2009山东省青岛市中考数学试题
山东省青岛市中考数学试卷含答案解析

山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×1054.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含 B.内切C.相交 D.外切6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.58.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=__________.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/坐标是.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,si n31°≈,tan39°≈,sin39°≈)21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人 C.1.5万人 D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内 B.内切C.相交 D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF 中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD 中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,。
2009年山东省各地市数学中考试卷(代数)2

2009年山东省各地市中考试题(代数)27.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,9.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( ) A .2 B .3C .4D .515.分解因式:2(3)(3)x x +-+=___________.4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .56.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .98.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B.D.25+12.在同一平面直角坐标系中,反比例函数8y x=-与一次函数2y x =-+交于A B 、两点,O 为坐标原点,则AOB △的面积为( ) A .2 B .6 C .10D .813.分解因式:227183x x ++= .14.方程3123x x =+的解是 . 12. 小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有 A .2个 B .3个 C .4个 D .5个7.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是(A)0020132340x ⋅=(B)0020234013x =⨯(C)0020(1132340x -=(D)0013x ⋅=9.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -, (3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是)xB CAD l(第12题)(A)M(B)N (C)P(D)Q12.如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点, 利用函数图象判断不等式1kx b x<+的解集为 (A)x x > x <<x <<(D)0x x <<或23. (本题满分8分)已知12,x x 是方程220x x a -+=的两个实数根,且1223x x += (1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.21.(9分)如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37方向上,距B 处20海里;C 处在A 处的北偏东65方向上.求,B C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈,,, sin 650.91cos650.42tan 65 2.14.≈≈≈,,22.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).MM(第6题)(第12题)23.(8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式. 24.(11分)如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当AD CD +最小时点D 的坐标; (3)以点A 为圆心,以AD 为半径作A .①证明:当AD CD +最小时,直线BD 与A 相切.②写出直线BD 与A 相切时,D 点的另一个坐标:___________. 26.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;x(第23题)(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标. 25.(12分)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论. 24.(本小题满分12分)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF(3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P)25.如图,在平面直角坐标系中,正方形OABC 的边长是2.O 为坐标原点,点A 在x 的正半轴上,点C 在y 的正半轴上.一条抛物线经过A 点,顶点D 是OC 的中点.(1)求抛物线的表达式;(2)正方形OABC 的对角线OB 与抛物线交于E 点,线段FG 过点E 与x 轴垂直,分别交x 轴和线段BC 于F ,G 点,试比较线段OE 与EG 的长度;(3)点H 是抛物线上在正方形内部的任意一点,线段IJ 过点H 与x 轴垂直,分别交x 轴和线段BC 于I 、J 点,点K 在y 轴的正半轴上,且OK =OH ,请证明△OHI ≌△如图,△OAB 是边长为2的等边三角形,过点A 的直线。
往年山东省青岛市中考数学真题及答案

往年山东省青岛市中考数学真题及答案一. 选择题(本题满分24分,共有8小题,每小题3分)1.( 3分)(往年•青岛)﹣2的绝对值是()B.﹣2 C.D.2A.﹣2.( 3分)(往年•青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.( 3分)(往年•青岛)如图,正方体表面上画有一圈黑色线条,则它的左视图是()A.B.C.D.4.( 3分)(往年•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离5.( 3分)(往年•青岛)某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(人) 1 1 5 2 1则下列说法正确的是()A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.( 3分)(往年•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.( 6,1)B.( 0,1)C.( 0,﹣3)D.( 6,﹣3)7.( 3分)(往年•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.8.( 3分)(往年•青岛)点A( x1,y1),B( x2,y2),C( x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二. 填空题(本题满分18分,共有6道小题,每小题3分)9.( 3分)(往年•青岛)计算:(﹣3)0+= _________ .10.( 3分)(往年•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_ 元.11.( 3分)(往年•青岛)如图,点A. B. C在⊙O上,∠AOC=60°,则∠ABC的度数是_________ .12.( 3分)(往年•青岛)如图,在一块长为22米. 宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________ .13.( 3分)(往年•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .14.( 3分)(往年•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________ cm.三. 作图题(本题满分4分)用圆规. 直尺作图,不写作法,但要保留作图痕迹.15.( 4分)(往年•青岛)已知:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四. 解答题(本题满分74分,共有9道小题)16.( 8分)(往年•青岛)( 1)化简:( 2)解不等式组:.17.( 6分)(往年•青岛)某校为开展每天一小时阳光体育活动,准备组建篮球. 排球. 足球. 乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答下列问题:( 1)补全条形统计图;( 2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;( 3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.( 6分)(往年•青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”. “花开富贵”. “吉星高照”,就可以分别获得100元. 50元. 20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500( 1)求“紫气东来”奖券出现的频率;( 2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.( 6分)(往年•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.( 8分)(往年•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离( B. F. C在一条直线上)( 1)求教学楼AB的高度;( 2)学校要在A. E之间挂一些彩旗,请你求出A. E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21.( 8分)(往年•青岛)已知:如图,四边形ABCD的对角线AC. BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.( 1)求证:△BOE≌△DOF;( 2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.( 10分)(往年•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:( 1)试判断y与x之间的函数关系,并求出函数关系式;( 2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;( 3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.