命题与证明练习题1及答案教学文稿

合集下载

初中数学命题与证明的全集汇编附答案(1)

初中数学命题与证明的全集汇编附答案(1)

初中数学命题与证明的全集汇编附答案(1)一、选择题1.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题 D.该命题没有逆命题【答案】B【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选:B.点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.2.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.3.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】【分析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.【详解】解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.【点睛】此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.4.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【答案】B【解析】【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.下列命题是真命题的个数是().①64的平方根是8 ;②22a b =,则a b =;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是8±,正确,是真命题;②22a b =,则不一定a b =,可能=-a b ;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.6.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°. 其中不正确的命题的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.故选C .7.下列命题中,是真命题的是( )A .若a b =,则a b =B .若0a b +>,则a ,b 都是正数C .两条直线被第三条直线所截,同位角相等D .垂直于同一条直线的两条直线平行【答案】D【解析】【分析】正确的命题是真命题,根据定义依次判断即可得到答案.【详解】A. 若a b =,则a b =±,故A 错误;B. 若0a b +>,则a ,b 中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B 错误;C. 两条平行线被第三条直线所截,同位角相等,故C 错误;D. 垂直于同一条直线的两条直线平行正确,故选:D.【点睛】此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.8.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A .0个B .1个C .2个D .3个【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确; ③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,所以逆命题成立的只有一个,故选B.【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.9.下列命题是真命题的是( )A .中位数就是一组数据中最中间的一个数B .一组数据的众数可以不唯一C .一组数据的标准差就是这组数据的方差的平方根D .已知a 、b 、c 是Rt △ABC 的三条边,则a 2+b 2=c 2【答案】B【解析】【分析】正确的命题是真命题,根据定义判断即可.解:A 、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误; B 、一组数据的众数可以不唯一,故正确;C 、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D 、已知a 、b 、c 是Rt △ABC 的三条边,当∠C =90°时,则a 2+b 2=c 2,故此选项错误; 故选:B .【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.10.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.11.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .12.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )A .1 个B .2 个C .3 个D .4 个【答案】A【解析】【分析】根据立方根、平行线的判定和算术平方根判断即可.【详解】解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确; ③若0ab =,则(,)P a b 表示原点或坐标轴,错误;3,错误;故选:A .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.下列说法正确的是( )A .相等的角是对顶角B .在平面内,经过一点有且只有一条直线与已知直线平行C .两条直线被第三条直线所截,内错角相等D .在平面内,经过一点有且只有一条直线与已知直线垂直【答案】D【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:相等的角不一定是对顶角,故A 错误;在平面内,经过直线外一点有且只有一条直线与已知直线平行,故B错误;两直线平行,内错角相等,故C错误;在平面内,经过一点有且只有一条直线与已知直线垂直,故D正确;故答案为D.【点睛】此题主要考查了命题的真假判断,掌握定理并灵活运用是解题的关键.14.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.15.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B.【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.16.下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等【答案】C【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.17.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.18.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.19.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.下列命题正确的是( )A .矩形的对角线互相垂直平分B .一组对角相等,一组对边平行的四边形一定是平行四边形C .正八边形每个内角都是145oD .三角形三边垂直平分线交点到三角形三边距离相等【答案】B【解析】【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.证明:∵//AB CD ,∴180A D +=︒∠∠,∵A C ∠=∠,∴180C D ∠+∠=︒,∴//AD BC ,又∵//AB CD ,∴四边形ABCD 是平行四边形,∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:()180821358︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B.【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.。

