2009年青岛市中考数学试题及答案

合集下载

2009年青海省初中毕业升学考试数学试卷及答案

2009年青海省初中毕业升学考试数学试卷及答案

x y·
xy
·······································································(4 分)
x (x y)(x y)
y ···························································································(5 分) x y
11.4
12. 64x7 ; (2)n1 xn
二、选择题(本大题共 8 小题,每小题 3 分,共 24 分)
题号
13
14
15
16
17
18
19
20
选项
B
C
A
B
C
B
A
D
三、本大题共 3 小题,每小题 7 分,共 21 分
21.解:
x2 2xy y2 x y
x2 xy
y
x
(x y)2 x2 y2 ···········································································(2 分) x(x y) xy
D. 1 x3 y5 8
14.方程 x2 9x 18 0 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12
B.12 或 15
C.15
D.不能确定
15.在函数 y x 3 中,自变量 x 的取值范围是( ) 2x
A. x ≥ 3且 x 0
B. x ≤3 且 x 0
C. x 0

28 . 矩 形 OABC 在 平 面 直 角 坐 标 系 中 位 置 如 图 13 所 示 , A、C 两 点 的 坐 标 分 别 为

2009山东中考数学解答题选编(威海、泰安、淄博)

2009山东中考数学解答题选编(威海、泰安、淄博)

09威海23.如图1,在正方形A B C D 中,E F G H ,,,分别为边A B B C C D D A ,,,上的点,H A E B F C G D ===,连接E G F H ,,交点为O .(1)如图2,连接E F F G G H H E ,,,,试判断四边形E F G H 的形状,并证明你的结论;(2)将正方形A B C D 沿线段,EG HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形A B C D 的边长为3cm ,1cm H A E B F C G D ====,则图3中阴影部分的面积为_________2cm . 23.(本小题满分10分)解:(1)四边形E F G H 是正方形.1分证明: 四边形A B C D 是正方形,∴90A B C D AB BC C D D A ∠=∠=∠=∠====°,.H A EB FC G D === ,AE BF C G D H ∴===.2分 A E H B F E C G F D H G ∴△≌△≌△≌△.3分EF FG G H H E ∴===.4分∴四边形E F G H 是菱形.5分由D H G A E H △≌△知D H G A E H ∠=∠.90A E H A H E ∠+∠= °, 90D H G A H E ∴∠+∠=°.90G H E ∴∠=°.6分∴四边形E F G H 是正方形.7分(2)1.10分24.(11分)如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当A D C D +最小时点D 的坐标; (3)以点A 为圆心,以A D 为半径作A .①证明:当A D C D +最小时,直线B D 与A 相切.②写出直线B D 与A 相切时,D 点的另一个坐标:___________. 24.(本小题满分11分)解:(1)设抛物线的解析式为(1)(3)y a x x =+-.1分将(03),代入上式,得3(01)(03)a =+-. 解,得1a =-.2分∴抛物线的解析式为(1)(3)y x x =-+-.(第23题图1)D C B AOHG FEBAD C GFH (第23题图2)(第23题图3)E BAD C GFH图2O即223y x x =-++.3分(2)连接B C ,交直线l 于点D .点B 与点A 关于直线 l 对称,AD BD ∴=.4分 AD C D BD C D BC ∴+=+=.由“两点之间,线段最短”的原理可知:此时A D C D +最小,点D 的位置即为所求.5分 设直线B C 的解析式为y kx b =+,由直线B C 过点(30),,(03),,得033.k b b =+⎧⎨=⎩,解这个方程组,得13.k b =-⎧⎨=⎩,∴直线B C 的解析式为3y x =-+.6分由(1)知:对称轴l 为212(1)x =-=⨯-,即1x =.将1x =代入3y x =-+,得132y =-+=.∴点D 的坐标为(1,2).7分说明:用相似三角形或三角函数求点D 的坐标也可,答案正确给2分. (3)①连接A D .设直线l 与x 轴的交点记为点E .由(1)知:当A D C D +最小时,点D 的坐标为(1,2).2D E A E B E∴===.45D A B D B A ∴∠=∠=°.8分90AD B ∴∠=°.AD BD ∴⊥.BD ∴与A ⊙相切.9分②(12)-,.11分25.(12分)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数k y x=的图象相交于点,A B .过点A 分别作A C x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作B F x ⊥轴,BD y ⊥轴,垂足分别为F D ,,A C 与B D 交于点K ,连接C D .(1)若点A B ,在反比例函数k y x=的图象的同一分支上,如图1,试证明:①AED K C FBK S S =四边形四边形;②A N B M =. (2)若点A B ,分别在反比例函数k y x=的图象的不同分支上,如图2,则A N 与BM 还相等吗?试证明你的结论.x25.(本小题满分12分)解:(1)①A C x ⊥轴,AE y ⊥轴,∴四边形A E O C 为矩形.B F x ⊥轴,BD y ⊥轴,∴四边形B D O F 为矩形. AC x ⊥轴,BD y ⊥轴,∴四边形A E D K D O C K C F B K ,,均为矩形.1分1111O C x AC y x y k === ,,,∴11AEO C S O C AC x y k === 矩形2222O F x FB y x y k === ,,,∴22BDOF S O F FB x y k === 矩形. ∴AEO C BD O F S S =矩形矩形. AEDK AEOC DOCK S S S =-矩形矩形矩形,CF B KB D O F D OS S S=-矩形矩形矩形,∴AED K C FBK S S =矩形矩形.2分②由(1)知AED K C FBK S S =矩形矩形.∴A K D K B K C K = .∴A KB KC KD K=.4分 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.5分∴C D K ABK ∠=∠.∴AB C D ∥.6分 AC y ∥轴,∴四边形A C D N 是平行四边形. ∴AN C D =.7分同理B M C D =.A N B M ∴=.8分(2)A N 与BM 仍然相等.9分 AEDK AEOC ODKC S S S =+矩形矩形矩形,BKCF BDOF ODKC S S S =+矩形矩形矩形,又 AEO C BD O F S S k ==矩形矩形,∴AED K BK C F S S =矩形矩形.10分∴A K D K B K C K = .)∴C KD KA KB K=. K K ∠=∠,∴C D K ABK △∽△∴CDK ABK ∠=∠.∴AB C D ∥.11分AC y ∥轴,∴四边形A N D C 是平行四边形. ∴AN C D =.同理B M C D =. ∴A N B M =.12分泰安(本小题满分10分)如图,△ABC 是直角三角形,∠ACB=90°,C D ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F 。

