中考数学 初中平面几何专题

合集下载

中考复习初中数学中的平面几何证明题

中考复习初中数学中的平面几何证明题

中考复习初中数学中的平面几何证明题数学是中考必备的科目之一,而平面几何证明题在数学中占据重要地位。

通过解答平面几何证明题,不仅可以提高学生的逻辑思维能力,还能够帮助他们理解数学中的基本概念和定理。

本文将为大家介绍一些常见的平面几何证明题。

一、等腰三角形的性质证明等腰三角形是初中数学中最基础的概念之一。

我们来证明等腰三角形的两边角相等。

证明:设三角形ABC是一个等腰三角形,即AB=AC。

我们需要证明∠B=∠C。

根据三角形的性质,三角形的内角和为180度。

所以∠A+∠B+∠C=180度。

因为AB=AC,所以三角形ABC中的两个角∠B和∠C相等。

即∠B=∠C。

二、垂直平分线的性质证明垂直平分线是指一条直线既垂直于一条线段,又将该线段分为相等的两部分。

我们来证明垂直平分线的性质。

证明:设有一条线段AB,以一条直线CD垂直地平分线段AB并将其分为两部分。

我们需要证明CD与AB垂直且AC=CB。

首先,连接AC和BC。

因为CD是AB的垂直平分线,所以∠CDA=∠CDB=90度。

根据三角形的内角和为180度,我们可以得知∠CAD+∠CDA+∠CAB=180度,同理∠CBD+∠CDB+∠CBA=180度。

由于∠CDA=∠CDB=90度,所以∠CAD+90度+∠CAB=180度,同理∠CBD+90度+∠CBA=180度。

将两个等式相减,得到∠CAD-∠CBD=∠CBA-∠CAB。

因为∠CAD和∠CBD都是90度,所以∠CAD-∠CBD=90度-90度=0度。

因此,∠CBA-∠CAB=0度,即∠CBA=∠CAB。

根据三角形的对应角相等定理可知,∠ACB=∠CBA=∠CAB。

所以,我们得出结论:CD与AB垂直且AC=CB。

结论:证明了垂直平分线的性质。

三、直角三角形的性质证明直角三角形是指一个三角形中有一个角是90度的三角形。

我们来证明直角三角形的性质。

证明:设三角形ABC是一个直角三角形,其中∠C=90度。

我们需要证明AB^2=AC^2+BC^2。

中考数学平面几何经典题

中考数学平面几何经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABCP 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 200,求∠BED 的度数.1.如下图做GH ⊥AB,连接EO 。

中考平面几何知识点

中考平面几何知识点

例题
已知,AB、CD相交于点O,AC//DB,OC=OD,E、F为AB上两点,且AE=BF,求 证:CE=DF。
证明: 由AC//DB,可得∠A=∠B,∠ACO=∠BOD, 又∠1=∠2, 所以△AOC≌△BOD, ∴AC=BD ∵AE=BF, 则△AEC与△BFD中,两边及夹角相等, ∴△AEC≌△BFD ∴CE=DF
中线
与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180度; 三角形最多只有一个直角或者钝角,最少有两个锐角; 三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;
结合内角和可知:三角形的外角最少两个钝角;
三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角; 三角形的外角和为360度; 等腰三角形两个底角相等,等边三角形三个内角相等; ∠A+∠B=∠C或者∠A-∠B=∠C等相似形式,均可推出三角形为直角三角形; ∠A+∠B<∠C或者∠A-∠B>∠C等相似形式,均可推出三角形为钝角三角形;
相似三角形
相似三角形的定义
相似图形:
形状相同的图形叫做相似图形; 相似多边形对边角相等,对应边的比相等;
相似多边形对应边的比称为相似比;
相似角形的判定
有两个角对应相等的两个三角形相似; 两边对应成比例且夹角相等的两个三角形相似;
平分线上;
有点的集合;
例题
如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E. 求证:∠CBE=∠BAD.
证明:
∵AB=AC,AD是BC边上的中线,BE⊥AC,
∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,