( 10分)(往年•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共( m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P. Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P. Q. R,共6个点为顶点可把△ABC分割成_________ 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共( m+3)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共( m+4)个顶点可把四边形分割成_________ 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共( m+n)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的往年个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.( 12分)(往年•青岛)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D. E分别是AC. AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t( s)( 0<t<4).解答下列问题:( 1)当t为何值时,PQ⊥AB?( 2)当点Q在BE之间运动时,设五边形PQBCD的面积为y( cm2),求y与t之间的函数关系式;( 3)在( 2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S △PQE:S四边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.往年年山东省青岛市中考数学试卷参考答案与试题解析一. 选择题1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A二. 填空题(本题满分18分,共有6道小题,每小题3分)请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.( 22﹣x)( 17﹣x)=300.13..14.5.四. 解答题(本题满分74分,共有9道小题)16.解:( 1)原式==…4分解:( 2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:( 1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:( 2)报名参加2个兴趣小组的有400×=160人( 3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:( 1)或5%;( 2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.20.解:( 1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2, tan22°=,则=,解得:x=12.即教学楼的高12m.( 2)由( 1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A. E之间的距离约为27m.21.( 1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF( ASA);( 2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:( 1)y是x的一次函数,设y=kx+b,图象过点( 10,300),( 12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点( 14,180),( 16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;( 2)w=( x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;( 3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分, 故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2( 1﹣1),三角形内部2个点时,共分割成5部分,5=3+2( 2﹣1),三角形内部3个点时,共分割成7部分,7=3+2( 3﹣1),…,所以,三角形内部有m个点时,3+2( m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2( m﹣1)或2m+2;…6分问题解决:n+2( m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=往年代入上述代数式,得2m+n﹣2,=2×往年+8﹣2,=4024+8﹣2,=4030.…10分24.解:( 1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D. E分别是AC. AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.( 2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=( 4﹣t).S△PQE=EQ•PM=( 5﹣2t)•( 4﹣t)=t2﹣t+6, S梯形DCBE=×( 4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.( 3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29, 则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×( 4﹣2)=,ME=×( 4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).。
09年青岛市一模试题

二○○九年山东省青岛市初级中学学业水平模拟考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试卷上给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分) 下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面的表格内. 1.下列调查方式合适的是( ).A .为了解一批圆珠笔的使用寿命,采用普查的方式;B .为了解全国中学生的睡眠状况,采用普查的方式;C .为了解人们保护水资源的意识,采用抽样调查的方式;D .对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式.2.“鸟巢”能容纳91000位观众,将91000用科学计数法可以表示为( ). A .91×103 B .910×102 C .9.1×103 D. 9.1×1043.已知⊙O 的半径为3cm ,若圆心O 到直线a 的距离为4cm ,则直线a 与⊙O 的位置关系为( ).A .内切B . 相交C .外切 D.相离4.计算()32.y y --的结果是( ).A .-y 5B .y 5C . -y 6 D. y 6毕业学校_________________ 姓名_________________ 考试号_________________密 封5.一个几何体的三种视图如图所示,则这个几何体是(6.如下左图,直线a ∥b ,点B 在直线b 上且AB ⊥BC ,若∠ ).A .48° B. 42°C. 38°D. 30°7.已知△OBC 在直角坐标系中的位置如上△OBC 关于x 轴对称,则点B 的对应点B′ 的坐标为().A.(1,2) B .(1,-2) C .(-1,2) D .(-1,-2)8.已知点A (x 1,y 1)、B (x 2,y 2)是反比例函数y = x k( k ≠ 0 )的图象上的两点,且当x 1< x 2< 0时,y 1< y 2,则函数2y kx k =-与k y x=( k ≠ 0 )在同一直角坐标系中的图象可能是( ) .请将1—8各小题所选答案的标号填写在下表中相应的位置上: Bba 1AC2B CD A二、填空题(本题满分18分,共有6道小题,每小题3分)请将 9—14各小题的答案填写在第14小题后面的表格内.9_____.10.在不透明的袋子中有除颜色外完全相同的黑棋子10枚和白棋子若干枚,现从中随根据这些数据,你估计袋子中大约有_____枚白棋子.11.小明和同学一起去书店买书,他们先用30元买了一种科普书,又用30元买了一种文学书. 科普书的价格是文学书的1.5倍,他们所买的科普书比文学书少2本. 若设他们所买的文学书每本x 元,则根据题意可列方程:__________.12.某汽车对于A 城市的距离y (千米)与该汽车的行驶时间t (小时)之间的关系如下左图所示,则当该汽车的行驶时间为4小时时,该汽车距离A 城市 千米 .13.如上右图,扇形AOB 的圆心角为60°,四边形OCDE 是边长为1的菱形,点C 、E 、D 分别在OA 、OB 和弧AB 上,若过B 作BF ∥ED 交CD 的延长线于点F ,则图中阴影部分的面积为 .14.有若干张边长都是1的菱形和正三角形纸片,从中取一些纸片按如图顺序拼接起来(排在第一位的是菱形),可以组成一个大的平行四边形或梯形.若所取的菱形与正三角形纸片共2009张,则按如图所示的顺序拼接起来组成的图形是 .……请将9—14各小题的答案填写在下表中相应的位置上:/y AOBECDF三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,某新建小区要在一块三角形公共区域内修建一处公共服务设施,使它到三条人行道AB 、BC 、CA 的距离相等,请你在图中确定这处公共服务设施(用点P 表四、解答题(本题满分74分,共有9道小题) 16.(本题满分8分,共有2道小题,每小题4分)(1)求不等式 3(x -1)< x +5 的非负整数解. 解:(2)化简: (211a a a a --+)·21a a- . 解:17.(本小题满分6分)某校为了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并根据统计结果绘制了如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)扇形统计图中C 级所在的扇形圆心角的度数是 ; (2)该班学生体育测试成绩的中位数落在 等级内?(3)若该校九年级学生共有500人,请估计这次考试中A 级和B 级学生共有多少人? 解:18.(本小题满分6分)小明和小刚用如图所示的两个转盘做“配紫色”游戏.若配成紫色,小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若不公平,如何修改游戏规则才能使游戏对双方公平? 解:转盘甲转盘乙已知:如图,为测量塔AB的高度,小明从高为18米的楼CD的顶部D点处及底线部C点处测得塔顶A的仰角分别为45°和60°,试求该塔的高度(结果保留整数).密(参考数据:sin45°= cos45°≈0.7, tan45°=1, sin60°≈0.9, cos60°= 0.5, tan60°≈1.7)解:Array封20.(本小题满分8分)暑假里的一天,小南和同学一起勤工俭学,他们批发冰糕到景点去卖,共用60元批发了两种不同的冰糕40支.这两种冰糕的进价与售价如下表所示:他们卖完这些冰糕能赚多少钱?解:毕业学校_________________ 姓名_________________ 考试号_________________密 封已知:如图,在△ABC中,∠ACB=90°,E是四边形ACFE.