2009年中考数学试题汇编之21、22-圆以及直线

2009年中考数学试题汇编之21、22-圆以及直线

2009年中考试题专题之21、22-圆以及直线与圆的位置关系试题及答案一、选择题 1. (2009年娄底)如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是 ( ) A .AD=BD B .∠ACB=∠AOE C . AE BE= D .OD=DE2.(2009恩施市)16.如图6,O ⊙的直径A B 垂直弦C D 于P ,且P 是半径O B 的中点,6cm C D =,则直径A B 的长是( )A .23cmB .32cmC .42cmD .43cm3.(2009年甘肃白银)如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .24.(2009年甘肃庆阳)如图5,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .55.(2009年广西南宁)如图3,AB O 是⊙的直径,弦303cm C D AB E C D B O ⊥∠=于点,°,⊙的半径为,则弦C D 的长为( )A .3cm 2B .3cmC .23cmD .9cm6.(2009年孝感)如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°7.(2009泰安)如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为(A )30° (B )60°(C )30°或150° (D )60°或120°图3CABOE D8.(2009年天津市)如图,A B C△内接于O⊙,若28O A B∠=°,则C∠的大小为()A.28°B.56°C.60°D.62°【关键词】圆周角和圆心角【答案】D9.(2009南宁)如图,AB O是⊙的直径,弦303cmC D AB E C D B O⊥∠=于点,°,⊙的半径为,则弦C D的长为()A.3cm2B.3cm C .23cm D.9cm【关键词】圆周角和圆心角【答案】B10.(2009年湘西自治州)14.O⊙的半径为10cm,弦AB=12cm,则圆心到AB的距离为()A.2cm B.6cm C.8cm D.10cm【关键词】圆的计算,弦,点到直线的距离【答案】C11.(2009白银市)8.如图2,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【关键词】圆的相关概念、点到直线的距离【答案】A12.(2009年清远)如图,A B是O⊙的直径,弦C D AB⊥于点E,连结O C,若5O C=,8C D=,则tan C O E∠=()A.35B.45C.34D.4313.(2009年长春)两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为()A.外离B.外切C.相交D.内切14.(2009年安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD =22,BD =3,则AB的长为【】A.2 B.3 C.4 D.515.(2009年安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是【】A.120°B.125°C.135°D.150°【关键词】与圆有关的综合题【答案】CCA BO16.(2009年福州)如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周, P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()A. 15 B. 20 C.15+52 D.15+55【关键词】等边三角形,勾股定理,同圆的半径相等【答案】C17.(2009年重庆)如图,O⊙是A B C△的外接圆,A B是直径.若80B O C∠=°,则A∠等于()A.60°B.50°C.40°D.30°【关键词】圆周角和圆心角【答案】C.18.(2009年甘肃定西)如图2,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【关键词】垂径定理、勾股定理. 【答案】A19.(2009年长沙)如图,A B是O⊙的直径,C是O⊙上一点,44B O C∠=°,则A∠的度数为.24.(2009年长沙)如图,已知O⊙的半径6O A=,90A O B∠=°,则AOB∠所对的弧A B的长为()答案:BA.2πB.3πC.6πD.12π25.(2009肇庆)9.如图4,⊙O是正方形ABCD的外接圆,点P 在⊙O上,则∠APB等于()BA.30°B.45°C.55°D.60°26.(2009年南充)如图2,AB是O⊙的直径,点C、D在O⊙上,110B O C∠=°,AD O C∥,则A O D∠=()A.70°B.60°C.50°D.40°CBAO27. (2009年温州)如图,么AOB 是⊙0的圆心角,∠AOB=80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°28、(2009年凉山州)如图,O ⊙是A B C △的外接圆,已知50A B O ∠=°,则ACB ∠的大小为( ) A .40°B .30°C .45°D .50°29. 4、(2009年遂宁)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o ,∠c=50o , 那么sin ∠AEB 的值为( ) A.21 B.33 C.22 D.2330. 2、(2009年兰州)如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是( ).31. (2009年兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( )A .5米B .8米C .7米D .53米32.(2009年台湾)如图(一),在坐标平面上,❒ABC 为直角三角形,∠B =90︒,AB 垂直x 轴,M 为❒ABC 的外心。

