数101,303a a c c -==⎧⎧∴⇒⎨⎨-==⎩⎩ 2221()3()324b f x x bx x b =++=++-(1)当122b -≤-≤≤≤即-4b 2时,最小值为:21314b -=b ⇒=±2()3b f x x ∴=-=-+(2)当242b b -><-即时,f (2)=1无解; (3)当122b b -<->即时, 2(1)13,()33f b f x x x -=⇒==++综上得:2()3f x x =-+或 2()33f x x x =++【基础知识聚焦】利用函数性质求函数解析式,渗透数形结合7. 【提示或答案】-1<1-a<1-1<1-a 2<1f(1-a)<- f(1-a 2)=f(a 2-1),1-a> a 2-1得0<a<1【基础知识聚焦】考查奇偶性解决抽象函数问题8.【提示或答案】解(1)()f x 是奇函数,则2221110ax ax ax c bx c bx c bx c+++=-=⇒=-++--由(1)212f a b =+=得, 由2(2)30121a f a a -<⇒<⇒-<<+ 又,0,1a N a ∈∴=. 当10,,.2a b N ==∉时舍去 当a=1时,b=1,211()x f x x x x +==+【基础知识聚焦】结合具体函数,考查函数性质9【提示或答案】分析:欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0.令y=-x,代入①式,得f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log23>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k·3x)<-f(3x-9x-2)=f(-3x+9x+2),k·3x<-3x+9x+2,32x-(1+k)·3x+2>0对任意x∈R都成立.令t=3x>0,问题等价于t2-(1+k)t+2>0对任意t>0恒成立.令f(t)=t2-(1+k)t+2,其对称轴12k x+ =当10,12kk+<<-即时,f(0)=2>0,符合题意;当12k+≥时,对任意t>0,f(t)>0恒成立212(1)42011kkk+⎧≥⎪⇒⎨⎪∆=+-⨯<⎩-≤<-+解得综上所述,所求k的取值范围是(,1-∞-+【基础知识聚焦】考查奇偶性解决抽象函数问题,使学生掌握方法。
10【提示或答案】B11【提示或答案】D12【提示或答案】D【基础知识聚焦】掌握奇偶函数的性质及图象特征13【提示或答案】6【基础知识聚焦】考查奇偶性及整体思想【变式与拓展】:f(x)=ax3+bx-8,且f(-2)=10,则f(2)=_____________。
14【提示或答案】由f(0)=0得a=1【基础知识聚焦】考查奇偶性。
若奇函数f(x)的定义域包含0,则f(0)=0;f(x)为偶函数f(x)=f(|x|)15【提示或答案】画图可知,解集为(,2)(2,)-∞-+∞U;16【提示或答案】x<-1,0<x<117【提示或答案】(1)偶函数(2)x>0时,f(x)>0,x<0时-x>0,f(x)=f(-x)>0。