命题与证明练习题及答案

命题与证明练习题及答案

命题与证明综合一、精心一1.下列句是命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.作直AB的垂B.在段AB上取点CC.同旁内角互D.垂段最短?2.命“垂直于同一条直的两条直互相平行” 的是⋯⋯⋯⋯⋯⋯⋯()A.垂直B.两条直C.同一条直D.两条直垂直于同一条直3 .下列命中,属于假命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.若a-b =0,a=b=0 B.若a-b>0,a>bC.若a-b<0,a<b D .若a-b ≠0,a≠b4.直角三角形的两角均分所交成的角的度数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.45°B.135°C.45°或 135°D.以上答案均不5.适合条件∠A: ∠B: ∠C=1:2:3 的三角形必然是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.角三角形 B .直角三角形C.角三角形D.任意三角形6.用反法明“ 3 是无理数” ,最恰当的法是先假⋯⋯⋯⋯⋯⋯⋯()A.3是分数B. 3 是整数C. 3 是有理数D. 3 是数7 .如,∠ 1+∠ 2+∠ 3等于⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.180°B.360°C.270°D.300°8.于命“若是∠1+∠2=90°,那么∠ 1≠∠2”,能明它是假命的反例是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 / 4⋯⋯⋯⋯()条件① AB=DE,② AC=DF,③ CM=FN A.∠ 1=50°,∠ 2=40°中任取两个条件做条件,另一个条件B.∠ 1=50°,∠ 2=50°做,C.∠ 1=∠2=45°能构成一个真命,那么可以D.∠ 1=40°,∠ 2=40°是,是.(只填序号)二、心填一填三、耐心做一做9.一个命由和两部分成.17.如,已知点E、F分在AB、AD 10.依照命正确与否,命可分的延上,∠ 1=∠2,∠ 3=∠4.和.求:(1)∠A=11.把命“三角形内角和等于 180°”∠3改写成若是,那么.(2)AF∥BC12.如,∠ 1,∠ 2,∠ 3 的大小关系18.如,在△ABC中,∠A=70°,BO,是.CO分是∠ABC和∠ ACB的角平13.如,已知BC⊥AC,BD⊥AD,垂足(第 12 题)分,求∠ BOC的度数.(第 13 题)分是 C和 D,19.反例明以下命是假命.若要使△ ABC≌△ ABD,上一条( 1)一个角的角大于个角;件是.( 2)已知直a,b,c,若a⊥b,14.命“同位角相等”的是.b⊥c, a⊥c.15.明命“若x(1- x)=0,x=0”20.已知,如,AB与CD订交于点O,是假命的反例是AC∥BD,且 AO=OC..求: OB=OD.16.在△ABC和△DEF中,∠A=∠D,CM,21.如,AB=DC,AC=DB,FN分是 AB、DE上的中,再从以你能明中∠ 1=∠2 的理下三个由?2 / 422.已知,如图,AD⊥BC于D,EF⊥BC=CE,求证: AE=DE.于 F,EF交 AB于 G,交 CA延长线于 E,且∠1=∠2.25、如图,∠ ABC= 90°, AB= BC, D求证:AD均分∠ BAC,填写“解析”为 AC上一点,分别过 A.C 作 BD的垂线,和“证明”中的空白.垂足分别为 E.F,解析:要证明 AD均分∠ BAC,只要求证: EF=CF-AE.证明∠ =∠,而已知∠ 1=∠2,所以应联想这两个角分别和∠八年级数学(下)素质基础训练1、∠ 2 的关系,由已知BC的两条垂线(五)可推出一、精心选一选∥,这时再观察这两对角的CDACBCBC关系已不难获取结论.二、认真做一做证明:∵ AD⊥BC,EF⊥BC(已知)9. 题设(或条件)、结论∴∥()10.真命题假命题∴=(两直线平行,内错角11.有一个三角形的三个内角它们和等相等.)于 180°=(两直线平行,内错角12.∠2<∠1<∠3相等.)13.开放性题目,答案不唯一∵(已知)14.两个角是同位角这两个角相等∴,即 AD均分∠ BAC()15.x=1 也能使条件为零23、如右图,已知BE⊥AC于E,CF⊥AB16.①② ; ③于 F,BE、CF订交于点 D,若 BD=CD.三、耐心做一做求证: AD均分∠ BAC.17.(1)证明:∵∠ 1=∠2( 已知 ) 24、如图,已知AB=DC,AC=DB,BE∴AE∥DC(内错角相等,两直线平行)3 / 4∴∠ A=∠3(两直线平行,同位角相等)(2)证明:∵∠ 3=∠4( 已知)∵∠ A=∠3( 已证 )∴∠ A=∠4(等量交换)∴AF∥BC(同位角相等,两直线平行)18. ∠BOC=12519. 略20. 略21. 略22. 略4 / 4。