初中数学平面几何解答题专题练习

初中数学平面几何解答题专题练习

平面几何解答题专题练习资料整理:沈于童老师高频考察知识点:一、全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.二、等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.三、等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.四、等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);历年真题:1. (13-14一中月考)如图,△ABC与△CDE均为等边三角形,B、C、E在同一直线上,AE、BD交于点G,AC交BD于M,CD交AE于N,连接CG.(1)若AB=2,DE=5,求AE的长.(2)求证:EG=CG+DG.2.(17-18西附月考)如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点E,连接BE.过点D作DF ⊥CD交BC于点F.(1)若BD=DE=√5,CE=√2,求BC的长;(2)若BD=DE,求证:BF=CF.3. (17-18一外期中)如图,△ABC中,∠ABC=45°,过C作AB边上的高CD,H为BC边上的中点,连接DH,CD上有一点F,且AD=DF,连接BF并延长交AC于E,交DH 于G.(1)若AC=5,DH=2,求DF的长.(2)若AB=CB,求证:BG=√2AE.4. (17-18八中期中)在Rt△ABC中∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE,BF平分∠ABC交AC于点F(1)如图1,连接EF,当∠C=∠BEF,DE=√6,BC=1时,求BD的长;(2)如图2,AC=DE,BC=BE,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点.连接AH交BD于点K,连接KG,当KB平分∠AKG时,求证:AK=DG+KG.5.(17-18巴南区期末)如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3√3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.6.(17-18九龙坡区期末)如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=4√2,∠CBE=30°,求DE的长.7. (17-18沙坪坝区期末)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.好题练习:1. △ABC为等边三角形,以AB边为腰作等腰Rt△ABD.AC与BD交于点E,连CD.(1)如图1,若BD=2√2,求AE的长;(2)如图2,F为线段EC上一点.连接DF并以DF为斜边作等腰直角三角形DFG,连接BF、AG,M为BF的中点,适接MG.求证:AM⊥MG.2. 如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.3.如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰BC上的中线,CE⊥AD交AB于点E,连接ED,过点D作DF⊥AB于点F,(1)S△ACD S△ABD.(填“>”、“<”或“=”)若AC:AB=1:√2,则DC:DF=:.(2)如图2,过点C作CM⊥AB,垂足为M,CM交AD于点N,求证:∠CDA=∠EDB.4. 如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.(1)若AB=3,AD=√10,求△BMC的面积;(2)点E为AD的中点时,求证:AD=√2BN.难题练习:1. (1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.2. 如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.3.已知四边形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.大家好,我们接下来会持续整理专题和真题分析给大家,希望孩子本次期末考试能考出好成绩,不过最终肯定是为中考助力!更多资讯添加微信:cqxiaozhushou666,或扫描下面二维码添加小助手,邀请您进入初三中考家长交流群!有问题和建议可以在群里交流提出,我们一起为孩子中考铺好路!。

中考数学之平面几何总结+经典习题

中考数学之平面几何总结+经典习题

中考数学之平面几何总结+经典习题This manuscript was revised by the office on December 10, 2020.平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。

2.两点之间线段最短。

3.过一点有且只有一条直线和已知直线垂直。

4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。

垂直平分线,简称“中垂线”。

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

中垂线性质:垂直平分线垂直且平分其所在线段。

垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

角1.同角或等角的余角相等。

2.同角或等角的补角相等。

3.对顶角相等。

角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。

定理2:到一个角的两边距离相等的点,在这个角的平分线上。

三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。

【平行线】平行线性质1:两直线平行,同位角相等。

平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。

平行线判定1:同位角相等,两直线平行。

平行线判定2:内错角相等,两直线平行。

平行线判定3:同旁内角互补,两直线平行。

平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

平面几何知识要点(二)【三角形】面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24a (a 为边长正三角形)3.已知三角形三边a,b,c ,则S =(海伦公式) 其中:()2a b c p ++= (周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =。

