直线电机交通模式及技术经济特性
城市轨道交通直线电机车辆通用技术条件

城市轨道交通直线电机车辆通用技术条件一、引言城市轨道交通直线电机车辆是一种以直线电机为驱动装置的城市轨道交通工具,它具有高效、环保、安全等优点,在城市快速交通领域具有广泛的应用前景。
本文将对城市轨道交通直线电机车辆的通用技术条件进行探讨。
二、车辆性能指标1. 极限速度:城市轨道交通直线电机车辆的极限速度通常应在200km/h以上,以满足城市快速交通的需求。
2. 加速度:车辆的加速度应适中,以保证乘客的舒适性和安全性,一般要求在1.2m/s²左右。
3. 制动距离:车辆的制动距离应尽量短,以确保紧急情况下的安全停车。
制动距离要根据车辆的设计速度和制动系统的性能来确定。
4. 容载量:车辆的容载量应根据城市交通需求来确定,一般要求每节车厢的最大乘客数不少于300人。
5. 过载能力:车辆的过载能力应满足城市交通高峰期的需求,以确保乘客能够正常乘坐。
6. 噪音:车辆的噪音应尽量降低,以减少对沿线居民的影响。
7. 能耗:车辆的能耗应尽量低,以提高运营效率和降低运营成本。
三、车辆控制系统1. 速度控制:车辆的速度控制是实现稳定、安全运行的关键。
采用先进的电子控制技术,通过控制直线电机的电流和电压,实现精确的速度控制。
2. 制动控制:车辆的制动控制应具有快速、稳定的特点。
采用电磁制动器和再生制动技术,能够实现快速停车,并将制动能量回馈给电网。
3. 故障诊断:车辆的故障诊断系统应具备自动检测、自动报警和自动处理的功能,能够及时发现并排除故障,提高车辆的可靠性和安全性。
4. 通信系统:车辆的通信系统应能够实现与控制中心和其他车辆的信息交换,以实现列车间的协调运行和故障处理。
四、车辆设计1. 结构设计:车辆的结构设计应符合轻量化、高强度的原则,以提高运行效率和安全性。
车辆的车身采用铝合金材料制造,具有重量轻、强度高的特点。
2. 空调系统:车辆的空调系统应能够满足车内乘客的舒适需求,采用先进的变频技术,能够根据车内温度和人员数量进行自动调节。
直线电机的工作原理及特点

直线电机的工作原理及特点一般电动机工作时都是转动的。
但是用旋转的电机驱动的交通工具(比如电动机车和城市中的电车等)需要做直线运动,用旋转的电机驱动的机器的一些部件也要做直线运动。
这就需要增加把旋转运动变为直线运动的一套装置。
能不能直接运用直线运动的电机来驱动,从而省去这套装呢?几十年前人们就提出了这个问题。
现在已制成了直线运动的电动机,即直线电机。
直线电机的原理并不复杂。
设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应电动机(图)。
在直线电机中,相当于旋转电机定子的,叫初级;相当于旋转电机转子的,叫次级。
初级中通以交流,次级就在电磁力的作用下沿着初级做直线运动。
这时初级要做得很长,延伸到运动所需要达到的位置,而次级则不需要那么长。
实际上,直线电机既可以把初级做得很长,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动。
直线电机是一种新型电机,近年来应用日益广泛。
磁悬浮列车就是用直线电机来驱动的。
磁悬浮列车是一种全新的列车。
一般的列车,由于车轮和铁轨之间存在摩擦,限制了速度的提高,它所能达到的最高运行速度不超过300km/n。
磁悬浮列车是将列车用磁力悬浮起来,使列车与导轨脱离接触,以减小摩擦,提高车速。
列车由直线电机牵引。
直线电机的一个级固定于地面,跟导轨一起延伸到远处;另一个级安装在列车上。
初级通以交流,列车就沿导轨前进。
列车上装有磁体(有的就是兼用直线电机的线圈),磁体随列车运动时,使设在地面上的线圈(或金属板)中产生感应电流,感应电流的磁场和列车上的磁体(或线圈)之间的电磁力把列车悬浮起来。