往年山东省青岛市中考数学真题及答案

往年山东省青岛市中考数学真题及答案

往年山东省青岛市中考数学真题及答案一. 选择题(本题满分24分,共有8小题,每小题3分)1.( 3分)(往年•青岛)﹣2的绝对值是()B.﹣2 C.D.2A.﹣2.( 3分)(往年•青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.( 3分)(往年•青岛)如图,正方体表面上画有一圈黑色线条,则它的左视图是()A.B.C.D.4.( 3分)(往年•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离5.( 3分)(往年•青岛)某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(人) 1 1 5 2 1则下列说法正确的是()A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.( 3分)(往年•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.( 6,1)B.( 0,1)C.( 0,﹣3)D.( 6,﹣3)7.( 3分)(往年•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.8.( 3分)(往年•青岛)点A( x1,y1),B( x2,y2),C( x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二. 填空题(本题满分18分,共有6道小题,每小题3分)9.( 3分)(往年•青岛)计算:(﹣3)0+= _________ .10.( 3分)(往年•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_ 元.11.( 3分)(往年•青岛)如图,点A. B. C在⊙O上,∠AOC=60°,则∠ABC的度数是_________ .12.( 3分)(往年•青岛)如图,在一块长为22米. 宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________ .13.( 3分)(往年•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .14.( 3分)(往年•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________ cm.三. 作图题(本题满分4分)用圆规. 直尺作图,不写作法,但要保留作图痕迹.15.( 4分)(往年•青岛)已知:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四. 解答题(本题满分74分,共有9道小题)16.( 8分)(往年•青岛)( 1)化简:( 2)解不等式组:.17.( 6分)(往年•青岛)某校为开展每天一小时阳光体育活动,准备组建篮球. 排球. 足球. 乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答下列问题:( 1)补全条形统计图;( 2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;( 3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.( 6分)(往年•青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”. “花开富贵”. “吉星高照”,就可以分别获得100元. 50元. 20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500( 1)求“紫气东来”奖券出现的频率;( 2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.( 6分)(往年•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.( 8分)(往年•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离( B. F. C在一条直线上)( 1)求教学楼AB的高度;( 2)学校要在A. E之间挂一些彩旗,请你求出A. E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21.( 8分)(往年•青岛)已知:如图,四边形ABCD的对角线AC. BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.( 1)求证:△BOE≌△DOF;( 2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.( 10分)(往年•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:( 1)试判断y与x之间的函数关系,并求出函数关系式;( 2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;( 3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.( 10分)(往年•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共( m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P. Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P. Q. R,共6个点为顶点可把△ABC分割成_________ 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共( m+3)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共( m+4)个顶点可把四边形分割成_________ 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共( m+n)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的往年个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.( 12分)(往年•青岛)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D. E分别是AC. AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t( s)( 0<t<4).解答下列问题:( 1)当t为何值时,PQ⊥AB?( 2)当点Q在BE之间运动时,设五边形PQBCD的面积为y( cm2),求y与t之间的函数关系式;( 3)在( 2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S △PQE:S四边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.往年年山东省青岛市中考数学试卷参考答案与试题解析一. 选择题1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A二. 填空题(本题满分18分,共有6道小题,每小题3分)请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.( 22﹣x)( 17﹣x)=300.13..14.5.四. 解答题(本题满分74分,共有9道小题)16.解:( 1)原式==…4分解:( 2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:( 1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:( 2)报名参加2个兴趣小组的有400×=160人( 3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:( 1)或5%;( 2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.20.解:( 1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2, tan22°=,则=,解得:x=12.即教学楼的高12m.( 2)由( 1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A. E之间的距离约为27m.21.( 1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF( ASA);( 2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:( 1)y是x的一次函数,设y=kx+b,图象过点( 10,300),( 12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点( 14,180),( 16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;( 2)w=( x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;( 3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分, 故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2( 1﹣1),三角形内部2个点时,共分割成5部分,5=3+2( 2﹣1),三角形内部3个点时,共分割成7部分,7=3+2( 3﹣1),…,所以,三角形内部有m个点时,3+2( m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2( m﹣1)或2m+2;…6分问题解决:n+2( m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=往年代入上述代数式,得2m+n﹣2,=2×往年+8﹣2,=4024+8﹣2,=4030.…10分24.解:( 1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D. E分别是AC. AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.( 2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=( 4﹣t).S△PQE=EQ•PM=( 5﹣2t)•( 4﹣t)=t2﹣t+6, S梯形DCBE=×( 4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.( 3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29, 则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×( 4﹣2)=,ME=×( 4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).。