5.3.2《命题、定理、证明》同步练习题(共5篇)

5.3.2《命题、定理、证明》同步练习题(共5篇)

5.3.2《命题、定理、证明》同步练习题(共5篇)第一篇:5.3.2《命题、定理、证明》同步练习题新课标第一网不用注册,免费下载!5.3.2《命题、定理、证明》同步练习题(1)知识点:命题:判断一件事情的语句,命题由题设和结论组成真命题:题设成立,结论成立的命题假命题:题设成立,结论不一定成立的命题同步练习:一、填空题:(每题4分,共40分)1、每个命题都由_____和_____两部分组成。

2、命题“对顶角相等”的题设是_____________,结论是_____3、命题“同位角相等”改写成“如果…,那么…”的形式是____________4、请用“如果…,那么…”的形式写一个命题:________________5、一个命题,如果题设成立,结论一定成立,这样的命题是___命题;如果题设成立,结论不成立或不一定成立,这样的命题是___命题(填“真”、“假”)6、以下四个命题:①一个锐角与一个钝角的和为180°;②若m 不是正数,则m一定小于零;③若ab>0,则a>0,b>0;④如果一个数能被2整除,那么这个数一定能被4整除。

其中真命题有___个。

新-课-标-第-一-网7、下列语句:①对顶角相等;②OA是∠BOC的平分线;③相等的角都直角;④线段AB。

其中不是命题的是_______(填序号)8、“两直线相交只有一个交点”的题设是____________________。

9、命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题。

请你写出一种改法:______________________10、对于同一平面内的三条直线a、b、c给出以下五个结论:① a∥b;② b∥c;③ a⊥b;④ a∥c;⑤ a⊥c。

以其中两个为题设,一个为结论,组成一个正确的命题:____二、选择题(每题4分,共20分)11、如图,直线c与a、b相交,且a∥b,则下列结论:(1)∠1=∠2;(2)1a2∠1=∠3;(3)∠2=∠3。

初二数学命题的证明同步练习题及答案

初二数学命题的证明同步练习题及答案

初二数学命题的证明同步练习题及答案初二数学命题的证明同步练习题及答案证明同步练习题及答案如下24.2命题与证明第1题. 已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有( )A.1个B.2个C.3个D.4个答案:B第2题. 判断下列命题的真假.①大于锐角的角是钝角;②如果一个实数有算术平方根,那么它的算术平方根是整数;③如果,那么点是线段的中点.答案:①②③假命题.第3题. 下列命题称为公理的是( )A.垂线段最短B.同角的补角相等C.邻角的平分线互相垂直D.内错角相等两直线平行答案:A答案:B第9题. 举反例说明一个角的余角大于这个角是假命题,错误的是( )A.设这个角是,它的余角是,B.设这个角是,它的余角是,C.设这个角是,它的余角是,D.设这个角是,它的余角是,答案:C第10题. 下列语句中,不是命题的句子是( )A.过一点作已知直线的垂线B.两点确定一条直线C.钝角大于D.凡平角都相等答案:A第11题. 命题有两条边和一个角对应相等的两个三角形全等的题设是,结论是,它是命题.答案:如果两个三角形中有两条边和一个角对应相等;这两个三角形全等;假.第12题. 把命题不相等的角不是对顶角改为如果那么的形式为 .答案:如果两个角不相等,那么这两个角不是对顶角.第13题. 如图,, .求证: .答案:因为, .所以 .即 .又,所以 .第14题. 已知:如图,,,,,求证: .答案:因为,,所以,所以,因为,所以,所以,因为,所以 .第15题. 如图,,且,那么图中与相等的角(不包括 )的个数是( )A.2B.4C.5D.6答案:C第16题. 如图,在中,,在上取一点,使,是的中点,是的中点,延长交的延长线于,求证: .答案:连结,取中点,连结,,为中点,为中点,为中点,, . ,,上文即是证明同步练习题及答案。

