命题与证明-教学设计
沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的重点内容,本节内容是在学生已经掌握了命题与定理的基础上进行进一步的深入学习。
本节课的主要内容是让学生了解证明的方法和步骤,学会如何正确地进行数学证明。
教材通过具体的例子引导学生理解证明的过程,并通过练习让学生掌握证明的方法。
二. 学情分析学生在学习本节内容之前,已经学习了命题与定理的基本概念,对命题和定理有了初步的理解。
但是,学生在证明方面还缺乏系统的训练,证明的方法和步骤还不够清晰。
因此,在教学过程中,需要教师引导学生理解证明的过程,并通过大量的练习让学生掌握证明的方法。
三. 教学目标1.让学生理解证明的概念和方法,掌握证明的基本步骤。
2.培养学生进行数学证明的能力,提高学生的逻辑思维能力。
3.通过数学证明的学习,培养学生的耐心和细致,提高学生的学习兴趣。
四. 教学重难点1.教学重点:让学生理解证明的概念和方法,掌握证明的基本步骤。
2.教学难点:如何引导学生理解证明的过程,如何让学生掌握证明的方法。
五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生理解证明的过程。
2.使用小组合作学习的方法,让学生在合作中学习,提高学生的学习效果。
3.通过大量的练习,让学生在实践中掌握证明的方法。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备相关的教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)教师通过提问的方式引导学生回顾命题与定理的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT或黑板,呈现本节课的主要内容,让学生了解本节课的学习目标。
3.操练(10分钟)教师通过具体的例子,引导学生理解证明的过程,让学生掌握证明的基本步骤。
4.巩固(10分钟)教师布置一些练习题,让学生在练习中巩固所学的内容,提高学生的证明能力。
5.拓展(10分钟)教师通过一些综合性的练习题,让学生在练习中提高自己的逻辑思维能力,提高学生的学习兴趣。
沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节课的主要内容是让学生理解命题的概念,掌握证明的方法和技巧。
教材通过引入生活中的实例,让学生体会命题的意义,进而引导学生学习证明的基本方法。
教材内容由浅入深,循序渐进,有利于学生掌握。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对数学概念有一定的理解。
但是,对于证明这一概念,学生可能较为陌生,需要通过具体的实例来引导学生理解和掌握。
此外,学生在学习过程中可能存在对证明方法的不理解,需要教师耐心引导和讲解。
三. 教学目标1.让学生理解命题的概念,能正确写出题设和结论。
2.让学生掌握证明的方法和技巧,能运用所学的证明方法解决实际问题。
3.培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
四. 教学重难点1.重点:命题的概念,证明的方法和技巧。
2.难点:证明方法的灵活运用,对复杂命题的证明。
五. 教学方法1.采用实例导入法,通过生活中的实例引导学生理解命题的意义。
2.采用问题驱动法,引导学生思考和探索证明的方法。
3.采用分组合作法,让学生在合作中交流和分享证明的方法和经验。
4.采用讲解法,教师对重点和难点进行讲解和解答。
六. 教学准备1.准备相关的生活实例,用于导入和讲解。
2.准备一些证明题目,用于巩固和拓展。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如“如果一个人是男生,那么他一定有喉结”,让学生理解命题的概念,引导学生写出题设和结论。
2.呈现(10分钟)呈现一些简单的命题,如“勾股定理”和“平行线的性质”,让学生尝试证明。
教师在旁边指导,解答学生的疑问。
3.操练(10分钟)学生分组合作,每组选择一个命题进行证明。
教师巡回指导,检查学生的证明过程,纠正错误。
4.巩固(10分钟)教师选取一些学生的证明题目,进行讲解和分析,让学生理解和掌握证明的方法和技巧。
沪科版数学八年级上册13.2《命题与证明》教学设计2

沪科版数学八年级上册13.2《命题与证明》教学设计2一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节内容是在学生已经掌握了四则运算、方程求解、几何图形的性质等基础知识的基础上进行讲解的。
本节内容主要让学生了解命题与定理的概念,学会如何阅读和理解证明过程,以及如何运用已知定理证明未知定理。
教材通过具体的例子让学生理解命题与证明的基本概念,并培养学生的逻辑思维能力。
二. 学情分析学生在学习本节内容前,已经具备了一定的数学基础,对几何图形的性质和方程求解等有一定的了解。