2009年青岛中考数学试题及答案

2009年青岛中考数学试题及答案

二○○九年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是()A .3B .13C .2D .122.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有()A .1种B .2种C .3种D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A .12B .13C .14D .165.如图所示,数轴上点P 所表示的可能是()A .6B .10C .15D .316.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A .0.4米B .0.5米C .0.8米D .1米第2题图A .B .C.D .10 1 2 3 4 P第5题图O第6题图7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应()A .不小于 4.8ΩB .不大于 4.8ΩC .不小于14ΩD .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是()A .(3035030),B .(3030350),C .(30330),D .(30303),二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会射箭金牌,为祖国争得了荣誉.下表记录了她在备战奥运会期间的一次训练成绩(单位:环):序号 1 2 3 4 5 6 7 8 9 10 11 12 成绩9910981010987109 根据表中的数据可得:张娟娟这次训练成绩的中位数是环,众数是环.11.如图,A B 为O ⊙的直径,C D 为O ⊙的弦,42A C D°,则B A D°.12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为.13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是.14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要cm .6 OR/ΩI /A8 第7题图Oxy第8题图AO DACB第11题图ADCBCDB第13题图EB A6cm3cm 1cm第14题图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(A B C △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.解:结论:四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)化简:2211x xx x(2)解不等式组:3221317.22xxxx ,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题:(1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).ABC50 40 30 20 10 0运动娱乐阅读其他项目402515人数统计图人数/人阅读其他娱乐运动40%分布统计图在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角21C F E°,然后往塔的方向前进50米到达B处,此时测得仰角37C G E°,已知测倾器高 1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:3sin375°≈,3ta n374°≈,9sin2125°≈,3ta n218°≈)20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%利润成本)CG EDBAF第19题图红黄黄绿绿绿绿黄绿第18题图已知:如图,在A B C D 中,AE 是BC 边上的高,将A B E △沿B C 方向平移,使点E 与点C 重合,得G F C △.(1)求证:B E D G ;(2)若60B°,当AB 与BC 满足什么数量关系时,四边形A B F G 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368yx,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法”.ADGCBFE 第21题图2524y 2(元)x (月)1 2 3 4 5 6 7 8 910 11 12第22题图2218y xbx cO基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.图①图②图③图④图⑤图⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639(个)小正方形.(2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32个小正方形,从而分割成43210(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n(n≥9)个小正方形.方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图).(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图).(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)图a图b图c图d图e(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).24.(本小题满分12分)如图,在梯形ABCD 中,A D B C ∥,6cm A D,4cm C D,10cm B CB D,点P由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交B D 于Q ,连接PE .若设运动时间为t (s )(05t).解答下列问题:(1)当t 为何值时,P E A B ∥?(2)设P E Q △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225P E QB C DS S △△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接P F ,在上述运动过程中,五边形P F C D E 的面积是否发生变化?说明理由.AE DQPBFC第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)题号 1 2 3 4 5 6 7 8答案 C D B C B D A A 二、填空题(本题满分18分,共有6道小题,每小题3分)题号9 10 11答案83.8109 9 48题号12 13 14答案20% 211022916n(或23664n)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心;···········································································2分确定半径;·····················································································································3分正确画出图并写出结论.······························································································4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)解:原式21(1)(1)x xx x x1xx.········································································································4分(2)322131722x xx x①≤②解:解不等式①得2x,解不等式②得4x≤.所以原不等式组的解集为24x≤.··········································································4分17.