(1)求证:△BED≌△CDF(2)四边形CEBF(3)当△ABC满足什么条件时,四边形CEBF (只写出需要满足的条件即可,不要求证明)解:某商场试销一种进价为10元/件的产品,调查得知试销期间该产品每天的销售量t (件)与每件的售价x (元/件)之间满足以下关系:t = -2x + 80 , 并且每天的销售量都不超过50件,也不少于20件.(1)求试销期间每件产品的售价在什么范围内?(2)求该商场试销期间,这种产品每天的销售利润y(元)与x之间的函数关系式;并求出每件产品的售价定为多少元时,每天的销售利润最大?最大利润是多少元?解:23.(本小题满分10分)探究发现:(1)已知:如图①,正方形ABCD 的边长为2,O 是它的中心(正多边形的各对称轴的交点,又称为正多边形的中心).当∠MON 绕O 点旋转时,正方形的周长被这个角的内部覆盖部分的长度恒为2,即BM +BN =2.解:(2)如图②,等边三角形ABC 的边长为a , O 当∠MON 绕O 覆盖部分的长度恒为a ,即BM +BN = a .求∠MON 解:数学试题第11页 (共12页)拓展延伸:正n 边形123A A A …n A 的边长为a ,O 是它的中心.当∠MON 绕O 点旋转时,正n 边形的周长被这个角的内部覆盖部分的长度恒为a ,则∠MON = .解决问题:正十边形123A A A …10A 的边长为a ,O 是它的中心.当∠MON 绕O 点旋转时,正十边形的周长被这个角的内部覆盖部分的长度恒为a ,则∠MON = .24.(本小题满分12分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB =BC =10cm ,CD =6cm ,∠C =∠D =90º .点P 由A 出发沿AB 方向向点B 匀速运动,速度为1cm/s ;点 Q 由B 出发沿BC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s)(0<t <5),解答下列问题:(1)求AD 的长度;(2)当t 为何值时,△PBQ 为直角三角形?(3)设△PBQ 的面积为y (cm 2),求y 与t 之间的函数关系式; (4)是否存在某一时刻t ,使得△PBQ 的面积是梯形ABCD 面积的25?若存在,求出此时t 的值;若不存在,说明理由. 解:BCD真情提示:亲爱的同学,请认真检查,不要漏题哟!密封线数学试题第12页(共12页)。
2024年山东省青岛市中考数学试题

2024年山东省青岛市中考数学试题一、单选题1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为()A.30.610⨯D.4610⨯⨯C.5610⨯B.360102.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是()A.a B.b C.c D.d4.如图所示的正六棱柱,其俯视图是()A.B.C.D.5.下列计算正确的是()A.2+=B.523a a a23÷=a a aC.235-⋅=-D.()236()a a a=22a a6.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺'''',则点A的对应点A'的坐标是()时针方向旋转90︒,得到四边形A B C DA .()1,2--B .()2,1--C . 2,1D .()1,27.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE 和正方形CDFG 中,CF ,DG 的延长线分别交AE ,AB 于点M ,N ,则FME ∠的度数是( )A .90︒B .99︒C .108︒D .135︒8.如图,A B C D ,,,是O e 上的点,半径3OA =,»»AB CD=,25DBC ∠=︒,连接AD ,则扇形AOB 的面积为( )A .5π4B .5π8C .5π2D .5π129.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =-,则过点(),2M c a b -和点()24,N b ac a b c --+的直线一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题10112sin 453-⎛⎫-= ⎪⎝︒⎭. 11.图①和图②中的两组数据,分别是甲、乙两地2024年5月27日至31日每天的最高气温,设这两组数据的方差分别为2甲s ,2乙s ,则2甲s 2乙s .(填“>”,“=”,“<”)12.如图,菱形ABCD 中,10BC =,面积为60,对角线AC 与BD 相交于点O ,过点A 作AE BC ⊥,交边BC 于点E ,连接EO ,则EO =.13.如图,某小区要在长为16m ,宽为12m 的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m .14.如图,ABC V 中,BA BC =,以BC 为直径的半圆O 分别交AB AC ,于点D ,E ,过点E 作半圆O 的切线,交AB 于点M ,交BC 的延长线于点N .若10ON =,3cos 5ABC ∠=,则半径OC 的长为.15.如图①,将边长为2的正方形纸板沿虚线剪掉边长为1的小正方形,得到如图②的“纸板卡”,若用这样完全相同的“纸板卡”拼成正方形,最少需要块;如图③,将长、宽、高分别为422,,的长方体砖块,切割掉长、宽、高分别为411,,的长方体,得到如图④的“直角砖块”,若用这样完全相同的“直角砖块”拼成正方体,最少需要块.三、解答题16.已知:如图,四边形ABCD ,E 为DC 边上一点.求作:四边形内一点P ,使EP BC P ,且点P 到,AB AD 的距离相等.17.(1)解不等式组:()11232x x x -⎧≤⎪⎨⎪<+⎩;(2)先化简22112a a a a ⎛⎫+--÷ ⎪⎝⎭,再从2-,0,3中选一个合适..的数作为a 的值代入求值. 18.某校准备开展“行走的课堂,生动的教育”研学活动,并计划从博物馆、动物园、植物园、海洋馆(依次用字母A ,B ,C ,D表示)中选择一处作为研学地点.为了解学生的选择意向,学校随机抽取部分学生进行调查,整理绘制了如下不完整的条形统计图和扇形统计图.根据以上信息,解答下列问题:(1)补全条形统计图;扇形统计图中A所对应的圆心角的度数为______°;(2)该校共有1600名学生,请你估计该校有多少名学生想去海洋馆;(3)根据以上数据,学校最终将海洋馆作为研学地点,研学后,学校从八年级各班分别随机抽取10名学生开展海洋知识竞赛.甲班10名学生的成绩(单位:分)分别是:75,80,80,82,83,85,90,90,90,95;乙班10名学生的成绩.(单位:分)的平均数、中位数、众数分别是:84,83,88.根据以上数据判断______班的竞赛成绩更好.(填“甲”或“乙”)19.学校拟举办庆祝“建国75周年”文艺汇演,每班选派一名志愿者,九年级一班的小明和小红都想参加,于是两人决定一起做“摸牌”游戏,获胜者参加.规则如下:将牌面数字分别为1,2,3的三张纸牌(除牌面数字外,其余都相同)背面朝上,洗匀后放在桌面上,小明先从中随机摸出一张,记下数字后放回并洗匀,小红再从中随机摸出一张.若两次摸到的数字之和大于4,则小明胜;若和小于4,则小红胜;若和等于4,则重复上述过程.(1)小明从三张纸牌中随机摸出一张,摸到“1”的概率是______;(2)请用列表或画树状图的方法,说明这个游戏对双方是否公平.20.“滑滑梯”是同学们小时候经常玩的游戏,滑梯的坡角越小,安全性越高.从安全性及适用性出发,小亮同学对所在小区的一处滑梯进行调研,制定了如下改造方案,请你帮小亮解决方案中的问题.方案设计如图,将滑梯顶端BC 拓宽为BE ,使1m CE =,并将原来的滑梯CF 改为EG ,(图中所有点均在同一平面内,点,,B C E 在同一直线上,点,,,A D F G 在同一直线上)(参考数据:171752739sin32,cos32,tan32,sin 42,cos42,tan 423220840410︒≈︒≈︒≈︒≈︒≈︒≈) 21.为培养学生的创新意识,提高学生的动手能力,某校计划购买一批航空、航海模型.已知商场某品牌航空模型的单价比航海模型的单价多35元,用2000元购买航空模型的数量是用1800元购买航海模型数量的45. (1)求航空和航海模型的单价;(2)学校采购时恰逢该商场“六一儿童节”促销:航空模型八折优惠.若购买航空、航海模型共120个,且航空模型数量不少于航海模型数量的12,请问分别购买多少个航空和航海模型,学校花费最少?22.如图,点1231,,,,,n n A A A A A +L 为反比例函数()0k y k x =>图象上的点,其横坐标依次为1,2,3,,,1n n +L .过点123,,,,n A A A A L 作x 轴的垂线,垂足分别为点123,,,,n H H H H L ;过点2A 作2111A B A H ⊥于点1B ,过点3A 作3222A B A H ⊥于点2B ,…,过点1n A +作1n n n n A B A H +⊥于点n B .记112A B A △的面积为1223,S A B A △的面积为21,,n n n S A B A +⋅⋅⋅△的面积为n S .(1)当2k =时,点1B 的坐标为______,12S S +=______,123S S S ++=______,123n S S S S ++++=L ______(用含n 的代数式表示);(2)当3k =时,123n S S S S ++++=L ______(用含n 的代数式表示).23.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,ABD CDB ∠=∠,BE AC ⊥于点E ,DF AC ⊥于点F ,且BE DF =.(1)求证:四边形ABCD 是平行四边形;(2)若AB BO =,当ABE ∠等于多少度时,四边形ABCD 是矩形?请说明理由,并直接写出此时BC AB的值. 24.5月中旬,樱桃相继成熟,果农们迎来了繁忙的采摘销售季.为了解樱桃的收益情况,从第1天销售开始,小明对自己家的两处樱桃园连续15天的销售情况进行了统计与分析:(1)A 樱桃园第x 天的单价是______元/盒(用含x 的代数式表示);(2)求A 樱桃园第x 天的利润1y (元)与x 的函数关系式;(利润=单价⨯销售量-固定成本)(3)①2y 与x 的函数关系式是______;②求第几天两处樱桃园的利润之和(即12y y +)最大,最大是多少元?(4)这15天中,共有______天B 樱桃园的利润2y 比A 樱桃园的利润1y 大.25.如图①,Rt ABC △中,90,8cm,6cm,Rt ACB AC BC EDF ∠=︒==△中,90,6cm EDF DE DF ∠=︒==,边BC 与FD 重合,且顶点E 与AC 边上的定点N 重合,如图②,EDF V 从图①所示位置出发,沿射线NC 方向匀速运动,速度为1cm/s ;同时,动点O 从点A 出发,沿AB 方向匀速运动,速度为2/cm s ,EF 与BC 交于点P ,连接OP OE ,,设运动时间为()16s 05t t ⎛⎫<≤ ⎪⎝⎭.解答下列问题:(1)当t 为何值时,点A 在线段OE 的垂直平分线上?(2)设四边形PCEO 的面积为S ,求S 与t 的函数关系式;(3)如图③,过点O 作OQ AB ⊥,交AC 于点Q ,AOH △与AOQ △关于直线AB 对称,连接HB .是否存在某一时刻t ,使PO BH ∥?若存在,求出t 的值;若不存在,请说明理由.。
2009年青岛中考数学试题及答案

