专题27 数形结合——初中数学培优
初中数学数形结合解题思想方法探究

初中数学数形结合解题思想方法探究数形结合是指在解决数学题目时,通过将数学问题与几何图形相结合,利用图形的性质和特点来解决问题。
数形结合是数学思维的一种重要方法,它能够帮助我们更好地理解数学问题,简化解题思路,提高解题效率。
数形结合在初中数学中的应用非常广泛,包括几何问题、平面图形与平面几何、三角形与三角函数等内容。
下面我将介绍几种常见的数形结合解题思想方法,供大家参考。
一、图形辅助法图形辅助法是指通过绘制几何图形来辅助解决数学问题。
对于一些抽象的数学概念和问题,绘制图形不仅能够帮助我们更好地理解问题,还能够通过观察图形的性质来找到解题的线索。
当解决一个关于比例的题目时,我们可以绘制一个长方形或正方形来帮助理解问题,找到问题的关键信息。
当解决一个关于面积的题目时,我们可以绘制一个平行四边形或三角形来辅助解决问题。
二、分类讨论法分类讨论法是指将问题中的对象或情况分类讨论,从而得到问题的解决思路。
通过将问题进行分类,我们可以得到更多的信息,更好地理解问题,进而找到解题的方法。
当解决一个关于排列组合的题目时,我们可以将不同的情况进行分类讨论,分别求解不同情况下的结果,最后将结果相加或相乘得到问题的解。
当解决一个关于几何图形的题目时,我们可以将不同的特殊情况进行分类讨论,通过观察各个情况的特点来找到解题的线索。
三、坐标系法坐标系法是指通过建立坐标系来描述问题中的对象的位置和关系,从而将几何问题转化为代数问题,利用代数的方法来解决问题。
通过建立坐标系,我们可以通过数学关系式来描述几何图形的性质和特点,进而求解问题。
在解决一个关于直线的题目时,我们可以通过建立直角坐标系,以坐标系中的点和斜率来确定直线的性质和方程,从而解决问题。
四、变量法变量法是指通过引入未知数或变量来表示问题中的对象或条件,从而将问题转化为代数方程的形式,通过解方程求解问题。
以上介绍了一些常见的数形结合解题思想方法,希望能够帮助大家更好地理解数学问题,提高解题能力。
初中数学数形结合解题思想方法探究

初中数学数形结合解题思想方法探究数学是一门精确的科学,其中涉及到的数形结合问题是数学中的一个重要内容。
解决数形结合问题的方法有很多,下面将介绍三种常用的解题思想和方法。
一、几何思想几何思想是解决数形结合问题的一种重要思想。
它通过几何图形的性质和关系来解决问题。
解题时,可以先根据题目中给出的条件画出几何图形,并找出几何图形之间的性质和关系。
然后利用这些性质和关系进行推理和计算,最终得到问题的解答。
有一个矩形,它的周长是30cm,面积是100cm²,求矩形的长和宽。
解:设矩形的长为x,宽为y。
根据题目中的条件,可以得到以下两个方程:2(x+y) = 30xy = 100利用几何思想,可以发现矩形的周长等于长和宽的两倍之和,即2(x+y),所以可以得到第一个方程。
通过这两个方程,可以解得x=10,y=10。
所以矩形的长和宽分别是10cm。
二、代数思想代数思想是解决数形结合问题的另一种重要思想。
它通过建立代数模型来解决问题。
解题时,可以将问题中的未知量用代数符号表示出来,并建立相应的方程或不等式。
然后利用代数的方法进行运算和计算,得到问题的解答。
有一个数字,它是一个两位数,相反的两个数字之差是36,这个数字是多少?利用代数思想,可以将相反的两个数字表示成10x+y和10y+x。
它们之差是36,所以可以得到上述方程。
三、逻辑思想有5个小方块,它们的边长分别为1cm、2cm、3cm、4cm、5cm,将这些小方块拼成一个正方形,这个正方形的边长是多少?解:根据题目中给出的条件,可以知道这个正方形一共有5个小方块,而且边长依次增加1cm。
通过观察和推理,可以得到以下结论:1. 正方形的边长一定大于等于最长的小方块的边长,即大于等于5cm。
2. 正方形的边长一定小于等于所有小方块的边长之和,即小于等于1+2+3+4+5=15cm。
根据以上两个结论,可以得到正方形的边长的范围是5cm到15cm之间。
再观察题目中给出的条件,可以发现正方形的边长的值一定在这个范围中。
《数形结合思想》专题(整理)doc初中数学

《数形结合思想》专题(整理)doc 初中数学知识综述〔1〕函数几何综合咨询题是近年来各地中考试题中引人注目的新题型,这类试题将几何咨询题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合咨询题的能力,此类试题倍受命题者青睐,究其缘故,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式显现。
〔2〕解答此类咨询题必须充分注意以下咨询题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化c. 明白得二次函数与二次方程间的关系——抛物线与x 轴的交点,横坐标是对应方程的根。
d. 熟练把握几个距离公式: 点P 〔x ,y 〕到原点的距离PO x y =+22AB x x a =-=||||12∆e. 具备扎实的几何推理论证能力。
一、填空题〔每空5分,共50分〕1. 假如a ,b 两数在数轴上的对应点如下图:那么化简:||||a b a b ++-=__________。
2. A ,B 是数轴上的两点,AB=2,点B 表示数-1,那么点A 表示的数为__________。