(本小题满分6分)解:(1)正确补全统计图; ··································································································2分(2)300人. ························································································································4分(3)合理即可. ···················································································································6分18.(本小题满分6分)解:13580502016.5202020(元),··································································4分∵16.55元元∴选择转转盘对顾客更合算. ······························································································6分19.(本小题满分6分)解:由题意知C D A D ⊥,E F A D ∥,∴90C E F°,设C Ex ,在R t C E F △中,ta nC E C F EE F,则8ta nta n 213C E x E Fx C F E°;在R t C E G △中,ta nC E C G EG E,则4ta nta n 373C E x G Ex C G E °;······················ 4分∵E F F G E G ,∴845033xx .37.5x ,∴37.51.539C DC EE D(米).答:古塔的高度约是39米. ································································································6分20.(本小题满分8分)解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102xx,·········································································································3分解这个方程,得200x.经检验,200x是所列方程的根.22200200600xx.所以商场两次共购进这种运动服600套. ···········································································5分(2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ···············································································8分21.(本小题满分8分)证明:(1)∵四边形A B C D 是平行四边形,∴A BC D .∵A E 是B C 边上的高,且C G 是由A E 沿B C 方向平移而成.∴C G A D ⊥.CGEDB AF第19题图∴90A E B C G D°.∵A E C G ,∴R t R t A B E C D G △≌△.∴B ED G . ······················································································································4分(2)当32B CA B 时,四边形A B F C 是菱形.∵A B G F ∥,A G B F ∥,∴四边形A B F G 是平行四边形.∵R t A B E △中,60B°,∴30B A E°,∴12B E A B .∵32B E C F B C A B ,,∴12E F A B .∴A BB F .∴四边形A B F G 是菱形. ····································································································8分22.(本小题满分10分)解:(1)由题意:22125338124448b cb c解得7181292b c························································································································4分(2)12yy y 23115136298882x xx 21316822xx ;································································································6分(3)21316822yxx2111(1236)46822xx21(6)118x ADGCBFE 第21题图08a,∴抛物线开口向下.在对称轴6x 左侧y 随x 的增大而增大.由题意5x ,所以在4月份出售这种水产品每千克的利润最大. ···································9分最大利润211(46)111082(元).········································································10分23.(本小满分10分)解:把一个正方形分割成11个小正方形:···················································································2分把一个正三角形分割成4个小正三角形:···················································································3分把一个正三角形分割成6个小正三角形:················································································5分把一个正三角形分割成9个、10个和11个小正三角形:······················································8分把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形.····························································································································10分24.(本小题满分12分)解:(1)∵P E A B ∥∴D E D P D AD B.而10D E t D P t ,,∴10610t t,∴154t.图⑥图a图b图c图e图d AE DQPBFCN M(s )4tP E A B ,∥.···························2分(2)∵E F 平行且等于C D ,∴四边形C D E F 是平行四边形.∴D E QC D Q EB DC ,.∵10B C B D,∴D E QCD Q EB DC .∴D E Q B C D △∽△.∴D E E Q B CC D.104t E Q .∴25E Qt .过B 作B M C D ⊥,交C D 于M ,过P 作P N E F ⊥,交E F 于N .2210210049646B M.∵E D D Q B Pt ,∴102P Qt .又P N Q B M D △∽△,P Q P N B D B M,1021046t P N,4615t P N 211246464612255255P E Qt S E Q P Nt tt △.····································6分(3)114468622B C DS C D B M△.若225P E QB C DS S △△,则有2464628625525tt,解得1214t t ,.···············································································································9分(4)在P D E △和F B P △中,10D E B P t P DB Ft P D E F B PP D EF B P ,,△≌△,∴P D EP F C D EP F C DS S S △五边形四边形F B PP F C DS S △四边形86B C DS △.∴在运动过程中,五边形P F C D E 的面积不变.·······························································12分。