但是,对于命题与证明这一概念,学生可能较为陌生。
因此,在教学过程中,需要引导学生从实际例子出发,逐步理解命题与证明的概念。
同时,八年级的学生逻辑思维能力较强,对于新的知识有较强的求知欲,通过引导,可以激发学生学习本节内容的兴趣。
三. 教学目标1.了解命题与证明的概念,理解定理的含义。
2.学会阅读和理解证明过程,培养逻辑思维能力。
3.能够运用已知定理证明未知定理,提高解决问题的能力。
四. 教学重难点1.重点:命题与证明的概念,定理的含义。
2.难点:如何阅读和理解证明过程,运用已知定理证明未知定理。
五. 教学方法1.引导法:通过具体的例子引导学生理解命题与证明的概念。
2.讲解法:讲解定理的含义,解释证明过程。
3.实践法:让学生通过实际操作,运用已知定理证明未知定理。
六. 教学准备1.教学PPT:制作相关的PPT,展示具体的例子和证明过程。
2.练习题:准备一些相关的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考什么是命题,什么是证明。
例如,给出一个命题:“所有的直角三角形都是等腰三角形”,让学生思考这个命题是否正确,如何进行证明。
2.呈现(10分钟)讲解命题与证明的概念,解释定理的含义。
通过PPT展示相关的例子和证明过程,让学生理解命题与证明的基本概念。
3.操练(10分钟)让学生分组讨论,每组选择一个定理,尝试用自己的语言进行解释,并尝试证明。
命题与证明教学设计.doc

14. 2命题与证明(第一课时)授课人:安庆开发区实验学校王琪琼授课地点:桐城市实验中学授课时间:2011年10月12日14.2命题与证明(第一课时)一、教学目标:(一)知识与技能了解命题的概念,会判断一个命题的真假。
(二)过程与方法经历探究命题以及结构的过程,体会命题的内涵。
(三)情感、态度与价值观通过对真假命题的判断,培养学生树立科学严谨的学习方法。
二、教材分析(一)教学内容分析本节内容首先说明利用观察与操作等直观方法得到的结论不一定可靠,进而说明推理证明的必要性,接着给出了命题、真命题、假命题的意义,说明命题是由条件和结论两部分组成,以及怎样区分一个命题的条件和结论,继而给出了原命题、逆命题和反例的意义。
(二)教学重难点分析:1.教学重点认识命题的内涵和结构。
2.教学难点区分一个命题的条件和结论。
三、教学过程:问题与情境师生活动设计意图活动一、让学生回忆什么叫定义,阅读课本74-75 页,找到本节课内容有哪些定义。
教师出示问题,学生思考解答后教师明晰。
通过问题复习上节课有关内容,引入新课。
活动二、出示图片及问题:1.大三角形的内角和比小三角形的内角和大;2.大三角形和小三角形的内角和一样大。
练习:1.合肥是安徽省省会。
2.若a+b<0,则a<0, b<0。
3.如果匕1与匕2是对顶角,那么Z1=Z2O4.你的作业做完了吗?5.桐城实验中学欢迎你!6.以点0为圆心,3cm长为半径画弧。
教师出示问题,学生能判断语句的正确与否,教师明晰什么是命题,以及什么是真命题和假命题。
通过练习,教师指出真命题需要证明,假命题需要举出反例并明确什么是反例。
通过实例让学生明确命题的概念,会判断简单命题的真假。
活动三、出示问题,师生共同分析每个命题的构成部分:1.如果ZA=ZB,那么ZA 的补角与ZB的补角相等。
2.两条直线都平行于同一条直线,这两条直线平行。
3.两直线平行,同旁内角互补。
4.对顶角相等。
七年级命题定理证明教学设计5篇

七年级命题定理证明教学设计5篇定理是经过受逻辑限制的证明为真的陈述.一般来说,在数学中,只有重要或有趣的陈述才叫定理.证明定理是数学的中心活动.一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外.下面是小编为大家整理的七年级命题定理证明教学设计5篇,希望大家能有所收获!七年级命题定理证明教学设计1学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一.自学基础:(看书20页---_页)1.对一件事情___________________的语句,叫做命题.2.命题由______和________组成.__________是已知事项,__________是由已知事项推出的事项.3.命题常可以写成__________________的形式.〝_______〞后接的部分是题设,〝________〞后面接的部分是结论.4. _________________叫真命题, _______________叫假命题.二.探究新知问题1 什么叫做命题?像这样判断一件事情的语句,叫做命题(proposition). 问题2思考命题是由几部分组成的?命题是由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.问题3 下列语句是命题吗?如果是,请将它们改写成〝如果??,那么??〞的形式.问题4 什么样的命题叫做真命题?什么样的命题叫做假命题? 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.