3. △ABC 的三边之比是752::,那么那个三角形是__________三角形。
4. 点A 在第二象限,它的横坐标与纵坐标之和是1,那么点A 的坐标是__________。
〔写出符合条件的一个点即可〕5. 如图,在梯形ABCD 中,AB ∥CD ,E 为CD 的中点,△BCE 的面积为1,那么△ACD 的面积为__________。
6. 二次函数y ax bx c =++2的图象如下图,那么由抛物线的特点写出如下含有系数a ,b ,c 的关系式:①abc >0 ②a b c -+=0 ③44122ac b a -= ④a b +=0,其中正确结论的序号是__________〔把你认为正确的都填上〕7. 如图,AB 是半圆的直径,AB=10,弦CD ∥AB ,∠CBD=45°,那么阴影部分面积为__________。
初三数学培优之数形结合

初三数学培优之数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.DAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCE17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图=2x O BA。
初三数学知识点专题讲解与训练27---数形结合(培优版)

, C.(14 14)
- ,一 D. ( 14 14)
y
y A
C
x
O
BD
第 2 题图
A10 A6 A2
O A1 A5 A9
A11 A7 A3
x
A4 A8 A12
第 6 题图
3 / 10
7.在△ABC 中,∠C=900 ,AC=3,BC=4.在△ABD 中,∠A=900 ,AD=12.点 C 和点 D 分居 AB
得a =
4(2 − b)..因
a,h
2 − b > 0,
为边长且是整数.故当
得
b<2,取 b = 1, a =
4 不是整数;当
4−b
4 − b > 0,
3
2 − b < 0, 得 b>4,要使 a,b 为整数,只有两种取法:若 b=5 时,a=12(或 b= 12,a=5);若 b=8 4 − b < 0,
三角【形另例两5】边上设)△的A面BC积三都边相上等的,三证个明内:接△正AB方C形为(正有三两角个形顶.点在三角形的一(边江上苏,省另竞两赛个试顶题点)分别在 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为ha ,hb , hc ,△ABC 的面积
为 S ,则易得三个内接正方形边长分别为 2S , 2S , 2S ,由题意得 , a + ha = b + hb = c + hc a + ha b + hb c + hc
专题 27 数形结合答案
例 1 5 提示:作出 B 点关于 x 轴的对称点 B'(2,-3),连结 AB'交 x 轴于 C,则 AB'=AC 十 CB' 为
数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0
初中数学学习中的解题技巧——数形结合

初中数学学习中的解题技巧——数形结合数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等.数形结合所涉及的热点内容:在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容.1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.【思路点拨】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n^2+2n.【答案与解析】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个;第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个;第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个;按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2).故答案为n(n+2)=n2+2n.【总结升华】这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律.举一反三:【变式】用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子.解:设第n个图形的棋子数为S1.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;第n个图形,Sn=1+4+…+3n-2;第(n-1)个图形,Sn-1=1+4+…+[3(n-1)-2];则第n个图形比第(n-1)个图形多(3n-2)枚棋子.2.已知实数a、b、c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是 .A.a+cB.-a-2b+cC.a+2b-cD.-a-c【思路点拨】首先从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,接着可得a+b>0,c-b<0,然后即可化简|a+b|-|c-b|可得结果.