青岛市中考数学试题及答案

青岛市中考数学试题及答案

xx年青岛市中考数学试题及答案对于即将面临的学生们,历年的中卷一定要做一遍。

下面为大家带来一份xx年青岛市中考的及答案,欢送大家阅读参考,更多内容请关注!1.﹣的绝对值是( )A.﹣B.﹣C.D.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为( )A.13×107kgB.0.13×108kgC.1.3×107kgD.1.3×108kg3.以下四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.计算a?a5﹣(2a3)2的结果为( )A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.假设线段AB上有一个点P( a,b),那么点户在A1B1上的对应点P的坐标为( )A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.假设设原来的平均车速为xkm/h,那么根据题意可列方程为( )A. ﹣ =1B. ﹣ =1C. ﹣ =1D. ﹣ =17.如图,一扇形纸扇完全翻开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸局部的宽BD为15cm,假设纸扇两面贴纸,那么贴纸的面积为( )A.175πcm2B.350πcm2C. πcm2D.150πcm28.输入一组数据,按以下程序进展计算,输出结果如表:x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x 的大致范围为( )A.20.59.计算: = .10.“万人马拉松”活动组委会方案制作运动衫分发给参与者,为此,调查了局部参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如下图的扇形统计图.假设本次活动共有12000名参与者,那么估计其中选择红色运动衫的约有名.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,假设∠BCD=28°,那么∠ABD=°.12.二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,那么c的值为.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.假设△CEF的周长为18,那么OF 的长为.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,那么它的容积为cm3.15.:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.16.(1)化简:﹣(2)解不等式组,并写出它的整数解.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,假设两次数字之积大于2,那么小明胜,否那么小亮胜.这个游戏对双方公平吗?请说明理由.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD 与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C 的仰角为65°,求大楼CE的高度(结果保存整数).(参考数据:sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈ )19.甲、乙两名队员参加射击训练,成绩分别被制成以下两个统计图:根据以上信息,分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.假设选派其中一名参赛,你认为应选哪名队员?20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.抛物线上B,C两点到地面的间隔均为 m,到墙边似的间隔分别为 m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的间隔;(2)假设该墙的长度为10m,那么最多可以连续绘制几个这样的拋物线型图案?21.:如图,在?ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD 于点0.(1)求证:△ABE≌△CDF;(2)连接DG,假设DG=BG,那么四边形BEDF是什幺特殊四边形?请说明理由.22.某玩具厂生产一种玩具,本着控制固定本钱,降价促销的原那么,使生产的玩具能够全部售出.据市场调查,假设按每个玩具280元销售时,每月可销售300个.假设销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定本钱Q(元)与月产销量y(个)满足如下关系:月产销量y(个) … 160 200 240 300 …每个玩具的固定本钱Q(元) … 60 48 40 32 …(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定本钱Q(元)与月产销量y(个)之间的函数关系式;(3)假设每个玩具的固定本钱为30元,那么它占销售单价的几分之几?(4)假设该厂这种玩具的月产销量不超过400个,那么每个玩具的固定本钱至少为多少元?销售单价最低为多少元?23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按以下方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按以下方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n ﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD 交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停顿运动时,另一个点也停顿运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?假设存在,求出t的值;假设不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?假设存在,求出t的值;假设不存在,请说明理由.一、选择题(此题总分值24分,共有8道小题,每题3分)以下每题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是( )A.﹣B.﹣C.D.5【考点】实数的性质.【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣ |= .应选:C.2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为( )A.13×107kgB.0.13×108kgC.1.3×107kgD.1.3×108kg【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000kg=1.3×108kg.应选:D.3.以下四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.应选:B.。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