问题请同学们举例说出一些真命题和假命题. 问题5公理定理有些命题的正确性是人们在长期实践中总结出来的, 这样的真命题叫做公理.有些命题的正确性是经过推理证实的,这样的真命题叫做定理. 问题6证明三.课堂小结四.当堂检测五.布置作业七年级命题定理证明教学设计2重点:命题.定理.证明的概念难点:命题.定理.证明的概念一.板书课题 ,揭示目标同学们,到现在为止,我们已经学习了一些简单的性质.判定.定义,这些命题都是真命题,那什么是命题呢?我们今天就来学习5.3.2命题.定理.本节课的学习目标是:(请看投影)二.学习目标1.理解命题.定理.证明的概念.2.会判断一个命题是真命题还是假命题.三.指导自学认真看课本(P_-_练习前).1结合例子理解命题的定义,会把一个命题写成〝如果??那么??〞的形式; ○2理解真命题.假命题的概念并会判断一个命题的真假.○如有疑问,可以小声问同学或举手问老师. 6分钟后,比谁能正确地做出检测题.三.先学1.教师巡视,督促学生认真紧张地自学2.学生练习:检测题 P_ 练习补充题:1.下列是命题的是() 1对顶角相等. ○2答案A是正确的.③若a=b,则a+c=b+c.④画射○线BC.⑤这条边长等于多少?2.下列命题是真命题的是() 1同角的补角相等. ○2相等的角是对顶角. ○③互补的角是邻补角.④若∠1=∠2,∠2=∠3,则∠1=∠3 分别让两位同学上堂板演,其余同学在位上做.四.更正.讨论.归纳.总结1.自由更正请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充.2.讨论.归纳评讲2(1):命题假设的对吗?为什么?怎样找一个命题的假设?引导学生回答:〝如果〞后接的部分是假设(师板书)(2)命题的题设正确吗?为什么?他没有〝如果??那么??〞的形式该怎么办呢?如何把命题写成〝如果??那么??〞的形式,引导学生回答:题设——已知事项;结论——是由已知事项推出来的事项.评补充题:1. 答案正确吗?为什么?引导学生回答:命题的条件是什么? (1)命题必须是一个完整的句子.(2)对某件事做出了判断.2. 〝同位角相等〝是真命题吗?为什么?引导学生画图说明:五.课堂作业 (见测试题)六.教学反思七年级命题定理证明教学设计3教学内容:命题教学目标:了解命题.定义的含义;对命题的概念有正确的理解.会区分命题的题设和结论.知道判断一个命题是假命题的方法.教学重点:找出命题的题设和结论. 教学难点:命题概念的理解. 教学过程:一.复习引入:我们已经学过一些图形的特性,如〝三角形的内角和等于_0°〞.〝等腰三角形的两个底角相等〞等.根据我们学过的图形特性,试判断下列句子是否正确. (1)如果两个角是对顶角,那么这两个角相等; (2) 两直线平行,同位角相等; (3) 同旁内角相等,两直线平行; (4) 平行四边形的对角线相等; (5)直角都相等.二.探究新知(一)命题.真命题和假命题学生回答后给出答案:句子(1).(2).(5)是正确的,句子(3).(4)是错误的.引出概念:可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.在数学中,许多命题是由题设(或已知条件).结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成〝如果??,那么??〞的形式.用〝如果〞开始的部分就是题设,而用〝那么〞开始的部分就是结论.例如,在命题(1)中,〝两个角是对顶角〞是题设,〝这两个角相等〞是结论.有的命题的题设与结论不十分明显,将它写成〝如果??,那么??〞的形式,也可分清它的题设与结论.例如,命题(5)可写成〝如果两个角是直角,那么这两个角相等〞.(二)例题选讲例1:把命题〝三个角都相等的三角形是等边三角形〞改写成〝如果??,那么??〞的形式,并分别指出命题的题设与结论.解:这个命题可以写成〝如果一个三角形的三个角都相等,那么这个三角形是等边三角形〞.这个命题的题设是〝一个三角形的三个角都相等〞,结论是〝这个三角形是等边三角形〞.例2:指出下列命题的题设和结论,并把它改写成〝如果??那么??〞的形式,它们是真命题还是假命题?(1)对顶角相等;(2)如果a b,b c,那么a=c;(3)两角和其中一个角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等.(三)假命题的证明要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了.在数学中,这种方法称为〝举反例〞.例如,要证明命题〝一个锐角与一个钝角的和等于一个平角〞是假命题,只需举出一个反例〝某一锐角与某一钝角的和不是_0°〞即可.三.课堂练习P65第1.2题四.总结1.命题.真命题和假命题的含义;2.区分命题题设.结论的方法;3.判断假命题的方法.五.作业P67 习题 _.1第1.2题教学后记:七年级命题定理证明教学设计4教学目标:1.了解命题.公理.定理的含义;理解证明的必要性.2.