中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考平面几何压轴(三角形与四边形)训练15题(精选)1.如图,四边形ABCD 是平行四边形,且对角线AC , BD 交于点O ,点M , N 分别在AD , BC 上,且AM = CN ,点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE = OF ;(2)连接BM 交AC 于点H ,连接HE ,HF ;(i)如图2,若HE ∥AB ,求证: FH ∥AD ;(ii)如图3,若四边形ABCD 为菱形且DM = 2AM ,∠EHF=60°,求AC BD 的值.2.(1)如图①,在矩形ABCD 的AB 边上取一点E ,将ΔADE 沿DE 翻折,使点A 落在BC 上的A′处,若AB =6,BC =10,求AEEB 的值;(2)如图②,在矩形ABCD 的BC 上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B′处,若BC ·CE =24,AB =6,求BE 的值;(3)如图③,在ΔABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD+53EF 的值.3. 在正方形ABCD 中,AB =10, AC 是对角线,点O 是AC 的中点,点E 在AC 上,连接DE ,点C 关于DE 的对称点是C',连接DC' ,EC'.(1) 如图1,若DC'经过点O ,求证:OC ′CE = √22. (2) 如图2,连接CC',BC',若∠ADC' = 2∠CBC',求CC'的长;(3) 当点B , C', E 三点共线时,直接写出CE 的长.4.如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED= EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C 重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB= 1,当∠DEB′=45°时,求BM的长.5.如图,在正方形ABCD中,点M、N在直线BD上,连接AM,AN并延长交BC、CD于点E、F,连接EN.(1)如图1,若M,N都在线段BD上,且AN = NE,求∠MAN;(2)如图2.当点M在线段DB 延长线上时,AN = NE,(1)中∠MAN的度数不变,判断BM,DN,MN之间的数量关系并证明;(3)如图3,若点M在DB的延长线上,N在BD的延长线上,且∠MAN=135°(i)AB=√6,MB=√3,求DN.(ii)求证:2AM2 - MB 2= MN2 - BN2.6.如图,在RtΔABC与RtΔBDE中,∠BAC=∠BDE=90°,∠ABC=∠DBE=α.(1)如图1,当α= 60°,且点E为BC的中点时,若AB=2,连接AD.求AD的长度;(2)如图2,若α≠ 60°,且点E为BC中点时,取CE中点F,连接AF、DF。

中考数学平面几何知识点复习

中考数学平面几何知识点复习1、射影定理(欧几里得定理)2、勾股定理(毕达哥拉斯定理)3、四边形两边中心的连线的两条对角线中心的连线交于一点4、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分5、三角形各边的垂直一平分线交于一点。

6、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇某大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(-a)(-b)(-c),为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有nAB2+mAC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有ABCD+ADBC=ACBD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。

中考数学之平面几何最全总结+经典习题

中考数学之平面几何最全总结+经典习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。

2.两点之间线段最短。

3.过一点有且只有一条直线和已知直线垂直。

4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。

垂直平分线,简称“中垂线”。

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

中垂线性质:垂直平分线垂直且平分其所在线段。

垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

角1.同角或等角的余角相等。

2.同角或等角的补角相等。

3.对顶角相等。

角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。

定理2:到一个角的两边距离相等的点,在这个角的平分线上。

三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。

【平行线】平行线性质1:两直线平行,同位角相等。

平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。

平行线判定1:同位角相等,两直线平行。

平行线判定2:内错角相等,两直线平行。

平行线判定3:同旁内角互补,两直线平行。

平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

平面几何知识要点(二)【三角形】 面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24a (a 为边长正三角形)3.已知三角形三边a,b,c ,则S =(海伦公式)其中:()2a b c p ++=(周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =。