具体步骤为:① a,b,c的具体位置,在原点左边的小于0,原点右边的大于0.②比较绝对值的大小.|a|<|c|<|b|.③化简原式中的每一部分,看看绝对值内部(二次根式中的被开方数的底数)的性质,若大于零,直接提出来,若小于零,则取原数的相反数.④进行化简计算,得出最后结果.【答案与解析】从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,故a+b>0,c-b<0,即有|a+b|-|c-b|=a+b+c-b=a+c.故选A.【总结升华】此题主要考查了利用数形结合的思想和方法来解决绝对值与数轴之间的关系,进而考察了非负数的运用.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.非负数在初中的范围内,有三种形式:绝对值(|a|),完全平方式(a±b)2,二次根式.性质:非负数有最小值是0;几个非负数的和等于0,那么每一个非负数都等于0.3. 图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是A.B.C.D.【思路点拨】这是完全平方公式的几何背景,用几何图形来分析和理解完全平方公式的实质.是一个很典型的“数形结合”的例子,用图形的变换来帮助理解代数学中的枯燥无味的数学公式.根据图示可知,阴影部分的面积是边长为(m+n)的正方形的面积减去中间白色的小正方形的面积(m2+n2),即为对角线分别是2m,2n的菱形的面积.据此即可解答.【答案】B.【解析】(m+n)2-(m2+n2)=2mn.故选B.【总结升华】本题是利用几何图形的面积来验证(m+n)2-(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式.举一反三【变式】如图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个空心正方形.(1)你认为图2中的阴影部分的正方形的边长是多少?(2)请用两种不同的方法求出图2中阴影部分的面积;(3)观察图2,你能写出下列三个代数式:(m+n)2、(m-n)2、mn之间的关系吗?解:(1)图②中阴影部分的正方形的边长等于(m-n);(2)(m-n)2;(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn.4.我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.这种“数形结合”的思想方法,非常有利于解决一些实际问题中的最大(小)值问题.请你尝试解决一下问题:(1)在图1中,抛物线所对应的二次函数的最大值是_____.(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线CD)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,直接给两镇送水,为使所用水管的长度最短,请你:①作图确定水塔的位置;②求出所需水管的长度(结果用准确值表示).(3)已知x+y=6,求的最小值?此问题可以通过数形结合的方法加以解决,具体步骤如下:①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA= ____DB= ____.②在AB上取一点P,可设AP= _____,BP= _____.最小值为 ___.【思路点拨】(1)利用二次函数的顶点坐标就可得出函数的极值;(2)①延长AC到点E,使CE=AC,连接BE,交直线CD 于点P,则点P即为所求;②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD 的延长线于点G,则有四边形ACDF、CEGD都是矩形,进而利用勾股定理求出即可;(3)①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,②在AB上取一点P,可设AP=x,BP=y;最小值利用勾股定理求出即可.【答案与解析】(1)抛物线所对应的二次函数的最大值是4;(2)①如图所示,点P即为所求.(作法:延长AC到点E,使CE=AC,连接BE,交直线CD 于点P,则点P即为所求.说明:不必写作法和证明,但要保留作图痕迹;不连接PA不扣分;(延长BD,同样的方法也可以得到P点的位置.)②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD 的延长线于点G,则有四边形ACDF、CEGD都是矩形.∴FD=AC=CE=DG=1,EG=CD=AF.∵AB=3,BD=2,∴BF=BD-FD=1,BG=BD+DG=3,∴在Rt△ABF中,AF2=AB2-BF2=8,∴AF=2EG=2.∴在Rt△BEG中,BE2=EG2+BG2=17,∴BE=(cm).∴PA+PB的最小值为cm.即所用水管的最短长度为cm.(3)图3所示,①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,②在AB上取一点P,可设AP=x,BP=y,③的最小值即为线段 PC和线段 PD长度之和的最小值,∴作C点关于线段AB的对称点C′,连接C′D,过C′点作C′E⊥DB,交BD延长线于点E,∵AC=BE=3,DB=5,AB=C′E=6,∴DE=8,..