结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.初步感受公理化方法对数学发展和人类文明的价值.教学重点:知道什么是公理,什么是定理. 教学难点:理解证明的必要性. 教学过程:一.复习引入:?上节课我们研究了要证明一个命题是假命题,只要举出一个符合该命题题设而不符合该命题结论的反例就可以了,这节课,我们将研究怎样证明一个命题是真命题.二.探究新知(一)公理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(a_ioms).我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 全等三角形的对应边.对应角分别相等. 我们将这些真命题均作为公理.(二)定理判断下列命题是否正确: (1) 当n=1时,(n2-5n+1)2=1;当n=2时,(n2-5n+1)2=1_当n=3时,(n2-5n+1)=1是否是对于任意的正整数n,(n2-5n+1) 都等于1呢?(n=5时,(n2-5n+1)2=25)(2)如果a=b,那么a2=b2.于是猜想:当a b时a2 b2这个命题正确吗?数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).(三)证明过程例如,有了〝三角形的内角和等于_0°〞这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.已知: 如图_.1.1,在Rt△ABC中,∠C=90°. 求证: ∠A+∠B=90°. 证明∵∠A+∠B+∠C=_0°(三角形的内角和等于_0°),又∠C=90°,∴ ∠A+∠B=90°.图_.1.1 此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三.课堂练习四.总结:公理.定理的含义五.作业: 教学后记:七年级命题定理证明教学设计5教学目标1.知识与技能:(1)了解命题的含义;(2)对命题的概念有正确的理解(3)会区分命题的条件和结论,并会对命题进行改写(4)知道判断一个命题是假命题的方法(5)了解公理,定理的含义2.过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感.态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点与难点1.重点: 找出命题的条件(题设)和结论,会进行改写2.难点: 命题概念的理解. 教学过程:一.复习引入我们已经学过一些图形的特性,如〝三角形的内角和等于_0度〞,〝等腰三角形两底角相等〞等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.平行四边形的对角线相等;5.直角都相等.二,自主学习,探究新知(一)命题.真命题与假命题学生思考回答后,教师给出答案:根据已有的知识可以判断出句子1.2.5是正确的,句子3.4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.强调:命题是一个表判断的句子,是一个陈述句.命题有真假之分.(二)命题的组成和改写在数学中,许多命题是由题设(或已知条件).结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成〝如果.......,那么.......〞的形式.用〝如果〞开始的部分就是题设,而用〝那么〞开始的部分就是结论.例如,在命题1中,〝两个角是对顶角〞是题设,〝这两个角相等〞就是结论.有的命题的题设与结论不十分明显,可以将它写成〝如果.........,那么...........〞的形式,就可以分清它的题设和结论了.例如,命题5可写成〝如果两个角是直角,那么这两个角相等.〞实例探究(小组间交流合作,解决问题)问题1(例1):把命题〝三个角都相等的三角形是等边三角形〞改写成〝如果.......,那么.......〞的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成〝如果一个三角形的三个角都相等,那么这个三角形是等边三角形〞.这个命题的题设是〝一个三角形的三个角都相等〞,结论是〝这个三角形是等边三角形〞.问题2:把下列命题写成〝如果.....,那么......〞的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题. (1)对顶角相等;(2)如果a b,b c, 那么a=c;设计者:重庆西藏中学聂志(3)菱形的四条边都相等; (4)全等三角形的面积相等.学生小组交流后回答,学生回答后,师生互评(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题. (2)条件:如果a b,bc;结论:那么a=c;这是假命题.(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等.这是真命题.