初中平面几何145个知识点及初中平面几何证明题

初中平面几何145个知识点几何要想取得好成绩,几何公式一定要烂熟于胸。

几何公式是做好几何题的根基,因此同学们一定要在几何公式上多下功夫。

线1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边c 的平方,即a+b=c47 勾股定理的逆定理如果三角形的三边长a、b、c 有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n 边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形初中几何公式:等分78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三个点确定一条直线110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半117 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L 和⊙O 相交d<r ②直线L 和⊙O 相切d=r ③直线L 和⊙O 相离d>r122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理圆的切线垂直于经过切点的半径124 推论1 经过圆心且垂直于切线的直线必经过切点125 推论2 经过切点且垂直于切线的直线必经过圆心126 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角129 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136 定理相交两圆的连心线垂直平分两圆的公共弦137 定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n 边形⑵经过各分点作圆的切线, 以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形138 定理 任何正多边形都有一个外接圆和一个内切圆, 这两个圆是同心圆139 正 n 边形的每个内角都等于(n-2)×180° /n140 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形141 正 n 边形的面积 Sn=pnrn/2 p 表示正 n 边形的周长142 正三角形面积√ 3a/4 a 表示边长143 如果在一个顶点周围有 k 个正 n 边形的角, 由于这些角的和应为 360° , 因此 k ×(n-2)180° /n=360° 化为(n-2)(k-2)=4144 弧长计算公式: L=n ∏R/180145 扇形面积公式: S 扇形=n ∏R/360=LR/2 146 内公切线长= d-(R-r) 外公切线长=初中几何证明练习题1.如图,在△ABC 中,BF ⊥AC ,CG ⊥AD ,F 、G 是垂足,D 、E 分别是BC 、FG 的中点,求证:DE ⊥FG证明:连接DG 、DF∵∠BGC=90°,BD=CD∴DG=21BC 同理DF=21BC ∴DG=DF又GE=FE∴DE ⊥FG2.如图,AE ∥BC,D 是BC 的中点,ED 交AC 于Q ,ED 的延长线交AB 的延长线于P ,求证:PD·QE=PE·QD证明:∵AE ∥BC∴△CDQ ∽△AEQ∴AECD QE QD = ∵BD ∥AE△PBD ∽△PAE∴PEPD AE BD = ∵BD=CD ∴PEPD QE QD = ∴PD·QE=PE·QD∴PE PD AE CD = 3.如图,已知点P 是圆O 的直径AB 上任一点,∠APC=∠BPD ,其中C ,D 为圆上的点,求证:△PAC ∽△PDB证明:过点D 作直径AB 的垂线交AB 于E ,交圆O 于F连接PF 、BF ∵AB ⊥DF ∴⌒BD =⌒BF ,DE=FE ∴BD=BF 又∠BED=∠BEF=90° ∴△BED ≌△BEF ∴∠DBE=∠FBE 又BD=BF,BP=BP ∴△PBD ≌△PBF∴∠BPD=∠BPF ,∠PDB=∠PFB∵∠APC=∠BPD∴∠APC=∠BPF∵∠APC+∠CPD+∠BPD=180°∴∠BPF+∠CPD+∠BPD=180°4.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG求证:ABC AEG S S =△△证明:BAC sin AC AB 21ABC ∠⨯⨯=△S GAE sin AE AG 21AEG ∠⨯⨯=△S ABFG 和ACDE 都是正方形∴∠BAG+∠CAE=180°,AB=AG ,AC=AE∴∠BAC+∠GAE=180°∴∠BAC=180°-∠GAESin ∠BAC=sin (180°-∠GAE )=sin ∠GAE∴ABC AEG S S =△△5.