人教版初二数学上册知识点归纳

合集下载

人教版初二上册数学知识点归纳

人教版初二上册数学知识点归纳

第十一章 三角形 第十二章 全等三角形考点一、三角形 (3~8分)1、主要线段角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段。

中线:在三角形中,连接一个顶点和它对边的中点的线段。

高线:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段。

2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点二、全等三角形 (3~8分)1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”)4、全等变换(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形 (8~10分)1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。

人教版八年级数学上册知识点归纳

人教版八年级数学上册知识点归纳

人教版八年级数学上册知识点归纳一、有理数1.有理数的含义有理数包括正、负整数和正、负分数,用于表示数量大小和大小比较。

2.有理数的比较大小有理数的大小比较需要转化为相同分母再进行比较,也可以通过数轴来比较。

3.有理数的加减乘除有理数的加减乘除运算需要注意符号和分数的约分。

二、代数式1.代数式的定义含有未知量和运算符号的式子称为代数式,通常用字母表示未知量。

2.代数式的化简代数式的化简需要运用因式分解、公因式提取等方法。

3.代数式的展开代数式的展开需要运用乘法公式、同底数幂规律等方法。

三、一次函数1.一次函数的定义一次函数是指函数的最高次数为1的函数,通常表示为y=kx+b。

2.一次函数图像的性质一次函数的图像是直线,可以通过截距和斜率来确定其位置和性质。

3.一次函数的应用利用一次函数可以解决很多线性方程和实际问题,如直线运动、比例关系等。

四、平方根1.平方根的定义对于正实数a,其平方根b满足b²=a,即b是a的正平方根。

2.平方根的性质平方根具有非负性、单调性、开方运算和分配律等性质。

3.平方根的应用平方根可以用于求解勾股定理、面积和体积等计算问题。

五、二次根式1.二次根式的定义含有形如a√b(a和b均为实数,且b>0)的式子称为二次根式。

2.二次根式的化简二次根式的化简需要运用有理化分母和分解质因数等方法。

3.二次根式的应用二次根式可以用于求解勾股定理、面积和体积等计算问题,也常见于三角函数的定义式中。

以上是人教版八年级数学上册的知识点归纳,涉及到有理数、代数式、一次函数、平方根和二次根式等内容,对学习和掌握初中数学知识有很大帮助。

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

-按角分类:锐角三角形、直角三角形、钝角三角形。

-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。

3. 三角形的内角和与外角和-三角形内角和为180°。

-三角形的外角等于与它不相邻的两个内角之和。

三角形外角和为360°。

4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。

-全等三角形的对应边相等、对应角相等。

2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。

- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。

- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

-线段垂直平分线上的点与这条线段两个端点的距离相等。

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。

特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳第十五章:整式的乘除与因式分解一、整式的乘法1.同底数幂的乘法规则是:am·an=am+n(m,n都是正整数)。

即同底数幂相乘,底数不变,指数相加。

2.幂的乘法规则是:(am)n=amn(m,n都是正整数)。

即幂的乘方,底数不变,指数相乘。

3.积的乘法规则是:(ab)n=an·bn(n为正整数)。

即乘方的积等于积的乘方。

4.单项式与单项式相乘的规则是:(1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式。

5.单项式与多项式相乘的规则是:用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘的规则是:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2.2.完全平方公式:(a±b)2=a2±2ab+b2.口诀:前平方,后平方,积的两倍中间放,中间符号看情况。

(这个情况就是前后两项同号得正,异号得负。

)3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

三、整式的除法1.am÷an==am-n(a≠,m,n都是正整数,且m>n)。

即同底数幂相除,底数不变,指数相减。

2.a=1(a≠)。

任何不等于1的数的次幂都等于1.3.单项式除以单项式的规则是:(1)系数相除;(2)同底数幂相除;(3)只在被除式里的幂不变。

4.多项式除以单项式的规则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加。

四、因式分解1.因式分解是把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2.公因式是一个多项式中各项都含有的相同的因式。