命题与证明的专项训练解析含答案

命题与证明的专项训练解析含答案

命题与证明的专项训练解析含答案一、选择题1.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.2.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D 、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.3.下列命题中真命题是( )A 2一定成立B .位似图形不可能全等C .正多边形都是轴对称图形D .圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A )2,当a <0时不成立,假命题;B 、位似图形在位似比为1时全等,假命题;C 、正多边形都是轴对称图形,真命题;D 、圆锥的主视图不一定是等边三角形,假命题,故选C .【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.4.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.5.下列命题中,是真命题的是( )A .若a b =,则a b =B .若0a b +>,则a ,b 都是正数C .两条直线被第三条直线所截,同位角相等D .垂直于同一条直线的两条直线平行【答案】D【解析】【分析】正确的命题是真命题,根据定义依次判断即可得到答案.【详解】A. 若a b =,则a b =±,故A 错误;B. 若0a b +>,则a ,b 中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B 错误;C. 两条平行线被第三条直线所截,同位角相等,故C 错误;D. 垂直于同一条直线的两条直线平行正确,故选:D.【点睛】此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.6.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )A .1 个B .2 个C .3 个D .4 个【答案】A【解析】【分析】根据立方根、平行线的判定和算术平方根判断即可.【详解】解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确;③若0ab =,则(,)P a b 表示原点或坐标轴,错误;3,错误;故选:A .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )A .①②③④B .①③④C .①③D .①【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题; ②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题; 故选C .【点睛】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.8.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.9.下列命题是真命题的是( )A .若两个数的平方相等,则这两个数相等B .同位角相等C .同一平面内,垂直于同一直线的两条直线平行D .相等的角是对顶角【答案】C【解析】【分析】根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】A . 若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A 选项错误;B . 只有两直线平行的情况下,才有同位角相等,故B 选项错误;C . 同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;D . 相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D 选项错误,故选C .【点睛】本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.10.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.11.下列命题是真命题的是( )A .同位角相等B .对顶角互补C .如果两个角的两边互相平行,那么这两个角相等D .如果点P 的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A 、C 进行判断;利用对顶角的性质对B 进行判断;根据直角坐标系下点坐标特点对D 进行判断.【详解】A .两直线平行,同位角相等,故A 是假命题;B .对顶角相等,故B 是假命题;C .如果两个角的两边互相平行,那么这两个角相等或互补,故C 是假命题;D .如果点的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上,故D 是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.12.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】 根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.13.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )A .a =3,b =2B .a =﹣3,b =2C .a =3,b =﹣1D .a =﹣1,b =3【答案】B【解析】试题解析:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a 2=9,b 2=4,且﹣3<2,此时虽然满足a 2>b 2,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;在C 中,a 2=9,b 2=1,且3>﹣1,满足“若a 2>b 2,则a >b”,故C 选项中a 、b 的值不能说明命题为假命题;在D 中,a 2=1,b 2=9,且﹣1<3,此时满足a 2<b 2,得出a <b ,即意味着命题“若a 2>b 2,则a >b”成立,故D 选项中a 、b 的值不能说明命题为假命题;故选B .考点:命题与定理.14.下列命题的逆命题是真命题的是( )A .直角都相等B .钝角都小于180°C .如果x 2+y 2=0,那么x=y=0D .对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A 选项不符合题意,小于180°的角不都是钝角,故B 选项不符合题意,如果x=y=0,那么x 2+y 2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D 选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.下列命题是真命题的是( )A .同旁内角相等,两直线平行B .对角线互相平分的四边形是平行四边形C .相等的两个角是对顶角D .圆内接四边形对角相等【答案】B【解析】【分析】由平行线的判定方法得出A 是假命题;由平行四边形的判定定理得出B 是真命题;由对顶角的定义得出C 是假命题;由圆内接四边形的性质得出D 是假命题;综上,即可得出答案.【详解】A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.16.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.17.下列说法正确的是( )①函数y =x 的取值范围是13x …. ②若等腰三角形的两边长分别为3和7,则第三边长是3或7.③一个正六边形的内角和是其外角和的2倍.④同旁内角互补是真命题.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根.A .①②③B .①④⑤C .②④D .③⑤ 【答案】D【解析】【分析】根据二次根式定义,等腰三角形性质,正多边形内角和外角关系,平行线性质,根判别式定义进行分析即可.【详解】①函数y =x 的取值范围是13x >-,故错误. ②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.③一个正六边形的内角和是其外角和的2倍,正确.④两直线平行,同旁内角互补是真命题,故错误.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根,正确, 故选D .【点睛】此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.18.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.19.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=kx.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.20.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.。