∴最小值为10.故答案为:①4;②x,y;③PC,PD,10.【总结升华】此题主要考查了函数最值问题与利用轴对称求最短路线问题,结合已知画出图象利用数形结合以及勾股定理是解题关键.作图题不要求写出作法,但必须保留痕迹.最后点题,即“xx即为所求”.5.如图,二次函数y=ax2+bx+c的图象开口向上,图象过点(-1,2)和(1,0),且与y轴相交与负半轴.以下结论(1)a>0;(2)b>0;(3)c>0;(4)a+b+c=0;(5)abc<0;(6)2a+b>0;(7)a+c=1;(8)a>1中,正确结论的序号是.【思路点拨】由抛物线的开口方向判断a与0的关系,由抛物线与y 轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【答案与解析】解:①由抛物线的开口方向向上,可推出a>0,正确;②因为对称轴在y轴右侧,对称轴为x=>0,又因为a>0,∴b<0,错误;③由抛物线与y轴的交点在y轴的负半轴上,∴c<0,错误;④由图象可知:当x=1时y=0,∴a+b+c=0,正确;⑤∵a>0,b<0,c<0,∴abc>0,错误;⑥由图象可知:对称轴x=>0且对称轴x=<1,∴2a+b >0,正确;⑦由图象可知:当x=-1时y=2,∴a-b+c=2, ---①当x=1时y=0,∴a+b+c=0, ---②①+②,得2a+2c=2,解得 a+c=1,正确;⑧∵a+c=1,移项得a=1-c,又∵c<0,∴a>1,正确.故正确结论的序号是①④⑥⑦⑧.【总结升华】考查二次函数的解析式、图象,及综合应用相关知识分析问题、解决问题的能力.二次函数y=ax2+bx+c图象与系数之间的关系:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.存在着“左同右异”,即a,b同号.对称轴在y轴的左边,a,b异号,对称轴在y轴的右边.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=±1时,ax2+bx+c就变成了a±b+c了.这道题的第7小题:当x=1时,a+b+c=0……①当x=-1时,a-b+c=2……②,①+②得,2a+2c=2,即a+c=1.举一反三【变式】已知二次函数y=ax2+bx+c的图象如图所示,x=是该抛物线的对称轴.根据图中所提供的信息,请你写出有关a,b,c的四条结论,并简单说明理由.解:①∵开口方向向上,∴a>0,②∵与y轴的交点为在y轴的正半轴上,∴c>0,③∵对称轴为x=>0,∴a、b异号,即b<0,④∵抛物线与x轴有两个交点,∴b2-4ac>0,⑤当x=1时,y=a+b+c<0,⑥当x=-1时,y=a-b+c>0.结论有:a>0,b<0,c<0,a+b+c<0,a-b+c>0等.。
八年级竞赛数学培优第 数形结合 含解析

数形结合【思维入门】1.对坐标平面内不同两点A(x1,y1),B(x2,y2),用|AB|表示A,B两点间的距离(即线段AB的长度),用||AB||表示A,B两点间的格距,定义A,B两点间的格距为||AB||=|x1-x2|+|y1-y2|,则|AB|与||AB||的大小关系为()A.|AB|≥||AB||B.|AB|>||AB||C.|AB|≤||AB|| D.|AB|<||AB||2.若等腰三角形的周长是80 cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)的函数关系式的图象是()3.如图10-30-1,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在D′ 处,若AB=3,AD=4,则ED的长为()图10-30-1A.32B.3C.1 D.434.如图10-30-2,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为()A.3B.4C.6D.85.甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图10-30-3所示,结合图象解答下列问题: (1)乙车休息了____h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围; (3)当两车相距40 km 时,直接写出x 的值.图10-30-3 【思维拓展】6.如图10-30-4,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =kx (k ≠0)中k 的值的变化情况是 ( ) A .一直增大B .一直减小C .先增大后减小D .先减小后增大7.关于x 的反比例函数y =a +4x 的图象如图10-30-5所示,A ,P 为该图象上的点,且关于原点成中心对称.△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +14=0的根的情况是____.8.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y1图10-30-4+12,则这个反比例函数的表达式为____.9.