悬浮列车的优点是运行平稳,没有颠簸,噪声小,所需的牵引力很小,只要几千kw的功率就能使悬浮列车的速度达到550km/h。
悬浮列车减速的时候,磁场的变化减小,感应电流也减小,磁场减弱,造成悬浮力下降。
悬浮列车也配备了车轮装置,它的车轮像飞机一样,在行进时能及时收入列车,停靠时可以放下来,支持列车。
直线电机原理、特点及其运用1

直线电机原理、特点及其运用直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。
其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。
直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。
初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。
设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。
直线电机的特点:高速响应。
由于系统中取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。
定位精度高。
线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。
通过直线位置检测反馈控制,即可大大提高机床的定位精度。
同时传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,提高了其传动刚度。
速度快、加减速过程短行程长度不受限制。
在导轨上通过串联直线电机,就可以无限延长其行程长度。
动安静、噪音低。
由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。
效率高。
由于无中间传动环节,消除了机械摩擦时的能量损耗。
直线电机主要应用于三个方面应用于自动控制系统,这类应用场合比较多;作为长期连续运行的驱动电机;应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
附:直线电机应用实例一、活塞车削数控系统采用直线电机的直线运动机构由于具有响应快、精度高的特点,已成功地应用于异型截面工件的CNC车削和磨削加工中。
直线电机的特点

直线电机的特点机床进给系统采纳直线电机直接驱动,与原旋转电机传动方式的最大区分是取消了从电机到工作台(拖板)之间的机械中间传动环节,即把机床进给传动链的长度缩短为零,故这种传动方式称为“直接驱动”,也称“零传动”。
直接驱动避开了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点。
直线电机系统的开发应用,引起机床行业的传统进给机械结构发生突变;通过先进的电气掌握,不仅简化了进给机械结构,更重要的是使机床的性能指标得到很大提高。
主要表现在以下几个方面:1.高速响应性一般来讲,电气元器件比机械传动件的动态响应时间要小几个数量级。
由于系统中取消了响应时间较大的机械传动件(如丝杠等),使整个闭环伺服系统动态响应性能大大提高。
2.高精度性由于取消了丝杠等机械传动机构,因而削减了插补时因传动系统滞后所带来的跟随误差。
通过高精度(如μ级)的直线位移检测元件进行位置检测反馈掌握,即可大大提高机床的定位精度。
3.速度快、加减速过程短机床直线电机进给系统,能够满意60~100m/min或更高的超高速切削进给速度。
由于具有“零传动”的高速响应性,其加减速过程大大缩短,加速度一般可达到2~10g。
4.运行时噪声低取消了传动丝杠等部件的机械摩擦,导轨副可采纳滚动导轨或磁悬浮导轨(无机械接触),使运动噪声大大下降。
5.效率高由于无中间传动环节,也就取消了其机械摩擦时的能量损耗。