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接BD ,取BD 的中点G ,连接GM 、GN∵DN=CN ,DG=BG∴NG ∥BF ,NG=12BC ∴∠GNM=∠F , 即∠CPF=180° ∴C 、P 、F 三点共线 ∵C 、A 、F 、B 四点共圆 ∴∠CAB=∠CFB 又∠CFB=∠PDB ∴∠CAB=∠PDB 又∠APC=∠BPD ∴△PAC ∽△PDB G同理MG ∥AE ,MG=12AD ∴∠GMN=∠DEN又BC=AD∴NG=MG∴∠GNM=∠GMN∴∠DEN=∠F6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接FC 、FA 、FQ∵AG 是圆O 的对称轴∴AE=AF ∴∠AFE=∠AEF∵EF ⊥AG ,PQ ⊥AG∴EF ∥PQ ∴∠AFE=∠FAP∵C 、D 、E 、F 四点共圆∴∠AEF+∠FCD=180°又∠FAP+∠FAQ=180°∴∠FCD=∠FAQ∴A 、C 、F 、Q 四点共圆∴∠ACQ=∠AFQ又∠ACQ=∠BED7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .证明:过点O 作OF ⊥CD 于F ,过点O 作OG ⊥BE 于G连接OP 、OA 、OQ 、AF 、AG∵AM=AN ∴OA ⊥MN又OF ⊥CD ∴A 、O 、F 、P 四点共圆∴∠AFP=∠AOP又∠OAQ=∠OGQ=90°∴A 、O 、G 、Q 四点共圆∴∠AGQ=∠AOQ 又∠D=∠B ,∠C=∠E∴△ACD ∽△AEB ∴GBFD GB 2FD 2EB CD AB AD === 又∠D=∠B∴△AFD ∽△AGB∴∠AFD=∠AGB又∠AFD+∠AFP=180°∠AGB+∠AGQ=180°∴∠AFP=∠AGQ∴∠AFQ=∠BED ∵AE=AF ,AG ⊥EF ∴∠EAG=∠FAG 又∠PAG=∠QAG ∴∠PAE=∠QAF 在△PAE 和△QAF 中 ∠PEA=∠QFA AE=AF ∠PAE=∠QAF ∴△PAE ≌△QAF ∴AP=AQO M ∴∠AOP=∠AOQ又OA=OA ,∠OAP=∠OAQ∴△AOP ≌△AOQ∴AP=AQ8如图,⊙O 中弦AC ,BD 交于F ,过F 点作EF ∥AB ,交DC 延 长线于E ,过E 点作⊙O 切线EG ,G 为切点,求证:EF=EG证明:∵AB ∥EF∴∠A=∠EFC又∠A=∠D∴∠EFC=∠D又∠CEF=∠FED∴△CEF ∽△FED ∴EF EC ED EF = ∴ED EC EF 2⨯=又EG 是⊙O 的切线∴ED EC EG 2⨯= ∴EF=EG10. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接BE ,CG 求证:(1)BE =CG(2)BE ⊥CG证明:∵ABFG 和ACDE 都是正方形∴AB=AG ,AE=AC ,∠BAG=∠CAE∴∠BAG+∠BAC=∠CAE+∠BAC 即∠EAB=∠CAG∴△ABE ≌△AGC ∴∠AGC=∠ABE ,BE=CG∵∠AGC+∠AMG=90°∴∠ABE+∠AMG=90°又∠AMG=∠BMC∴∠ABE+∠BMC=90°∴∠BOM=90°∴BE ⊥CG11. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接CE ,BG 、GE M 、N 、P 、Q 分别是EG 、GB 、BC 、CE 的中点求证:四边形MNPQ 是正方形OHJ证明:连接BE 、CG 相较于H ,CG 与AB 相交于O ∵ABFG 和ACDE 都是正方形∴AB=AG ,AE=AC ,∠BAG=∠CAE=90° ∴∠BAG+∠BAC=∠CAE+∠BAC即∠EAB=∠CAG∴△ABE ≌△AGC∴∠AGC=∠ABE ,BE=CG∵∠AGC+∠AOG=90°∴∠ABE+∠AOG=90°又∠AOG=∠BOC∴∠ABE+∠BMC=90°∴∠BOM=90°∴BE ⊥CG∵NG=NB ,PB=PC∴PN ∥CG ,PN=12 CG同理MQ ∥CG ,MQ=12 CGMN ∥BE ,MN=12 BEPQ ∥BE ,PQ=12 BE又∵BE=CG∴PN=MQ=MN=PQ ∴MNPQ 是菱形 ∵MN ∥BE ,BE ⊥CG ∴MN ⊥CG 同理PN ⊥BE ∴NIHJ 是矩形 ∴∠MNP=90° ∴MNPQ 是正方形。