(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题.(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为〝举反例〞.例如,要证明命题〝一个锐角与一个钝角的和等于一个平角〞是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是_0度即可.(四)公理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 全等三角形的对应边.对应角相等. 在本书中我们将这些真命题均作为公理.(五)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1.教师讲解:请大家看下面的例子: 当n=1时,(n2-5n+5)2=1; 当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2.教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a b 时,a2 b2.这个命题是真命题吗?[答案:不正确,因为3 -5,但3 2 (-5)2]教师总结:在前面的学习过程中,我们用观察.验证.归纳.类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.例如,有了〝三角形的内角和等于_0°〞这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.设计者:重庆西藏中学聂志强调:公理不需要证明,定理需要证明,定理由公理推出,它们都是真命题,都可以作为其他命题证明的依据三,展示提升,巩固新知(学生先做,师生互评)1. 课本P65练习第1.2题.2.课本P66练习第1.2题.四.归纳小结(学生总结,补充)1.什么叫命题?什么叫真命题?什么叫假命题?2.命题都可以写成〝如果.....,那么.......〞的形式.3.要判断一个命题是假命题,只要举出一个反例就行了.4. 在长期实践中总结出来为真命题的命题叫做公理.5. 用逻辑推理的方法证明它们是正确的命题叫做定理.6.本节课你还有哪些疑惑?五.检测反馈小组间交流本节课还存在的问题,相互解决,老师巡视点拨六.作业布置训练案P_5七年级命题定理证明教学设计。
湘教版数学八年级上册《2.2 命题与证明》教学设计

湘教版数学八年级上册《2.2 命题与证明》教学设计一. 教材分析湘教版数学八年级上册《2.2 命题与证明》是学生在学习了初中数学基础知识和逻辑思维能力的基础上,进一步深入研究数学证明的基本方法和步骤。
这部分内容主要包括命题的概念、四种命题的相互关系、命题的证明和反证法等。
本节课的教学内容在学生掌握数学知识的同时,也有助于培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了基本的数学知识和一定的逻辑思维能力。
但是对于命题与证明这部分内容,可能还存在以下问题:1. 对命题的概念理解不清晰;2. 对四种命题的相互关系区分不明显;3. 证明方法的掌握不够熟练,证明过程的书写不够规范;4. 反证法的理解和应用存在困难。
三. 教学目标1.理解命题的概念,掌握四种命题的相互关系;2.学会用直接证法和反证法进行证明;3.培养学生的逻辑思维能力和解决问题的能力;4.提高学生的数学写作能力和证明过程的规范性。
四. 教学重难点1.命题的概念和四种命题的相互关系;2.直接证法和反证法的理解和应用;3.证明过程的书写规范性和逻辑性。
五. 教学方法1.讲授法:讲解命题的概念、四种命题的相互关系、证明方法和反证法;2.案例分析法:分析具体例题,引导学生理解和掌握证明方法;3.练习法:让学生通过练习题目的方式,巩固所学知识;4.讨论法:分组讨论,引导学生自主探索和解决问题。
六. 教学准备1.教材:湘教版数学八年级上册;2.教案:详细的教学设计;3.课件:PPT课件,辅助教学;4.练习题:针对本节课内容的练习题目;5.黑板:用于板书重点内容和证明过程。
七. 教学过程1.导入(5分钟)讲解命题的概念,引导学生回顾已学的数学知识,为新课的学习做好铺垫。
2.呈现(15分钟)讲解四种命题的相互关系,通过PPT课件展示,让学生直观地理解命题之间的联系。
3.操练(20分钟)讲解直接证法和反证法的证明过程,分析具体例题,让学生通过练习,掌握证明方法。
人教版七年级数学下册5.3.2命题、定理、证明教学设计

a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
13.1命题与证明教学设计与反思

教学环节
教师活动
预设学生行为
设计意图
一、创设情境问题,复习引入。
问题1:
如何判断一个语句是否是命题?如何判断真、假命题?回顾教材是如何说明一个真命题正确的。
问题2:
将下列命题改写成”如果”、“那么”的形式,然后指出它们的条件是什么?结论是什么?
(1)同位角相等.
(2)形状和大小相同的两个三角形面积相等.