(1)如图10-30-6①,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图10-30-6②,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图10-30-6③,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.图10-30-610.在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a(a>1)的纸片,先减去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…,以此类推,请画出剪3次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值.【思维升华】11.如图10-30-7,一次函数y=-2x+6的图象与x轴,y轴分别相交于点A,B,点P在线段AB上,OP(O是坐标原点)将△OAB分成面积为1∶2的两部分,则过点P 的反比例函数解析式为____.图10-30-712.如图10-30-8,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.图10-30-8数形结合【思维入门】1.对坐标平面内不同两点A (x 1,y 1),B (x 2,y 2),用|AB |表示A ,B 两点间的距离(即线段AB 的长度),用||AB ||表示A ,B 两点间的格距,定义A ,B 两点间的格距为||AB ||=|x 1-x 2|+|y 1-y 2|,则|AB |与||AB ||的大小关系为 ( C )A .|AB |≥||AB || B .|AB |>||AB ||C .|AB |≤||AB ||D .|AB |<||AB ||【解析】 ∵|AB |,|x 1-x 2|,|y 1-y 2|的长度是以|AB |为斜边的直角三角形,所以|AB |≤||AB ||. 2.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y (cm)与底边长x (cm)的函数关系式的图象是( D )【解析】 根据题意,x +2y =80, 所以,y =-12x +40,根据三角形的三边关系,x >y -y =0, x <y +y =2y ,所以x +x <80,解得x <40, 所以,y 与x 的函数关系式为 y =-12x +40(0<x <40). 只有D 选项符合.3.如图10-30-1,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在D ′ 处,若AB =3,AD =4,则ED 的长为 ( A )图10-30-1A.32 B .3 C .1 D.43 【解析】 ∵AB =3,AD =4, ∴AC =32+42=5,DC =3, 根据折叠可得△DEC ≌△D ′EC , ∴D ′C =DC =3,DE =D ′E .设ED =x ,则D ′E =x ,AD ′=AC -CD ′=2,AE =4-x ,在Rt △AED ′中,(AD ′)2+(ED ′)2=AE 2,22+x 2=(4-x )2, 解得x =32.4.如图10-30-2,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB =1,BC =2,则△ABE 和△BC ′F 的周长之和为 ( C ) A .3 B .4 C .6 D .8【解析】 将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF , 由折叠特性可得,CD =BC ′=AB ,ED =EB , ∠FC ′B =∠EAB =90°.∵∠ABE +∠EBF =∠C ′BF +∠EBF =90°. ∴∠ABE =∠C ′BF ,⎩⎨⎧∠FC ′B =∠EAB ,BC ′=AB ,∠ABE =∠C ′BF .∴△BAE ≌△BC ′F (ASA ),∵△ABE 的周长=AB +AE +EB =AB +AE +ED =AB +AD =1+2=3.∴△ABE 和△BC ′F 的周长之和=2△ABE 的周长=2×3=6.5.甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图10-30-3所示,结合图象解答下列问题: (1)乙车休息了__0.5__h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围; (3)当两车相距40 km 时,直接写出x 的值.图10-30-3解:(1)设甲车行驶的函数解析式为y 甲=k 1x +b 1(k 1是不为0的常数), y 甲=k 1x +b 1图象过点(0,400),(5,0), 得⎩⎨⎧b 1=400,5k 1+b 1=0, 解得⎩⎨⎧k 1=-80,b 1=400,甲车行驶的函数解析式为y 甲=-80x +400, 当y =200时,x =2.5, 2.5-2=0.5(h), 故乙车休息了0.5 h.