初中数学命题与证明专题训练50题含参考答案

初中数学命题与证明专题训练50题含参考答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角2.下列命题正确的是( )A .所有的实数都可用数轴上的点表示B .直线外一点到这条直线的垂线段叫做点到直线的距离C D .如果一个数有立方根,那么这个数也一定有平方根3.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C 2D .证法2只要测量够一百个三角形进行验证,就能证明该定理4.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两点的所有连线中,线段最短5.下列命题为真命题的是( )A .内错角相等,两直线平行B C .1的平方根是1D .一般而言,一组数据的方差越大,这组数据就越稳定6.下列命题是真命题的是( )A .若a b >,则11a b ->-B .若22ac bc >,则a b >C .若225x kx ++是一个完全平方公式,则k 的值等于10D .将点()2,3A -向上平移3个单位长度后得到的点的坐标为()1,37.能说明命题“若x 2≥9,则x ≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣2 8.下列命题是真命题的是( )A .内错角互补,两直线平行B .三角形的外角大于任意一个不相邻的内角C .三角形的两边之和小于第三边D .三角形的三条高一定在三角形内部 9.下面四个命题:∠若=1x -,则31x =-;∠面积相等的两个三角形全等;∠相等的角是对顶角;∠若24x =,则2x =.是真命题的有( )A .4个B .3个C .2个D .1个 10.下列语句:∠过一点有且只有一条直线与已知直线平行;∠数轴上的点和实数是一一对应的;∠同位角相等;∠同一平面内,过一点有且只有一条直线与已知直线垂直;其中( )是真命题.A ∠∠B ∠∠C ∠∠D ∠∠11.下列命题正确的是( )A .平行四边形的对角线互相垂直平分B .矩形的对角线互相垂直平分C .菱形的对角线互相平分且相等D .平行四边形是中心对称图形12.下列命题,假命题是( )A .如果两个三角形全等,那么这两个三角形的面积相等B .等腰三角形两腰上的高相等C .三角形的一个外角大于与它不相邻的任何一个内角D .已知ABC ,求作A B C ''',使A B C ABC ''≌的依据是三角形全等的性质定理 13.下面命题中是真命题的有( )∠相等的角是对顶角∠直角三角形两锐角互余∠三角形内角和等于180°∠两直线平行内错角相等A .1个B .2个C .3个D .4个14.下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角15.下列命题正确的是( )A .相等的角是对顶角;B .a 、b 、c 是直线,若a //b ,b //c ,则a //c ;C .同位角相等;D .a 、b 、c 是直线,若a ∠b ,b ∠c ,则a ∠c .16.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等17.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个18.下列说法:∠同位角相等;∠对顶角相等;∠等角的补角相等;∠两直线平行,同旁内角相等,正确的个数有( )A .1 个B .2 个C .3 个D .4 个19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( )A .可以是a =-0.2,不可以是 a =2B .可以是a =2,不可以是 a =-0.2C .可以是a =-0.2,也可以是 a =2D .既不可以是a =-0.2,也不可以是 a=220.下列命题中,属于真命题的是( )A .三点确定一个圆B .圆内接四边形对角互余C .若22a b =,则a b =D a b =二、填空题21.命题“对顶角相等”的题设是________,结论是________,它是________命题.(填“真”或“假”)22.命题“互余的角不相等”的逆命题是_____.23.命题“若a b =,那么a b =”是一个____________命题(填真、假),写出它的逆命题:____________.24.举反例说明命题“对于任意实数x ,221x x +-的值总是正数”是假命题,你举的反例是x =__________(写出一个x 的值即可).25.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.26.下列说法中,真命题有______.(填入序号即可)∠和为180°且有一条公共边的两个角是邻补角; ∠过一点有且只有一条直线与已知直线垂直;∠同位角相等;∠经过直线外一点,有且只有一条直线与这条直线平行; ∠两点之间,直线最短。