6.动态刚度高由于没有中间传动部件,传动效率高,可获得很好的动态刚度(动态刚度即为在脉冲负荷作用下,伺服系统保持其位置的力量)。
7.推力平稳“直接驱动”提高了传动刚度,直线电机的布局,可依据机床导轨的形面结构及其工作台运动时的受力状况来布置,通常设计成均布对称,使其运动推力平稳。
8.行程长度不受限制通过直线电机的动子(初级)的铺设可无限延长定子(次级)的行程长度,并可在一个行程全长上安装使用多个工作台。
9.采纳全闭环掌握系统由于直线电机的动子已和机床的工作台合二为一,因此,与滚珠丝杠进给单元不同,直线电机进给单元只能采纳全闭环掌握系统。
直线电机地铁系统技术经济分析研究

加拿大温哥华 空中列车
1986 28 9 1.6 62 5 70 100 80
I)L’600
第四轨供电
MKI
表1直线电机地铁部分线路参数表
加拿大温哥华 新千年线
吉降坡 PUTRAII线
纽约肯尼迪 机场线
2001 20 3
60 70 90 80 13 I)C 750
第四轨供电 MKⅡ
1998 29 4 44 50
采用迫导向转向架后一位轮对冲角比自导向转向架减少80比构架式柴油卡车高集重型铁路柴油公交汽车第四季虚1987年空中客车1991年空中客车有橱栏的空中客车蜘50060加元人km转向架减少84导向效果极为明显在曲线时轮轴始终处于曲线径向位置因而减少轮轨的磨损和消除噪声这使得直线电机系统具有低噪声水平
直线电机地铁系统技术经济分析研究
关键词:城市轨道交通 直线电机 地铁 技术经济学 降低造价
随着城市现代化的发展,城市轨道交通在改善 城市交通拥挤状况、快速集散客流、提高人民生活 水平、促进经济发展中具有非常重要的作用。然而 修建地铁往往需要大量资金,造价非常昂贵,使许 多城市望而却步,在一定程度上延缓了轨道交通在 我国的建设进程。
·158·
中国城市轨道交通(z004)
转入地下和爬升地面时显得相当灵活。实际资料表明 它从地下升到6 m高的高架线上所需的距离约是普通 地铁所需距离的1/2,这样就可大大缩短隧道长度, 从而大幅降低工程造价。而且采用较大的限制坡度, 使得直线电机系统可以和限制坡度较大的其他线路 (如高速公路、高架桥)并行等高设计,也可以达到 节约用地、降低工程造价的效果。
2.2运营期
运营过程中,由于直线电机系统转向架结构简 单、车辆需经常维修的零部件数量少、轮轨作用力 小、系统定员少等突出优点,其运营费用比传统地 铁的运营费用大幅降低,是目前运营费用最低的城 市轨道交通系统。加拿大Skytrain系统是与北美 各系统的运行消费比较如图3,运营费用的单位为
直线电机的特性、现况及其发展趋势

直线电机的特性、现况及其发展趋势班级:机械0804班姓名:何延浩学号:u200810546一、直线电机概述根据当今世界机床制造业的发展趋势和国家中长期科技发展规划,数控机床正在向精密、高速、复合、智能、环保的方向发展。
由于直线电机将电能直接转换为直线运动,取消了传统的从旋转电机到工作台之间的一切机械传动环节,具有高速、高精和“零传动”特性,因此直线电机正在成为高档数控机床的重要功能部件,是高端数控设备未来的发展趋势。
直线电机又称线性马达、推杆马达,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初级展开作为直线电机(线性马达)的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为直线电机(线性马达)的动子的新型电机(如图1所示)。
二、直线电机的工作原理直线电机利用电能直接产生直线运动,其原理与相应的旋转式电动机相似,在结构上可以看作是由相应旋转电机沿径向切开,拉直演变而成。
如图2-a 所示为传统旋转式电机,图2-b 为旋转时电机沿径向切开后得到的直线电机。
直线电动机同样包括定子和动子两部分,在电磁力的作用下,动子带动外界负载运动作功。