二○○九年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是()A .3B .13C .2D .122.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有()A .1种B .2种C .3种D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A .12B .13C .14D .165.如图所示,数轴上点P 所表示的可能是()A .6B .10C .15D .316.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A .0.4米B .0.5米C .0.8米D .1米第2题图A .B .C.D .10 1 2 3 4 P第5题图O第6题图7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应()A .不小于 4.8ΩB .不大于 4.8ΩC .不小于14ΩD .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是()A .(3035030),B .(3030350),C .(30330),D .(30303),二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会射箭金牌,为祖国争得了荣誉.下表记录了她在备战奥运会期间的一次训练成绩(单位:环):序号 1 2 3 4 5 6 7 8 9 10 11 12 成绩9910981010987109 根据表中的数据可得:张娟娟这次训练成绩的中位数是环,众数是环.11.如图,A B 为O ⊙的直径,C D 为O ⊙的弦,42A C D°,则B A D°.12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为.13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是.14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要cm .6 OR/ΩI /A8 第7题图Oxy第8题图AO DACB第11题图ADCBCDB第13题图EB A6cm3cm 1cm第14题图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(A B C △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.解:结论:四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)化简:2211x xx x(2)解不等式组:3221317.22xxxx ,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题:(1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).ABC50 40 30 20 10 0运动娱乐阅读其他项目402515人数统计图人数/人阅读其他娱乐运动40%分布统计图在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角21C F E°,然后往塔的方向前进50米到达B处,此时测得仰角37C G E°,已知测倾器高 1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:3sin375°≈,3ta n374°≈,9sin2125°≈,3ta n218°≈)20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%利润成本)CG EDBAF第19题图红黄黄绿绿绿绿黄绿第18题图已知:如图,在A B C D 中,AE 是BC 边上的高,将A B E △沿B C 方向平移,使点E 与点C 重合,得G F C △.(1)求证:B E D G ;(2)若60B°,当AB 与BC 满足什么数量关系时,四边形A B F G 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368yx,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法”.ADGCBFE 第21题图2524y 2(元)x (月)1 2 3 4 5 6 7 8 910 11 12第22题图2218y xbx cO基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.图①图②图③图④图⑤图⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639(个)小正方形.(2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32个小正方形,从而分割成43210(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n(n≥9)个小正方形.方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图).(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图).(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)图a图b图c图d图e(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).24.(本小题满分12分)如图,在梯形ABCD 中,A D B C ∥,6cm A D,4cm C D,10cm B CB D,点P由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交B D 于Q ,连接PE .若设运动时间为t (s )(05t).解答下列问题:(1)当t 为何值时,P E A B ∥?(2)设P E Q △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225P E QB C DS S △△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接P F ,在上述运动过程中,五边形P F C D E 的面积是否发生变化?说明理由.AE DQPBFC第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)题号 1 2 3 4 5 6 7 8答案 C D B C B D A A 二、填空题(本题满分18分,共有6道小题,每小题3分)题号9 10 11答案83.8109 9 48题号12 13 14答案20% 211022916n(或23664n)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心;···········································································2分确定半径;·····················································································································3分正确画出图并写出结论.······························································································4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)解:原式21(1)(1)x xx x x1xx.········································································································4分(2)322131722x xx x①≤②解:解不等式①得2x,解不等式②得4x≤.所以原不等式组的解集为24x≤.··········································································4分17.(本小题满分6分)解:(1)正确补全统计图; ··································································································2分(2)300人. ························································································································4分(3)合理即可. ···················································································································6分18.(本小题满分6分)解:13580502016.5202020(元),··································································4分∵16.55元元∴选择转转盘对顾客更合算. ······························································································6分19.(本小题满分6分)解:由题意知C D A D ⊥,E F A D ∥,∴90C E F°,设C Ex ,在R t C E F △中,ta nC E C F EE F,则8ta nta n 213C E x E Fx C F E°;在R t C E G △中,ta nC E C G EG E,则4ta nta n 373C E x G Ex C G E °;······················ 4分∵E F F G E G ,∴845033xx .37.5x ,∴37.51.539C DC EE D(米).答:古塔的高度约是39米. ································································································6分20.(本小题满分8分)解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102xx,·········································································································3分解这个方程,得200x.经检验,200x是所列方程的根.22200200600xx.所以商场两次共购进这种运动服600套. ···········································································5分(2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ···············································································8分21.(本小题满分8分)证明:(1)∵四边形A B C D 是平行四边形,∴A BC D .∵A E 是B C 边上的高,且C G 是由A E 沿B C 方向平移而成.∴C G A D ⊥.CGEDB AF第19题图∴90A E B C G D°.∵A E C G ,∴R t R t A B E C D G △≌△.∴B ED G . ······················································································································4分(2)当32B CA B 时,四边形A B F C 是菱形.∵A B G F ∥,A G B F ∥,∴四边形A B F G 是平行四边形.