学情分析
1.初中学生的思维和以前相比有一个显著的变化,就是思维方式由“形象思维”为主,变成了“抽象思维(逻辑思维)”为主,改变学生的学习方式,思维参与的程度对学生学好几何很重要。搞好几何教学,应根据学生的年龄特点,以培养学生学习几何的兴趣为出发点,以使学生掌握“双基”为立足点,以训练学生的动手操作能力和自觉用图意识为突破口,避免使学生造成畏难情绪。
合作交流,巩固新知
出示幻灯片
做一做:写出下列命题的逆命题,并指出原命题和逆命题的真假性:
(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(2)如果两个角是对顶角,那么这两个角相等。
(3)如果一个数能被3整除,那么这个数也能被6整除。
(4)已知两数a,b。 如果a+b>0,那么a-b>0。
做一做
归纳总结
出示幻灯片:
例1 证明:平行于同一条直线的两条直线平行。
证明一个命题的步骤是什么?
(1)依据题意画图,将文字语言转换为符号(图形)语言。
(2)根据图形写出已知、求证。
(3)根据基本事实、已有定理等进行证明。
例2:求证:邻补角的平分线互相垂直。
思考后互相讨论,总结归纳出证明一个命题的步骤,然后按照步骤完成例2。
得出“证明”的定义:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证:a∥b.
证明:∵a⊥c b⊥c
∴∠1=∠2=90°
∴a∥b
让学生合作交流总结文字证明类型题的做法,口头展示
5、运用
请完成课后练习2题
学生自主练习,一名学生上台黑板展示,有错误的话找学生上台纠错
问题由学生主动口头回答
通过练习观察发现
学生口头展示回答问题
填空形式,强调证明过程步步有“据”
2.学生已经具有了基本的图形认识能力和初步的空间想象能力,本节课的难点在于运用基本事实和相关定理进行简单的证明,要让学生知道证明的两个特征:一是步步有“据”,二是要符合逻辑和顺序。
教学目标
知识与能力:1、结合具体实例,了解原命题与逆命题的概念,会识别两个互逆命题;
2、了解定理、逆定理和互逆定理
3、知道证明的意义和必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达方式,掌握综合法证明的格式
创设情境问题,复习引入。
问题1:
如何判断一个语句是否是命题?如何判断真、假命题?回顾教材是如何说明一个真命题正确的。
问题2:
利用问题使前后知识自然衔接。
二、
新授33min
1、观察与思考
归纳Байду номын сангаас结
3、练习
请完成课本32页做一做
问题:原命题及其逆命题的真假有关系吗?
归纳总结
4、运用
文字证明类型题
证明:垂直于同一条直线的两直线平行
通过例题,让学生总结文字证明类型题的做法
锻炼学生的交流和表达能力
三、小结
2min
1、了解互逆命题,会写出一个命题的逆命题
2、文字证明题的步骤:
(学生复述)
师生一起回顾,再次强调重点
四、作业1min
必做:A3、A4
选做:B1
五、
反思1min
学生自我反思本堂课的得失
六、
板书设计
13.1命题与证明
一、原命题例证明:
逆命题图
互逆命题已知:
二、判断一个命题真假的方法求证:
三、证明证明:
四、证明命题的一般步骤
课后反思
命题与证明是推理论证的入门阶段,教育学生重视起来
文字证明题对于学生是难点,有时间的话,课上多练习几道
学情分析
1.初中学生的思维和以前相比有一个显著的变化,就是思维方式由“形象思维”为主,变成了“抽象思维(逻辑思维)”为主,改变学生的学习方式,思维参与的程度对学生学好几何很重要。搞好几何教学,应根据学生的年龄特点,以培养学生学习几何的兴趣为出发点,以使学生掌握“双基”为立足点,以训练学生的动手操作能力和自觉用图意识为突破口,避免使学生造成畏难情绪。
命题与证明-教学设计
张珺
教材分析
命题与证明涉及平面几何所要研究的基本内容之一,也是以后复杂图形研究的重要基础.在知识学习的同时,命题与证明逐步渗透了推理论证的格式,并介绍了命题的结构和证明的步骤,所以命题与证明也是推理论证的入门阶段,命题与证明的内容是很重要的基础知识,是关系到今后几何学习的重要阶段,是中考考查的热点之一.
过程与方法:体验、理解证明的必要性;
情感态度与价值观:1、培养学生树立科学严谨的学习方法
2、体验、理解证明的必要性。
教学重难点
重点:原命题和逆命题的关系;掌握证明的格式和步骤。
难点:运用基本事实和相关定理进行简单的证明。
教具
多媒体
教学方法
讲授法、演示法、讨论法、探究法相结合
教学过程
设计意图
一、导入
3min