在需要直线运动的地方,采用直线电动机可使装置的总体结构得到简化。
直线电动机较多地应用于各种定位系统和自动控制系统。
大功率的直线电动机还常用于电气铁路高速列车的牵引、鱼雷的发射等装备中。
直线电动机按原理分为直流直线电动机、交流直线异步电动机、直线步进电动机和交流直线同步电动机,以前三种应用较多。
按结构可分为单边型和双边型两种。
在单边型结构中,定子和动子之间受有较大的单边磁拉力;双边型结构由于两边磁拉力互相平衡,支承部分摩擦力较小,动作比较灵活。
(1)直流直线电动机 直流供电的直线电动机。
由一套磁极和一组绕组构成。
绕组中的电流有的通过电刷和换向片结构引入,称刷型;有的不经换向器和电刷,直接用导线引入,称无刷型。
直流直线电动机从结构上还可分为动极式和动圈式两种。
图2所示为圆柱式直流动圈式直线电动机,由于其结构与扬声器的音圈相似,故又称为音圈式直线电动机,简称音圈电动机。
直线电机的特点及应用

直线电机的特点及应用直线电机是一种将电能转化为机械运动的电机。
与传统的转子电机相比,直线电机具有以下特点:1. 直线运动:直线电机主要产生直线运动,因为其电磁系统与运动部件是沿直线排列的。
这使其在一些特定的应用中具有较大的优势,尤其在需要大范围、高速度的直线运动时。
2. 高速度和加速度:由于直线电机不需要通过转子转动,可以直接转化为运动,因此可以实现较高的速度和加速度。
这在一些需要快速运动的应用,如包装机械、数字打印机等中非常有用。
3. 精确定位和控制:直线电机可以通过电流的调节来实现对运动的精确控制。
结合传感器和控制系统,可以实现高精度的定位和轨迹控制。
这使其在一些需要高精度定位的应用中具有较大的优势,如半导体制造设备、光刻机等。
4. 高效能:由于直线电机将电能转化为线性运动而不需要传递转矩,所以相比传统的转子电机具有更高的能量转换效率。
这使其在一些对能量效率要求较高的应用中得到广泛应用,如电动汽车、太阳能跟踪系统等。
5. 静音运行:直线电机不需要机械传动装置,因此减少了传统电机的噪音来源。
这使其在一些对噪音要求较高的应用中得到广泛应用,如医疗设备、光学设备等。
直线电机的应用非常广泛,包括以下几个方面:1. 自动化生产:直线电机可以应用在自动化生产线上,如流水线机械、机器人等。
其高速度和精确控制的特点使其能够快速完成复杂的生产任务。
2. 交通运输:直线电机可以应用在交通运输领域,如高速列车、磁悬浮列车等。
其高速度和能量效率的特点使其能够提供更快、更高效的交通服务。
3. 医疗器械:直线电机可以应用在医疗器械中,如MRI扫描仪、手术器械等。
其精确定位和静音运行的特点使其能够提供高精度和舒适的医疗服务。
4. 光学设备:直线电机可以应用在光学设备中,如光刻机、平移台等。
其高速度和精确控制的特点使其能够实现高精度的光学加工和定位。
5. 能源设备:直线电机可以应用在能源设备中,如风力发电机、太阳能跟踪系统等。
采用直线感应电机的城市轨道车辆的技术特点及发展

场 ,感应板产生感应 电流 ( 涡流 ) ,由感应电流切割 磁场 产生的力作为反作用力 ,推动初级前进 。通 过 改变磁 场的方 向 ,产生反 向推力 ,使初级制 动或后
退。
年代 ,加拿大多伦多 S 一 一 一
柱状 的转子 ,定子形成磁场 ,通过 电磁感 应 ,使转
1 前 言
随着城市现代化 的发展 ,城市交通拥挤状况成
为重大难题 之一。为了解 决这一难题 ,世界各 国采
用多种不同的城 市轨道交通形式 ,如地铁 、轻轨交
子产生旋转力矩 。直线感应 电机则是将这两 个圆形