3.分解因式的方法:1) 提公因式法:ma+mb+mc =m(a+b+c)。

八年级上册数学复习知识提纲人教版

八年级上册数学复习知识提纲人教版

八年级上册数学复习知识提纲人教版1.同底数幂的乘法法则:(m,n都是正数)2..幂的乘方法则:(m,n都是正数)3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序.7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初二数学上册因式分解1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式 分解;注意:因式分解与乘法是相反的两个转化 •2•因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字 相乘法”.3•公因式的确定:系数的最大公约数•相同因式的最低次幕 . 注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4 •因式分解的公式:(1) 平方差公式:a2-b2= (a+ b ) (a- b );⑵完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5•因式分解的注意事项: (1) 选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;(2) 使用因式分解公式时要特别注意公式中的字母都具有整体性; (3) 因式分解的最后结果要求分解到每一个因式都不能分解为止; (4) 因式分解的最后结果要求每一个因式的首项符号为正; (5) 因式分解的最后结果要求加以整理; (6) 因式分解的最后结果要求相同因式写成乘方的形式 .6 •因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2 )提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分 组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项. 7•完全平方式:能化为(m+n ) 2的多项式叫完全平方式;对于二次三项式x2+px+q , 有“ x2+px+q 是完全平方式二 2 ” .分式A1 •分式:一般地,用 A 、B 表示两个整式,A - B 就可以表示为B 的形式,如A果B 中含有字母,式子B 叫做分式.3. 对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有 意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式 的分子为零,而分母有理式2.有理式:整式与分式统称有理式;即 整式分式(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;7. a c分式的乘除法法则:b dac _bda . c a d adb d bc bc8. 9. 分式的乘方:b b负整指数计算法则:(n 为正整数)(1) (2) 丄na-n=a (a ^ 0);正整指数的运算法则都可用于负整指数计算;公式:b a 公式: (-1) -2=1,公式:aO=1(a ^ 0),.nma bi ■ m 一 n ba -(-1) -3=-1. (3)(4)10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的 分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简 公分母. 11 .最简公分母的确定:系数的最小公倍数•相同因式的最高次幕 12 . 同 分母与异分母的分式加减法法则:a b a _b—土 ——=-------c c c a c ad bc ad_bc—土 — = 土 =----------------b 一 d bd 一 bd bd13. 含有字母系数的一元一次方程: 在方程ax+b=0(a ^ 0)中,x 是未知数,a 和b 是 用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是 常数项,我们称它为含有字母系数的一元一次方程 .注意:在字母方程中,一般用 a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数. 14. 公式变形:把一个公式从一种形式变换成另一种形式, 叫做公式变形;注意: 公式变形的本质就是解含有字母系数的方程 .特别要注意:字母方程两边同时乘 以含字母的代数式时,一般需要先确认这个代数式的值不为 0.2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分 式的值不变;一分子一分子 分子分子 即 一分母 分母 一分母分母(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单 5 •分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注 意:分式约分前经常需要先因式分解•6. 最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注 意:分式计算的最后结果要求化为最简分式•时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根•17.分式方程验增根的方法:把分式方程求出的根代入最简公分母 (或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根•18 •分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序•数的开方1 •平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1) a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2 •平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3 •平方根的表示方法:a的平方根表示为a和“ a.注意:a可以看作是一个数,也可以认为是一个数开二次方的运算.4 •算术平方根:正数a的正的平方根叫a的算术平方根,表示为 ".注意:0的算术平方根还是0.5•三个重要非负数:a2> 0 ,|a|>0,a>0 .注意:非负数之和为0,说明它们都是0.6. 两个重要公式:(1) a =a; (a> 0)厂^ a (a色0)va = a =丿(2),-a (a £0)7. 立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1) a叫x的立方数;(2) a的立方根表示为3a;即把a开三次方.8. 立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9. 立方根的特性:—=缶.10. 无理数:无限不循环小数叫做无理数.注意:二和开方开不尽的数是无理数.11. 实数:有理数和无理数统称实数.(2)正实数实数丿0负实数13. 数轴的性质:数轴上的点与实数 对应.14. 无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求, 则结 果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示. 注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:1.414一 3 =1.732 一5 =2.2 3 6三角形几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)12 •实数的分类:(1)正有理数]有理数20 实数*'有限小数与无限循环小 数负有理数 正无理数: 负无理数:无限不循环小数几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、 角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直 平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数 • 二常识:1 •三角形中,第三边长的判断:另两边之差V 第三边V 另两边之和•2•三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点, 其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形 外•注意:三角形的角平分线、中线、高线都是线段•3•如图,三角形中,有一个重要的面积等式,即:若 CD 丄AB ,BE 丄CA ,则 9 •全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角 所对的边是对应边.10•等边三角形是特殊的等腰三角形.11 •几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明 .12.符合“ AAA ” “SSA ”条件的三角形不能判定全等.13•几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3) 代入分析法;(4)图形观察法.14. 几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3) 作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6) 过已知点作已知直线的平行线.15. 会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS'、“HL ”、“等腰三角形”、“等 边三角形”、“等腰直角三角形”的作图.16. 作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后 画什么;注意:每步作图都应该是几何基本作图.17. 几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. 探18.几何重要图形和辅助线:(1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图. (2)已知角平分线.(若BD 是角平分线)CD • AB=BE • CA.4•三角形能否成立的条件是:最长边V 另两边之和 .A5 •直角三角形能否成立的条件是:最长边的平方等于另两边的平方和 . 八6•分别含30°、45°、60°的直角三角形是特殊的直角三角形. 「 EBC7 •如图,双垂图形中,有两个重要的性质,即: A(1) AC • CB=CD • AB ; (2)z 仁/B ,Z 2=Z A . 8 •三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.C2_.…八 _,,__》 一 》、 、一 f»、 、一 》 一亠八一 "、八C »、 八B① 在BA 上截取BE=BC 构造全等, 转移线段和角;A/1② 过D 点作DE // BC 交AB 于E ,构造 等腰三角形.①过D点作DE // AC交AB于E,构造中位线;AB山BD C②延长AD到E,使DE=AD连结CE构造全等,转移线段和角;B山B D C③ T AD是中线••• S A ABD= S △ADC(等底等高的三角形等面积)AB D C⑷已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD(顶角的平分线或底边的高)构造全等三角形;A ②作等腰三角形ABC 一边的平行线DE,构造新的等腰三角形•(3)已知三角形中线(若AD是BC的中线)EB(5)其它作等边三角形ABC 一边的平行线DE,构造新的等边三角形;②作CE // AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;A⑥若a / b,AC,BC是角平分线,则/ C=90° .④多边形转化为三角形;AD ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角。

相关文档
最新文档