∵R t A B E △中,60B°,∴30B A E°,∴12B E A B .∵32B E C F B C A B ,,∴12E F A B .∴A BB F .∴四边形A B F G 是菱形. ····································································································8分22.(本小题满分10分)解:(1)由题意:22125338124448b cb c解得7181292b c························································································································4分(2)12yy y 23115136298882x xx 21316822xx ;································································································6分(3)21316822yxx2111(1236)46822xx21(6)118x ADGCBFE 第21题图08a,∴抛物线开口向下.在对称轴6x 左侧y 随x 的增大而增大.由题意5x ,所以在4月份出售这种水产品每千克的利润最大. ···································9分最大利润211(46)111082(元).········································································10分23.(本小满分10分)解:把一个正方形分割成11个小正方形:···················································································2分把一个正三角形分割成4个小正三角形:···················································································3分把一个正三角形分割成6个小正三角形:················································································5分把一个正三角形分割成9个、10个和11个小正三角形:······················································8分把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形.····························································································································10分24.(本小题满分12分)解:(1)∵P E A B ∥∴D E D P D AD B.而10D E t D P t ,,∴10610t t,∴154t.图⑥图a图b图c图e图d AE DQPBFCN M(s )4tP E A B ,∥.···························2分(2)∵E F 平行且等于C D ,∴四边形C D E F 是平行四边形.∴D E QC D Q EB DC ,.∵10B C B D,∴D E QCD Q EB DC .∴D E Q B C D △∽△.∴D E E Q B CC D.104t E Q .∴25E Qt .过B 作B M C D ⊥,交C D 于M ,过P 作P N E F ⊥,交E F 于N .2210210049646B M.∵E D D Q B Pt ,∴102P Qt .又P N Q B M D △∽△,P Q P N B D B M,1021046t P N,4615t P N 211246464612255255P E Qt S E Q P Nt tt △.····································6分(3)114468622B C DS C D B M△.若225P E QB C DS S △△,则有2464628625525tt,解得1214t t ,.···············································································································9分(4)在P D E △和F B P △中,10D E B P t P DB Ft P D E F B PP D EF B P ,,△≌△,∴P D EP F C D EP F C DS S S △五边形四边形F B PP F C DS S △四边形86B C DS △.∴在运动过程中,五边形P F C D E 的面积不变.·······························································12分。
2009年山东省济南市中考数学试卷与答案(word整理版)

2009年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分) 1.3-的相反数是( )A .3B .3-C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( )A .30︒B .60︒C .120︒D .150︒4.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米 6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .6 7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20 C .30、30 D .20、308.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )A B C D9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( )A .230cmB .230cm πC .260cm πD .2120cm10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,, ()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( ) A .()53--, B .()53, C .()53-,D .()53-,二、填空题(本大题共5个小题,每小题3分,共15分) 13.分解因式:29x -= .14.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .15.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 . 16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球则该队主力队员身高的方差是 厘米17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.11.73≈) 三、解答题(本大题共7个小题,共57分) 18.(7分)(1)计算:()()2121x x ++- (2)解分式方程:2131x x =--. 19.(7分)(1)已知,如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.20.(8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余.下.的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解)1- 2- 3-正面背面21.(8分)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?22.(9分)已知:如图,正比例函数y ax=的图象与反比例函数kyx=的图象交于点()32A,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)()M m n,是反比例函数图象上的一动点,其中03m<<,过点M作直线MN x∥轴,交y轴于点B;过点A作直线AC y∥轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.(第22题图)23.(9分)如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.24.(9分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.CB (第23题图) (第24题图)2009年山东省济南市中考数学试卷答案13. ()()33x x +- 14.3 15.216.2 17.62.1 18.(1)解:()()2121x x ++-=22122x x x +++- ································································································· 2分 =23x + ························································································································ 3分(2)解:去分母得:()213x x -=- ················································································· 1分 解得1x =- ············································································································· 2分检验1x =-是原方程的解 ····················································································· 3分 所以,原方程的解为1x =- ················································································· 4分 19.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ··························································································· 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ························································································· 2分 ∴AE CF = ········································································································ 3分(2)解:∵DE 是O 的直径∴90DBE =︒∠ ··································································································· 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ··········································· 2分 ∵AC 是O 的切线∴90CAO =︒∠ ··································································································· 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ························ 4分20.