t e h r ce sis f ri e il w t l e r i d ci n moo ,i cu ig e t r c n rl n i a o t 1 n h c a a t r t o a l hc e i i c v h i a n u t t r n l d n v c o o to n o a d a r p c n r .I g o te n ,i o n s u h t h l e r i d ci n moo rv n y t m s a e y e n r a al r n i i h e d t i t p o t t a t e i a n u t tr d e s se i n w t p i u b n r i a st t n o i t w h mau e tc n lg e n o d p o p c s t r e h oo is a d g o rs e t. Ke r s i e r i d cin moo ;Ur a al v h ce n fe t y wo d :L n a n u t t r o b n r i e il ;E d e c;Ve t r c n rl c o o t ;Ai g p c n rl o r a ot o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线电机交通模式及技术经济特性作者:北京交通大学:魏庆朝,冯雅薇,施翃翃摘要:直线电机已开始在磁悬浮铁路、城市轨道交通中应用。
介绍了直线电机的分类、3种典型的磁悬浮铁路和直线电机驱动的轮轨交通,对上述交通方式的技术经济特征进行了对比,总结了上述交通方式的适用范围。
关键词:直线电机;磁悬浮;城市轨道交通;适用范围1.引言从1825年世界第一条铁路出现算起,轨道交通已有近180年的历史。
特别是上个世纪中叶以来,随着科技的进步,轨道交通运输方式不仅在诸如速度、密度、重量等性能方面有了很大提高,而且轨道交通方式本身也发生了巨大的变革。
快速轨道交通有地铁、轻轨、单轨等多种方式。
牵引方式历经蒸汽牵引、内燃牵引、电力牵引等阶段,目前在世界范围内又发展出直线电机牵引的交通方式,包括磁悬浮铁路、直线电机轮轨交通、磁悬浮飞机等。
该交通方式目前正在迅速发展,将来会成为本世纪的主要交通方式之一。
本文介绍以直线电机作为牵引方式的新型客运交通方式,主要包括技术原理和技术经济分析,最后对我国发展轨道交通系统提出发展建议。
2.直线电机及分类2.1直线电机原理传统的轮轨接触式铁路,车辆所获得的牵引力(或称驱动力)、导向力和支承力均依靠轮轨相互作用获得,电传动内燃机车或电力机车的牵引动力来自于传统的旋转电机。
直线电机交通系统不使用传统的旋转电机而使用直线电机(liner motor)来获得牵引动力。
可以想象将传统的旋转电机从转子中心向一侧切开并且展直,这样旋转电机则变为直线电机。
或者认为直线电机是半径无限大的旋转电机。
这时定子中的旋转磁场将变为直线移动磁场,车辆将随着直线电机磁场的移动而向前运动。
2.2直线电机分类直线电机可以根据磁场是否同步、定子长度及驱动方式等因素进行分类。
2.2.1按直线电机定子长度划分根据定子长度的不同,直线电机可以划分为长定子直线电机和短定子直线电机。
长定子直线电机的定子(初级线圈)设置在导轨上,其定子绕组可以在导轨上无限长地铺设,故称为“长定子”。
长定子直线电机通常用在高速及超高速磁悬浮铁路中,应用在长大干线及城际铁路领域。
短定子直线电机的定子设置在车辆上。
由于其长度受列车长度的限制,故称为“短定子”。
短定子直线电机通常用在中低速磁悬浮铁路及直线电机轮轨交通中,用在城市轨道交通领域。
2.2.2按直线电机的磁场是否同步划分导轨磁场与车辆磁场可以同步运行,也可以不同步运行。
据此可以将直线电机划分为直线同步电机和直线感应电机两大类型。
直线同步电机LSM(Liner Synchronous Motor)一般采用长定子技术,定子线圈(初级线圈)安装在导轨上,而转子线圈(次级线圈)安装在车辆上。
导轨上的转子磁场与车辆上的定子磁场同步运行,控制定子磁场的移动速度就可以准确控制列车的运行速度。
高速、超高速磁悬浮铁路一般使用该种长定子直线同步电机。