2009—2018山东省青岛市中考数学试卷含详细解答(历年真题)

2009—2018山东省青岛市中考数学试卷含详细解答(历年真题)

2018年山东省青岛市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)观察下列四个图形,中心对称图形是()A.B.C.D.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6 3.(3分)如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.4.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a65.(3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=,则BC的长是()A.B.C.3D.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2S乙2(填“>”、“=”、“<”)10.(3分)计算:2﹣1×+2cos30°=.11.(3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.12.(3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.14.(3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.三、作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.四、解答题(本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(1)解不等式组:<>(2)化简:(﹣2)•.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C (6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.23.(10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1)条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为条,纵放的木棒为条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为条,竖放木棒条数为条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒条.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.2018年山东省青岛市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)观察下列四个图形,中心对称图形是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.3.(3分)如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.【解答】解:|﹣3|=3,故选:A.4.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a6【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.5.(3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=,则BC的长是()A.B.C.3D.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【解答】解:画图如下:则A'(5,﹣1),故选:D.8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2>S乙2(填“>”、“=”、“<”)【解答】解:从图看出:乙组数据的波动较小,故乙的方差较小,即S甲2>S乙2.故答案为:>.10.(3分)计算:2﹣1×+2cos30°=2.【解答】解:2﹣1×+2cos30°===2,故答案为:2.11.(3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.12.(3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是﹣π.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π14.(3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有10种.【解答】解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.三、作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:四、解答题(本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(1)解不等式组:<>(2)化简:(﹣2)•.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【解答】解:不公平,列表如下:由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.19.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C (6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).【解答】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解.故m的值是1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:14≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵14≤x≤16,∴x=14时,W2有最小值,最小值=88(万元),答:该公司第二年的利润W2至少为88万元.23.(10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1)条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320条.【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:这个长方体框架的横长是s,则:[3m+2(m+1)]×5+(m+1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,水平方向木棒条数之和为165×6=990条,竖直方向木棒条数为66×5=330条需要木棒1320条.故答案为22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320;24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),∴BN=16﹣AN=16﹣(10﹣2t),S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣t+72(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.(4)存在.理由:连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],∵KH∥EF,∴=,∴=,解得:t=,经检验:t=是分式方程的解,∴当t=s时,点E在∠ABD的平分线.2017年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)﹣的相反数是()A.8B.﹣8C.D.﹣2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是4.(3分)计算6m6÷(﹣2m2)3的结果为()A.﹣m B.﹣1C.D.﹣5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2B.4C.8D.不确定二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为.10.(3分)计算:(+)×=.11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为.13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为度.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★★★★★二○○九年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有( ) A .1种 B .2种 C .3种 D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A .12B .13 C .14 D .165.如图所示,数轴上点P 所表示的可能是( )AB .10CD6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )第2题图A .B . C. D .第5题图A .0.4米B .0.5米C .0.8米D .1米7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8Ω C .不小于14Ω D .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A.5030),B.(3050), C. D.(30, 二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为 公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会射箭金牌,为祖国争得了荣誉.下表记录了她在备战奥运会期间的一次训练成绩(单位:环):根据表中的数据可得:张娟娟这次训练成绩的中位数是环,众数是 环. 11.如图,AB 为O ⊙的直径,CD为O ⊙的弦,42ACD∠=°,则BAD ∠=°. 12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4R /Ω 第7题图 x 第8题图 A 第11题图 C ' B ' 第13题图 B A 6cm 3cm 1cm第14题图个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm . 三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛. 解:结论:四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:2211x x x x +-÷ (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题: (1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).AB C人数统计图 阅读 其他 娱乐 运动 40%分布统计图18.(本小题满分6分)在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分) 在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)CG E D B A F第19题图红 黄黄 绿绿绿 绿黄绿第18题图21.