初中平面几何题

初中平面几何题平面几何是初中数学中的一大重点内容,其涉及的题目类型也比较多。

下面将通过一些示例来解答不同类型的平面几何题目。

例一:求矩形的面积已知矩形ABCD,AB = 5cm,BC = 3cm,求矩形ABCD的面积。

解析:矩形的面积可以通过长乘以宽来计算。

根据已知条件,我们可以得知矩形的长为5cm,宽为3cm。

因此,矩形的面积为5cm × 3cm = 15cm²。

例二:求直角三角形的斜边长已知直角三角形ABC,∠C为直角,AC = 4cm,BC = 3cm,求直角三角形ABC的斜边AB的长度。

解析:根据勾股定理,直角三角形斜边的长度可以通过已知直角边的长度求解。

根据已知条件,AC = 4cm,BC = 3cm,我们可以使用勾股定理进行计算。

根据勾股定理,斜边AB的长度为√(AC²+BC²) = √(4²+3²) = √(16+9) = √25 = 5cm。

例三:求正方形的周长已知正方形ABCD,AB = 6cm,求正方形ABCD的周长。

解析:正方形的周长可以通过边长乘以4来计算。

根据已知条件,正方形ABCD的边长为6cm。

因此,正方形ABCD的周长为6cm × 4 = 24cm。

例四:求等边三角形的高已知等边三角形ABC,AB = BC = CA = 5cm,求等边三角形ABC 的高。

解析:等边三角形的高可以通过高度公式计算。

高度公式为h = a ×√3 / 2,其中a为等边三角形的边长。

根据已知条件,我们可以得知等边三角形ABC的边长为5cm。

因此,等边三角形ABC的高为h = 5cm × √3 / 2 = (5 × √3) / 2 cm。

通过以上例子的解析,我们可以看出不同类型的平面几何题目需要采用不同的解题方法。

在解题过程中,需要注意题目中给出的已知条件,并灵活运用几何定理和公式来进行推导和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学
●初中平面几何专题
1、基本图形(线段、角、平行线、三角形内角和定理及角度计算)
2、三角形(全等三角形、等腰三角形、直角三角形)
3、四边形(特殊四边形的性质和判定、中位线定理)
4、比例线段与相似图形
5、共线点与共点线
6、位似理论
7、面积与面积方法
8、三角函数
9、几何计算(勾股定理、余弦定理、正弦定理、Stewart公式)
10、圆(四点共圆、直线与圆、圆与圆、)
11、三角形的四心
12、几何变换(平移、旋转、反射、相似变换、反演)
13、怎样添辅助线
14、几何不等量与几何最值(等周问题)
15、几何定值
16、作图
17、轨迹
18、几何计数
19、覆盖
20、立体几何初步
●整理
1、线段
2、角
3、平行线
4、等腰
5、全等
5、中位线
6、勾股定理
3、四边形
4、比例线段和相似形
5、共线点与共点线
6、位似理论
7、面积与面积方法
9、几何计算(勾股定理、余弦定理、正弦定理、Stewart公式)
13、特殊角
13、特殊点
12、几何变换(平移、旋转、反射、相似变换、反演)
14、几何不等量与几何最值(等周问题)
10、圆(四点共圆、直线与圆、圆与圆、)
14、几何定值
中考数学
17、作图
18、轨迹
8、三角函数
13、怎样添辅助线
18、几何计数
19、覆盖
20、立体几何初步。

相关文档
最新文档