德国的运捷TR和日本的MLX系统均使用这种直线同步电机。
其原理见图1。
直线感应电机LIM(Liner Induction Motor)一般采用短定子技术,与LSM 正好相反,定子线圈(初级线圈)安装在车辆上,而转子部分则安装在导轨上。
转子磁场与定子磁场不同步运行,故也称为直线异步电机。
中低速磁悬浮铁路(如HSST)及直线电机轮轨交通一般使用该种电机。
其原理见图2。
2.2.3按驱动方式划分列车的运行工况(牵引、惰行、制动)及运行速度完全由定子绕组中的移动磁场控制。
按照直线电机的初级线圈(定子线圈)的安设位置不同,直线电机牵引的轨道交通可以划分为导轨驱动和车辆驱动两种类型。
导轨驱动也称为路轨驱动或地面驱动,采用长定子直线同步电机LSM。
直线电机的初级线圈(定子线圈)设置在导轨上,采用长定子同步驱动技术。
其列车的运行工况及运行速度由地面控制中心控制,列车司机不能直接控制。
导轨驱动技术一般用于长大干线铁路或城际轨道交通。
德国的运捷TR和日本的MLX 系统均使用这种驱动技术。
列车驱动技术采用短定子直线感应电机LIM。
直线电机的初级线圈(定子线圈)设置在车辆上,其列车的运行工况及运行速度由列车司机控制,故称为列车驱动。
列车驱动技术一般用于城市轨道交通,用于中低速磁悬浮铁路(如HSST)及轮轨直线电机铁路。
3.直线电机交通模式直线电机交通主要包括磁悬浮铁路和直线电机牵引的轮轨交通两种类型。
磁悬浮铁路的典型模式包括日本的超导超高速磁悬浮MLX、德国的常导超高速磁悬浮“运捷”TR和日本中低速磁悬浮HSST。
3.1德国常导磁悬浮TR系统德国常导磁悬浮TR系统采用了长定子直线同步电机(LSM)驱动,悬浮和导向采用电磁悬浮EMS原理,利用在车体底部的可控悬浮电磁铁和安装在导轨底面的铁磁反应轨(定子部件)之间的吸引力使列车浮起,导向磁铁从侧面使车辆与轨道保持一定的侧向距离,保持运行轨迹(图3)。
高度可靠的电磁控制系统保证列车与轨道之间的平均悬浮间隙保持在10mm,两边横向气隙均为8~10mm。
3.2日本超导磁悬浮MLX系统日本超导磁悬浮MLX系统采用了长定子直线同步电机(LSM)驱动,见图4。
在导轨侧壁安装有悬浮及导向绕组。
当车辆高速通过时,车辆上的超导磁场会在导轨侧壁的悬浮绕组中产生感应电流和感应磁场,控制每组悬浮绕组上侧的磁场极性与车辆超导磁场的极性相反从而产生引力、下侧极性与超导磁场极性相同产生斥力,使得车辆悬浮起来,悬浮高度为100mm。
如果车辆在平面上远离了导轨的中心位置,系统会自动在导轨每侧的悬浮绕组中产生磁场,并且使得偏离侧的地面磁场与车体的超导磁场产生吸引力,靠近侧的地面磁场与车体磁场产生排斥力,从而保持车体不偏离导轨的中心位置(如图5所示)。
2002年6月在山梨试验线新投入试验运行的MLX01-901试验车见图6,该试验车最近创造了580km/h的列车最高试验速度。
3.3日本中低速磁悬浮HSST系统中低速磁悬浮系统以日本的HSST为代表,主要应用于速度较低的城市轨道交通和机场铁路。
日本HSST为地面交通系统,采用列车驱动方式,电机为短定子直线感应电机(LIM)。
电机的初级线圈(定子)安装在车辆上,转子(或称次级线圈)沿列车前进方向展开设置在轨道上,见图2。
在悬浮原理方面,HSST 系统与德国TR相似,不同之处在于HSST系统将导向力与悬浮力合二为一。
我国的磁悬浮铁路研究目前大都侧重于中低速范围,并且大都参照HSST技术研制。
将来用于名古屋东部丘陵线的车辆及轨道见图7。
3.4直线电机轮轨交通系统如前所述,磁悬浮铁路与传统轮轨铁路在驱动、支承(悬浮)和导向三方面的原理和所采用技术完全不同。
在轨道交通体系中,直线电机轮轨交通系统是一种新型的介于上述二者之间的轨道交通形式。
该种轨道交通利用车轮起支承、导向作用,这与传统轮轨系统相似。