(2)设乙车与甲车相遇后y 乙与x 的函数解析式为y 乙=k 2x +b 2, y 乙=k 2x +b 2图象过点(2.5,200),(5,400), 得⎩⎨⎧2.5k 2+b 2=200,5k 2+b 2=400,解得⎩⎨⎧k 2=80, b 2=0, 乙车与甲车相遇后y 乙与x 的函数解析式为y 乙=80x (2.5≤x ≤5);(3)设乙车与甲车相遇前y 乙与x 的函数解析式为y 乙=k 3x , 图象过点(2,200), 解得k 3=100,∴乙车与甲车相遇前y 乙与x 的函数解析式为y 乙=100x , 0≤x ≤2.5时,y 甲减y 乙等于40 km , 即400-80x -100x =40,解得x =2; 2.5≤x ≤5时,y 乙减y 甲等于40 km , 即80x -(-80x +400)=40,解得x =114. 综上所述x =2或x =114时,两车相距40 km.【思维拓展】6.如图10-30-4,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =kx (k ≠0)中k 的值的变化情况是 ( C ) A .一直增大B .一直减小C .先增大后减小D .先减小后增大【解析】 设矩形ABCD 中,AB =2a ,AD =2b . ∵矩形ABCD 的周长始终保持不变, ∴2(2a +2b )=4(a +b )为定值, ∴a +b 为定值.∵矩形对角线的交点与原点O 重合. ∴k =12AB ·12AD =ab .又∵a +b 为定值时,当a =b 时,ab 最大,∴在边AB 从小于AD 到大于AD 的变化过程中,k 的值先增大后减小.7.关于x 的反比例函数y =a +4x 的图象如图10-30-5所示,A ,P为该图象上的点,且关于原点成中心对称.△P AB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△P AB的面积大于12,则关于x的方程(a-1)x2-x+14=0的根的情况是__没有实数根__.【解析】∵反比例函数y=a+4x的图象位于第一、三象限,∴a+4>0,∴a>-4,∵A,P关于原点成中心对称,PB∥y轴,△P AB的面积大于12,∴2xy>12,即a+4>6,a>2,∴a>2.∴Δ=(-1)2-4(a-1)×14=2-a<0,∴关于x的方程(a-1)x2-x+14=0没有实数根.8.已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且1y2=1y1+12,则这个反比例函数的表达式为__y=4x__.【解析】设这个反比例函数的表达式为y=k x,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1·y1=x2·y2=k,∴1y1=x1k,1y2=x2k,∵1y2=1y1+12,∴x2k=x1k+12,∴1k(x2-x1)=12.∵x2=x1+2,∴1k×2=12,∴k=4.∴这个反比例函数的表达式为y=4 x.9.(1)如图10-30-6①,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图10-30-6②,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:图10-30-5如图10-30-6③,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.图10-30-6解:(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如答图①,延长AD至F,第9题答图①第9题答图②使DF=BE,连结CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)如答图②,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°,又∵∠CGA =90°,AB =BC ,∴四边形ABCG 为正方形.∴AG =BC .∵∠DCE =45°,根据(1)(2)可知,ED =BE +DG .∴10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6.在Rt △AED 中,∵DE 2=AD 2+AE 2,即102=(x -6)2+(x -4)2.解这个方程,得x =12或x =-2(舍去).∴AB =12.∴S 梯形ABCD =12(AD +BC )•AB=12×(6+12)×12=108.即直角梯形ABCD 的面积为108.10.在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD 的邻边长分别为1,a (a >1)的纸片,先减去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…,以此类推,请画出剪3次后余下的四边形是菱形的裁剪线的各种示意图,并求出a 的值.解:如答图①,此时a =4.如答图②,此时a =2+12=52.如答图③,此时a=1+13=43.如答图④,此时a=1+23=53.【思维升华】11.如图10-30-7,一次函数y=-2x+6的图象与x轴,y轴分别相交于点A,B,点P在线段AB上,OP(O是坐标原点)将△OAB分成面积为1∶2的两部分,则过点P的反比例函数解析式为__y=4x__.