解:(1)k 为负数的概率是23··························································································· 3分 (2)画树状图············································································ 5分共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ······························································································· 6分所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ···································· 8分 21.解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ············ 1分由题意得20018001801700x y x y +=⎧⎨+=⎩······························································································ 3分解这个方程组得8005x y =⎧⎨=⎩ ································································································· 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元.·································· 5分 (2)设该公司职工丙六月份生产z 件产品·············································································· 6分 由题意得80052000z +≥ ······························································································ 7分解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ··········································································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ·········································································································· 2分 ∴反比例函数的表达式为:6y x = ············································································ 3分正比例函数的表达式为23y x = ············································································· 4分(2)观察图象,得在第一象限内, 当03x <<时,反比例函数的值大 于正比例函数的值.(3)BM DM = ······················································································································ 7分理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB = ∵3OC = ∴4OB = ····················································································································· 8分 即4n =∴632m n ==∴3333222MB MD ==-=, ∴MB MD = ··············································································································· 9分23.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ·········································································································· 1分在Rt ABK △中,sin 4542AK AB =︒==.2 3 1 32 11- 2-3开始第一次 第二次2cos 454242BK AB =︒== ············································································· 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ······································································ 3 (2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ······································································································ 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ·············································································································· 5分 即10257t t -=解得,5017t = ······················································································ 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t =······················································································································· 7分 ②当MN NC =时,如图④,过N 作NE MC ⊥于E由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC t c NC t -==又在Rt DHC △中,3cos 5CH c CD == ∴535t t -=解得258t = ······························································································ 8分 132cos 1025tFC C MC t ===-解得6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形····················· 9分24.解:(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ···················································································· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ········································· 3分(2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+ 则302k b b -+=⎧⎨=-⎩,······························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.··········································································· 5分 把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭, ························································································· 6分 (3)S 存在最大值 ····································································································· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ········································································································· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ······································································ 9分(第23题图⑤)A DC B H N MF (第24题图)。
2009—2018山东省青岛市中考数学试卷含详细解答(历年真题)