(本小题满分8分)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形?A D G CB F E 第21题图y 2为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639+=(个)小正方形. (2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32⨯个小正方形,从而分割成43210+⨯=(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n ≥9)个小正方形. 方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥9)个小正方形. 从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (n ≥9)个小正三角形. (1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图). (2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图). (3)分别把图c 、图d 和图e 中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)请你写出把一个正三角形分割成n (n ≥9)个小正三角形的分割方法(只写出分割方法,不用画图).图① 图② 图③ 图④ 图⑤ 图⑥图a图b图c图d图e24.(本小题满分12分)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)15.正确画出两条角平分线,确定圆心; ···························································· 2分确定半径;······························································································ 3分 正确画出图并写出结论. ··········································································· 4分 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分)(1)解:原式21(1)(1)x x x x x +=+-1xx =-. ·················································································· 4分 (2)322131722x x x x ->+⎧⎪⎨--⎪⎩①≤② 解:解不等式①得 2x >, 解不等式②得 4x ≤.所以原不等式组的解集为24x <≤. ·························································· 4分 17.(本小题满分6分)解:(1)正确补全统计图; ·············································································· 2分 (2)300人. ································································································ 4分 (3)合理即可. ···························································································· 6分 18.(本小题满分6分)解:13580502016.5202020⨯+⨯+⨯=(元), ···················································· 4分 ∵16.55>元元∴选择转转盘对顾客更合算. ··········································································· 6分 19.(本小题满分6分)解:由题意知CD AD ⊥,EF AD ∥,∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=, 则4tan tan 373CE x GE x CGE ===∠°; ················· 4分 ∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米). 答:古塔的高度约是39米. ············································································· 6分 20.(本小题满分8分) 解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x-=, ··················································································· 3分 解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以商场两次共购进这种运动服600套. ···························································· 5分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ······························································· 8分 21.(本小题满分8分) 证明:(1)∵四边形ABCD 是平行四边形, ∴AB CD =.∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成. ∴CG AD ⊥.CGEDB AF 第19题图∴90AEB CGD ∠=∠=°. ∵AE CG =,∴Rt Rt ABE CDG △≌△. ∴BE DG =. ······························································································ 4分(2)当32BC AB =时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥, ∴四边形ABFG 是平行四边形.∵Rt ABE △中,60B ∠=°, ∴30BAE ∠=°,∴12BE AB =.∵32BE CF BC AB ==,,∴12EF AB =.∴AB BF =.∴四边形ABFG 是菱形. ················································································ 8分22.(本小题满分10分) 解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ······························································································· 4分(2)12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭ 21316822x x =-++; ············································································ 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+A DG C B FE 第21题图∵108a =-<, ∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···························· 9分 最大利润211(46)111082=--+=(元). ························································ 10分 23.(本小满分10分)解:把一个正方形分割成11个小正方形:·································································· 2分 把一个正三角形分割成4个小正三角形:·································································· 3分 把一个正三角形分割成6个小正三角形:······························································· 5分 把一个正三角形分割成9个、10个和11个小正三角形:·········································· 8分 把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形. ·································································································· 10分24.(本小题满分12分)解:(1)∵PE AB ∥ ∴DE DP DA DB=. 而10DE t DP t ==-,, ∴10610t t -=, ∴154t =.图⑥图a图b图c 图e图dF∴当15(s)4t PE AB =,∥. ···················· 2分 (2)∵EF 平行且等于CD ,∴四边形CDEF 是平行四边形. ∴DEQ C DQE BDC ∠=∠∠=∠,.∵10BC BD ==,∴DEQ C DQE BDC ∠=∠=∠=∠.∴DEQ BCD △∽△. ∴DE EQ BC CD=. 104t EQ =. ∴25EQ t =. 过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM ====.∵ED DQ BP t ===,∴102PQ t =-.又PNQ BMD △∽△,PQ PN BD BM=, 10210t -=,15t PN ⎫=-⎪⎭211212255255PEQ t S EQ PN t ⎫==⨯⨯-=-+⎪⎭△. ···························· 6分(3)11422BCD S CD BM ==⨯⨯=△ 若225PEQ BCD S S =△△,则有2225525-+=⨯,解得1214t t ==,. ······················································································· 9分(4)在PDE △和FBP △中,10DE BP t PD BF t PDE FBP PDE FBP ==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△,∴PDE PFCDE PFCD S S S =+△五边形四边形FBP PFCD S S =+△四边形BCD S ==△.∴在运动过程中,五边形PFCDE 的面积不变. ················································· 12分。

相关文档
最新文档