图10-30-7 第11题答图【解析】如答图,过点P作PC⊥OA,垂足为C点,由y=-2x+6得A(3,0),B(0,6),∴S△AOB =12×3×6=9,∵OP将△OAB分成面积为1∶2的两部分,∴S△AOP=3或6,当S△AOP =3时,12×PC×OA=3,解得PC=2,即P(2,2);当S△AOP =6时,12×PC×OA=6,解得PC=4,即P(1,4);∴反比例函数系数k=2×2=1×4=4,∴过点P的反比例函数解析式为y=4 x.12.如图10-30-8,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.图10-30-8解:(1)在Rt△ABC中,∠B=90°,AC=60,AB=30,∴AB=12AC,∴∠C=30°.在△DFC中,DF⊥BC,则∠DFC=90°,∵∠C=30°,∴DF=12CD,即y=12x.(2)∵∠DFC=∠B=90°,∴DF∥AB,∵FE∥AC,∴四边形AEFD是平行四边形,若四边形AEFD为菱形,则DF=DA,其中DF=y,AD=60-x.∴12x=60-x,得x=40.(3)若∠FDE=90°,易证四边形DFBE是矩形,∴DE∥FB,∵FE∥AC,∴四边形CDEF是平行四边形,∴EF=CD=x,∵四边形AEFD是平行四边形,∴EF=AD=60-x∴x=60-x,得x=30.若∠DEF=90°,在Rt△ABC中,∠B=90°,∠C=30°,AC=60,AB=30,由勾股定理得BC=303,∵FE∥AC,∴∠EFB=∠C=30°,∵∠DFC=90°,∴∠DFE=60°,而∠DEF=90°,∴∠EDF=30°,在Rt△DFC中,∠DFC=90°,∠C=30°,CD=x,∴DF=x2,CF=32x,同理,在Rt△DFE中,∠DEF=90°,∠EDF=30°,DF=x2,∴EF=x4,在Rt△EBF中,∠EBF=90°,∠EFB=30°,EF=x 4,∴FB=32EF=32·x4=38x,∵FB+CF=CB,∴38x+32x=303,得x=48.若∠DFE=90°,显然不成立;综上所述,x=30或48.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题27 数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111.(湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.FEDBAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根?(四川省联赛试题)解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)yxDBOACyxOA 2A 1A 3A 4A 6A 5A 8A 7A 10A 9A 12A 11第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图F E DGHA OI BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图NMBA CQ15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCA E17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图y =2x O BA专题27数形结合例1 5提示:作出B 点关于x 轴的对称点B '(2,-3),连结AB '交x 轴于C ,则AB '=AC 十CB ' 为所要求的最小值.例2 D 提示:设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =x ,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法:若b =5时,a =12(或b = 12,a =5);若b =8时,a =6(或b =6,a =8). 例3设AB =x ,则BC =2x ,AC =x 3, BE =x 21,DF =DA=.32,31x BD x =.在Rt △AEB 中求得AE=,,23x BF x =代入证明即可. 例4如图,作出函数x x y 52-=图象,由图象可以看出:当a =0时,y =0与x x y 52-=有且只有相异二个交点;当4250<<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=a 时,y =a 与x x y 52-=图象有三个不同交点,当425>a 时,y =a 与x x y 52-=图象有且只有相异二个交点. 例5由L c s c b s b a s a =+=+=+222 ①,知正数c b a ,,适合方程.2L xs x =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a ac sa c s c a -=⎪⎭⎫⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证. 例6,ABC AO C BO C AO B S S S S ∆∆∆∆=++,3421120sin 21321150sin 321⨯⨯=+∙+∙∙∴ xz y z y x 即,6232132121321=∙+∙+⨯∙xz y z y x 化简得.32432=++zx yz xy 能力训练1.32- 提示:构造含 15的Rt △ABC .2.