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

命题与证明的全集汇编含答案0001

命题与证明的全集汇编含答案0001

命题与证明的全集汇编含答案一、选择题1 •下列各命题的逆命题成立的是( A 、 全等三角形的对应角相等 C.两直线平行,同位角相等【答案】 C 【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假. 解:A 逆命题是三个角对应相等的两个三角形全等,错误;B 、 绝对值相等的两个数相等,错误;C 、 同位角相等,两条直线平行,正确;D 、 相等的两个角都是 45。

,错误.故选C.2.下列定理中,逆命题是假命题的是( A. 在一个三角形中,等角对等边 B •全等三角形对应角相等C. 有一个角是60度的等腰三角形是等边三角形D. 等腰三角形两个底角相等【答案】 B 【解析】 【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可. 【详解】解:A 、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B 、 逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C 、 逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等 于 60°,逆命题正确,是真命题;D 、 逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题; 故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.B .如果两个数相等,那么它们的绝对值相等 D .如果两个角都是 45 °那么这两个角相等3. A . B . 下列命题是假命题的是()同角(或等角)的余角相等 三角形的任意两边之和大于第三边 三角形的内角和为 180°C. D. 两直线平行,同旁内角相等【答案】 D【分析】利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确 定正确的选项. 【详解】故选D .【点睛】 考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的 内角和及平行线的性质,难度不大.4.下列命题是真命题的是( )A. 如果一个数的相反数等于这个数本身,那么这个数B. 如果一个数的倒数等于这个数本身,那么这个数一定疋C. 如果一个数的平方等于这个数本身,那么这个数一定是D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是 【答案】A【解析】 【分析】根据相反数是它本身的数为 0 ;倒数等于这个数本身是 ±1 算术平方根等于本身的数为 1和0进行分析即可. 【详解】故选A . 【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.5. 下列命题中真命题是( A . J a 2=( J a )2一定成立 B. 位似图形不可能全等 C. 正多边形都是轴对称图形 D .圆锥的主视图一定是等边三角形【答案】CA 、B 、C 、D 、 同角(或等角)的余角相等,正确,是真命题; 三角形的任意两边之和大于第三边,正确,是真命题; 三角形的内角和为 180 °正确,是真命题; 两直线平行,同旁内角互补,故错误,是假命题, 曰定是曰平方等于它本身的数为 1和0 ; A 、B 、C 、D 、 如果一个数的相反数等于这个数本身,那么这个数一定是 如果一个数的倒数等于这个数本身,那么这个数一定是 如果一个数的平方等于这个数本身,那么这个数一定是 如果一个数的算术平方根等于这个数本身,那么这个数一定是 1, 0, 0,是真命题;是假命题; 是假命题; 0,是假命题;【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判 断即可得. 【详解】A 、辰=(薦)2,当a < 0时不成立,假命题;B 、位似图形在位似比为 1时全等,假命题;C 正多边形都是轴对称图形,真命题;D 、圆锥的主视图不一定是等边三角形,假命题,故选C.【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视 图等知识,熟练掌握相关知识是解题的关键.【解析】【分析】 根据相似三角形进行判断即可. 【详解】解:A 、所有等腰三角形不一定都相似,原命题是假命题;B 、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C 有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D 、有一个角是100。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题与证明练习题1
及答案
仅供学习与交流,如有侵权请联系网站删除 谢谢2
命题与证明
一、填空
1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________.
2.命题“如果2
2
a b = ,那么a b =”的逆命题是________________________________. 3.命题“三个角对应相等的两个三角形全等” 是一个______命题(填“真”或“假”). 4.如图,已知梯形ABCD 中, AD ∥BC, AD =3, AB =CD =4, BC =7,则∠B =_______.
5.用反证法证明“b 1∥b 2”时,应先假设_________.
6.如图,在ΔABC 中,边AB 的垂直平分线交AC 于E, ΔABC 与ΔBEC 的周长分别为24和14,则AB =________.
7.若平行四边形的两邻边的长分别为16和20, 两长边间的距离为8,则两短边的距离为__________.
8.如图,在ΔABC 中,∠ABC =∠ACB =72°, BD 、CE 分别是∠ABC 和∠ACB 的平分线,它们的交点为F,则图中等腰三角形有______个. 二、选择题
1.下列语句中,不是命题的是( )
A.直角都等于90°
B.面积相等的两个三角形全等
C.互补的两个角不相等
D.作线段AB 2.下列命题是真命题的是( )
A.两个等腰三角形全等
B.等腰三角形底边中点到两腰距离相等
C.同位角相等
D.两边和一角对应相等的两个三角形全等 3.下列条件中能得到平行线的是( )
①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.
A. ①②
B. ②④
C. ②③
D. ④ 4.下列命题的逆命题是真命题的是( ) A.两直线平行同位角相等 B.对顶角相等
C.若a b =,则22a b =
D.若(1)1a x a +>+,则1x > 5.三角形中,到三边距离相等的点是( )
A.三条高的交点
B.三边的中垂线的交点
C.三条角平分线的交点
D.三条中线的交点 6.下列条件中,不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 D.面积相等
7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定
8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1, EC 的长为2,那么正方形ABCD 的面积是( ) 35三、解答题(每题8分,共32分)
1.判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形.
2.如图, BD ∥AC,且BD =1
2
AC, E 为AC 中点,求证:BC =DE.
仅供学习与交流,如有侵权请联系网站删除 谢谢3
A
C
E
D
B
3.如图.三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在ΔABC 内,若∠1=20°,求∠2的度数.
4.如图,梯形ABCD 中, AD ∥BC, ∠ABC =60°, BD 平分∠ABC, BC =2AB. 求证:AB=CD.
5、已知,如图所示,正方形ABCD 的边长为1, G 为CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF,连接DE 交BG 的延长线于点H. (1)求证:①ΔBCG ≌ΔDCE ②HB ⊥DE
(2)试问当G 点运动到什么位置时, BH 垂直平分DE?请说明理由.
6、已知:如图,AB∥CD ,AB =CD ,BE∥DF ;求证:BE =DF ;
7.已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .
8.如图,AE 是∠BAC 的平分线,AB=AC ,D 是AE 反向延长线的一点,则△ABD 与△ACD 全等吗?为什么?
F
O D
E
C
B
A
仅供学习与交流,如有侵权请联系网站删除 谢谢4
第2章:命题与证明 一、填空题
1、略。