但在牵引方面却采用了短定子列车驱动直线感应电机(LIM)驱动,工作原理与HSST 系统直线电机原理基本相同(见图2)。
当初级线圈通以三相交流电时,由于感应而产生电磁力,直接驱动车辆前进,改变磁场移动方向,车辆运动的方向也随之改变。
车辆平稳运行时,定子与感应轨之间的间隙一般保持在10mm左右。
该系统原理见图8,车辆见图9。
迄今为止,该系统已经在4个国家的9个城市建成,总里程已超过180km。
见表1。
另外日本福冈地铁3号线将于2006建成,韩国、美国华盛顿、法国巴黎等国家和城市有可能建设,我国广州地铁4、5号线已决定采用该系统,首都机场线也在研究采用该系统。
4.技术经济比较4.1德、日高速磁浮铁路比较德国常导超高速磁悬浮铁路TR与日本超导超高速磁悬浮铁路MLX系统的主要技术性能方面的比较见表2。
综合对比分析日本电动悬浮MLX与德国电磁悬浮TR系统在技术、经济、环境三方面的性能,可以得出如下结论。
1、MLX系统造价高、超导技术难度大;TR系统造价相对较低,虽然控制系统复杂、精确,但技术相对成熟,大部分零部件具有通用性,市场供应方便。
2、MLX系统车辆悬浮气隙较大,对轨面平整度要求较低、抗震性能好、速度快并且还有进一步提高速度的可能性,它还具有低速时不能悬浮的特点,因此更适合于大运量、长距离、更高速度的客运。
3、从经济和效率来看,在450km/h以上速度运行时,日本MLX系统优于德国TR系统;在300—450km/h的速度范围内运行时,TR系统比较优越;300km/h 以下速度时,采用轮轨高速可能更好。
4.2磁悬浮铁路与轮轨高速铁路比较近年来,高速铁路发展迅猛,高速列车试验速度已经达到515.3km/h,实际运营速度也达到250~300km/h。
表3列出了磁浮铁路和轮轨高速铁路的主要技术指标。
通过上表分析可以认为:磁浮高速铁路和轮轨高速铁路各自有突出的优点和适用范围,任何非此即彼的看法都是不科学的。
在高速的速度范围内(200~350km/h),地面轨道交通应以高速铁路为主体;在需要350~600km/h超高速特定条件下,磁浮高速铁路优于轮轨高速铁路。
长大干线、复杂地形条件下修建磁浮铁路具有一定优势,在短途客运方面、地形平坦条件下高速磁浮系统并无太大优越性。
4.3城市轨道交通不同模式比较在城市轨道交通中比较成熟的直线电机交通系统包括中低速磁浮系统(HSST)和直线电机轮轨交通系统,为了便于比较,表4中也列出了传统轨道交通(地铁、轻轨)的综合技术经济指标。
通过上表分析可以认为:城市轨道交通(包括市中心到机场之间的铁路)距离较短,一般为十几千米至几十千米,沿途需要停靠的车站比较密集。
目前国内城市(包括机场内)轨道交通主要以地铁为主,但是由于工程造价、环境等诸多原因,延缓了地铁的发展速度;中低速磁悬浮技术先进,但工程费用和运营费用较高,且目前尚无商业运营经验,存在风险;直线电机轮轨交通技术先进,系统成熟、安全可靠、工程造价低、运营费用低、环保性能好,适合市内和市郊的中等运量运输,值得大力发展。
4.结论和建议通过如上分析,对我国发展轨道交通系统提出如下建议:1、在超高速铁路速度范围内(350~550km/h)应重点发展磁悬浮铁路。
但选用MLX系统还是选用TR系统主要看对速度的要求,德国TR技术的应用速度范围比较宽,从300km/h到450km/h,日本的ML技术在更高的速度范围(400k/h到550km/h)内更具有优势。
2、在高速铁路(200~350km/h)范围内应重点发展轮轨高速铁路。
我国即将构建快速客运专线网,高速轮轨技术具有广阔的发展前景。
在此速度范围内也可考虑发展高速磁悬浮铁路(MLX或TR系统)。
3、高速铁路在未来的一段时间内仍然是高速轨道交通的主要方式,但超高速磁悬浮的发展也是不可阻挡的。
他们的应用速度范围各不相同,无法相互替代,应该共同发展、共同繁荣。
4、在中速(120~200km/h)范围内应重点发展传统轮轨铁路。