()062,提示:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E , F .设OE =a , BF =b ,则AE =a 3, CF =b 3,所以点A ,C 的坐标为()().3,2,3,b b a a a +()⎩⎨⎧=+=∴,3323,3332b a b a 解得⎩⎨⎧-==.36,3b a ∴点D 坐标为()0,62. 3.52- 提示:当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值. 4.a x b ≤≤5. 36提示:由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =x ,又由012=-+x x 得x x x 11=-,即ABOABC AB =,则OAB ∆∽△ABC ,AB =AC =OC . 6. C 提示:由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14. 7. A8. B 提示:由条件,22b ab ac ab a +=++即()bc a a b c a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .9. D10. C 提示:设直角三角形的两条直角边长为(),,b a b a ≤则ab k b a b a 2122∙=+++ (k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--44,2484,14,844kb ka kb ka kb ka 或解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解. 11.(1)122--=x x y (2)过D 作DM ⊥ EH 于M ,连结DG ,2,===DO DG t DM ,.2222t MG FG -==若EF +GH =FG 成立,则EH = 2FG .由EF //x轴,设H 为()t x ,4,又∵E ,H 为抛物线上的两个点,,12323t x x =--∴,12424t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343,()2432433422222,224t t t x x x x x x EH -∙=+∴+=-+=-=,解得8197,819711+-=-=t t (舍去). 12.a 十A =b +B =c 十C =k ,可看作边长为k 的正三角形,而从2k 联想到边长为k 的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为k 的正方形中,显然aB +bC +cA <k 2.13. AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =x ,CE =y ,则由圆幂定理得⎩⎨⎧CE •CD =CF •CG BD •BE =BI •BH ,即⎩⎨⎧y (16-x )=1×14x (16-y )=6×13.解得⎩⎪⎨⎪⎧x =10-22y =6-22 .故DE =16-(x +y )=222.14. t =2或3≤t ≤7或t =8. 提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P与AC 相切;当t =8时,圆P 与BC 相切.15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =x ,则BE =3x ,BE =EC =3x .又1+x =3x ,∴x =3+12,BE =3+32,AE =AD -ED =2-x =3-32,AB 2 =AE 2+BE 2=(3-32)2+(3+32)2=6,而AD •AC =6.∴AB 2 =AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线.16.设AD AB =AEAC =m (0≤m ≤1).∵S △ABE S △ABC =AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB=AB -AD AB =1-m ,∴S △BDE =(1-m )• S △ABE =m (1-m )• S △ABC .即K =(1-m )•mS ,整理得Sm 2-Sm +K =0,由△≥0得K ≤14S .17.分以下几种情况:则x 2+(2x -2)2=22,解得x =85,得C 1(85,165).②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(x ′,2x ′), 则x ′2+(2x ′)2=22,解得x ′=255,得C 2(255,455). 又由点C 2与C 3关于原点对称,得C 3(―255,―455).③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4 (12,1).所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12,1).。