2018年山东省青岛市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)观察下列四个图形,中心对称图形是()A.B.C.D.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6 3.(3分)如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.4.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a65.(3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=,则BC的长是()A.B.C.3D.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2S乙2(填“>”、“=”、“<”)10.(3分)计算:2﹣1×+2cos30°=.11.(3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.12.(3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.14.(3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.三、作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.四、解答题(本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(1)解不等式组:<>(2)化简:(﹣2)•.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C (6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.23.(10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1)条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为条,纵放的木棒为条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为条,竖放木棒条数为条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒条.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.2018年山东省青岛市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)观察下列四个图形,中心对称图形是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.3.(3分)如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.【解答】解:|﹣3|=3,故选:A.4.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a6【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.5.(3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=,则BC的长是()A.B.C.3D.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【解答】解:画图如下:则A'(5,﹣1),故选:D.8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2>S乙2(填“>”、“=”、“<”)【解答】解:从图看出:乙组数据的波动较小,故乙的方差较小,即S甲2>S乙2.故答案为:>.10.(3分)计算:2﹣1×+2cos30°=2.【解答】解:2﹣1×+2cos30°===2,故答案为:2.11.(3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.12.(3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是﹣π.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π14.(3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有10种.【解答】解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.三、作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:四、解答题(本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(1)解不等式组:<>(2)化简:(﹣2)•.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【解答】解:不公平,列表如下:由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.19.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C (6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).【解答】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解.故m的值是1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:14≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵14≤x≤16,∴x=14时,W2有最小值,最小值=88(万元),答:该公司第二年的利润W2至少为88万元.23.(10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1)条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320条.【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:这个长方体框架的横长是s,则:[3m+2(m+1)]×5+(m+1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,水平方向木棒条数之和为165×6=990条,竖直方向木棒条数为66×5=330条需要木棒1320条.故答案为22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320;24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),∴BN=16﹣AN=16﹣(10﹣2t),S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣t+72(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.(4)存在.理由:连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],∵KH∥EF,∴=,∴=,解得:t=,经检验:t=是分式方程的解,∴当t=s时,点E在∠ABD的平分线.2017年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)﹣的相反数是()A.8B.﹣8C.D.﹣2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是4.(3分)计算6m6÷(﹣2m2)3的结果为()A.﹣m B.﹣1C.D.﹣5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2B.4C.8D.不确定二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为.10.(3分)计算:(+)×=.11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为.13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为度.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二○○九年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有( ) A .1种 B .2种 C .3种 D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A .12B .13 C .14 D .165.如图所示,数轴上点P 所表示的可能是( )AB .10CD6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米 B .0.5米 C .0.8米 D .1米第2题图A .B . C. D .第5题图7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8Ω C .不小于14Ω D .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A.5030), B.(3050), C. D.(30,二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为 公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会张娟娟这次训练成绩的中位数是 环,众数是环.11.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,42ACD ∠=°,则BAD ∠=°. 12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .R /Ω 第7题图 x 第8题图 A 第11题图 C ' B ' 第13题图 B A 6cm3cm 1cm第14题图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛. 解:结论:四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:2211x x x x +-÷ (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题: (1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).AB C人数统计图 阅读 其他 娱乐 运动 40%分布统计图在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分) 在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)CG E D B A F第19题图第18题图已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形? 为解决上面问题,我们先来研究两种简单的“基本分割法”.A D G CB F E 第21题图y 2基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639+=(个)小正方形. (2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32⨯个小正方形,从而分割成43210+⨯=(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n ≥9)个小正方形. 方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥9)个小正方形. 从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (n ≥9)个小正三角形. (1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图). (2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图). (3)分别把图c 、图d 和图e 中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)请你写出把一个正三角形分割成n (n ≥9)个小正三角形的分割方法(只写出分割方法,不用画图).