2、如果a b =,那么22a b =。

3、假。

4、60°
5、b 1与b 2相交于O 点.
6、10.
7、10.
8、8 二、选择题:DBCA CDAC 三、解答题:1、①真②假
2、证明:∵E 为AC 中点,∴EC=2
1
AC
又∵BD=2
1
AC,∴BD=EC,又BD ∥AC,即BD ∥EC.
∴四边形BCED 为平行四边形 ∴BC=DE
3、60°
4、证明:过A 、D 两点分别作BC 的垂线,交BC 于E 、F 点,有AD=EF , 可证EF=AD=AB ,∴BE+FC=AB 由∠ABE=60°,可知BE=FC=2
1AB 易证△ABE ≌△DCF ,得AB=DC 四、证明题
1、证明⑴ ∵正方形ABCD 得BC=DC ,∠BCG=90°
正方形GCEF 得GC=CE, ∠DCE=90° ∴△BCG ≌△DCE
⑵由⑴可得∠DEC=∠BGC 而 ∠BGC+∠GBC=90°∴∠HEB+∠HBE=90°∴HB ⊥DF 2、当GC=2-1时,GE=2(2-1)=2- 2,
而DG=1-(2-1)=2-2 ∴DG=GE 即BH 垂直平分DE。

相关文档
最新文档