图① 图② 图③ 图④ 图⑤ 图⑥图a图b图c图d图e24.(本小题满分12分)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.F 第24题图二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分.但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ············································································ 2分确定半径; ······················································································································ 3分 正确画出图并写出结论. ······························································································· 4分 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分)(1)解:原式21(1)(1)x x x x x +=+-1xx =-. ········································································································ 4分 (2)322131722x x x x ->+⎧⎪⎨--⎪⎩①≤② 解:解不等式①得 2x >, 解不等式②得 4x ≤.所以原不等式组的解集为24x <≤. ·········································································· 4分 17.(本小题满分6分) 解:(1)正确补全统计图; ··································································································· 2分(2)300人. ························································································································· 4分 (3)合理即可. ···················································································································· 6分 18.(本小题满分6分)解:13580502016.5202020⨯+⨯+⨯=(元), ·································································· 4分 ∵16.55>元元∴选择转转盘对顾客更合算. ······························································································· 6分 19.(本小题满分6分)解:由题意知CD AD ⊥,EF AD ∥,∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°; ······················ 4分∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米).答:古塔的高度约是39米. ································································································· 6分 20.(本小题满分8分) 解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x-=, ········································································································· 3分 解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以商场两次共购进这种运动服600套. ············································································ 5分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ················································································ 8分 21.(本小题满分8分) 证明:(1)∵四边形ABCD 是平行四边形, ∴AB CD =.∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成. ∴CG AD ⊥.∴90AEB CGD ∠=∠=°.CGEDB AF 第19题图∵AE CG =,∴Rt Rt ABE CDG △≌△. ∴BE DG =. ······················································································································· 4分(2)当32BC AB =时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥, ∴四边形ABFG 是平行四边形.∵Rt ABE △中,60B ∠=°, ∴30BAE ∠=°,∴12BE AB =.∵32BE CF BC AB ==,,∴12EF AB =.∴AB BF =.∴四边形ABFG 是菱形. ····································································································· 8分22.(本小题满分10分) 解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ························································································································ 4分(2)12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; ································································································ 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+ ∵108a =-<,A DG C B FE 第21题图∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···································· 9分 最大利润211(46)111082=--+=(元). ········································································ 10分 23.(本小满分10分)解:把一个正方形分割成11个小正方形:···················································································· 2分 把一个正三角形分割成4个小正三角形:···················································································· 3分 把一个正三角形分割成6个小正三角形:················································································ 5分 把一个正三角形分割成9个、10个和11个小正三角形:······················································ 8分 把一个正三角形分割成n (9n ≥)个小正三角形的分割方法:通过“基本分割法1”、“基本分割法2”或其组合,把一个正三角形分割成9个、10个和11个小正三角形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正三角形,依次类推,即可把一个正三角形分割成n (9n ≥)个小正三角形. ···························································································································· 10分24.(本小题满分12分)解:(1)∵PE AB ∥ ∴DE DP DA DB=. 而10DE t DP t ==-,, ∴10610t t -=, ∴154t =. ∴当15(s)4t PE AB =,∥. ··························· 2分图⑥图a图b图c 图e图dF(2)∵EF 平行且等于CD ,∴四边形CDEF 是平行四边形.∴DEQ C DQE BDC ∠=∠∠=∠,.∵10BC BD ==,∴DEQ C DQE BDC ∠=∠=∠=∠.∴DEQ BCD △∽△. ∴DE EQ BC CD=. 104t EQ =. ∴25EQ t =. 过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM ==∵ED DQ BP t ===,∴102PQ t =-.又PNQ BMD △∽△,PQ PN BD BM=, 10210t -=15t PN ⎫=-⎪⎭211212255PEQ t S EQ PN t ⎫==⨯⨯-=⎪⎭△. ···································· 6分(3)11422BCD S CD BM ==⨯⨯=△ 若225PEQ BCD S S =△△,则有2225=⨯, 解得1214t t ==,. ··············································································································· 9分(4)在PDE △和FBP △中,10DE BP t PD BF t PDE FBP PDE FBP ==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△,∴PDE PFCDE PFCD S S S =+△五边形四边形FBP PFCD S S =+△四边形BCD S ==△∴在运动过程中,五边形PFCDE 的面积不变. ······························································· 12分。