青岛市中考数学试题及答案

合集下载

山东省青岛市2021年中考数学试卷及答案解析

山东省青岛市2021年中考数学试卷及答案解析

山东省青岛市2021年中考数学试卷及答案解析2021年山东省青岛市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分后)观测以下四个图形,中心对称图形就是()a.b.c.d.2.(3分后)斑叶兰被列入国家二级维护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法则表示为()a.5×107b.5×107c.0.5×106d.5×1063.(3分后)例如图,点a所则表示的数的绝对值就是()a.3b.3c.d.4.(3分后)排序(a2)35a3?a3的结果就是()a.a55a6b.a65a9c.4a6d.4a6的中点,则5.(3分)如图,点a、b、c、d在⊙o上,∠aoc=140°,点b是∠d的度数是()a.70°b.55°c.35.5°d.35°6.(3分)如图,三角形纸片abc,ab=ac,∠bac=90°,点e为ab中点.沿过点e的直线折叠,使点b与点a重合,折痕现交于点f.已知ef=,则bc的长是()a.b.c.3d.7.(3分)如图,将线段ab绕点p按顺时针方向旋转90°,得到线段a'b',其中点a、b的对应点分别是点a'、b',则点a'的坐标是()a.(1,3)b.(4,0)c.(3,3)d.(5,1)8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()a.b.c.d.二、填空题(每题3分后,满分18分后,将答案填上在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为s甲2、s乙2,则s甲2s乙2(填“>”、“=”、“<”)10.(3分后)排序:21×+2cos30°=.11.(3分后)5月份,甲、乙两个工厂用水量共为200吨.步入夏季用水高峰期后,两工厂积极响应国家声援,实行节水措施.6月份,甲工厂用水量比5月份增加了15%,乙工厂用水量比5月份增加了10%,两个工厂6月份用水量共为174吨,谋两个工厂5月份的用水量各就是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列于关于x,y的方程组为.12.(3分)如图,已知正方形abcd的边长为5,点e、f分别在ad、dc上,ae=df=2,be与af相交于点g,点h为bf的中点,连接gh,则gh的长为.13.(3分后)例如图,rt△abc,∠b=90°,∠c=30°,o为ac上一点,oa=2,以o 为圆心,以oa为半径的圆与cb相切于点e,与ab相交于点f,连接oe、of,则图中阴影部分的面积是.14.(3分后)一个由16个完全相同的小立方块搭起的几何体,其最下面一层放置了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的乘法共有种.三、作图题:本大题满分4分.15.(4分后)未知:例如图,∠abc,射线bc上一点d.求作:等腰△pbd,使线段bd为等腰△pbd的底边,点p在∠abc内部,且点p到∠abc两边的距离相等.四、答疑题(本大题共9小题,共74分后.求解应允写下文字说明、证明过程或编程语言步骤.)16.(8分)(1)解不等式组:(2)化简:(2)?.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共出名同学参予问卷调查;(2)移去条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.(6分后)某区域平面示意图例如图,点o在河的一侧,ac和bc则表示两条互相横向的公路.甲勘测员在a处测得点o坐落于北偏东45°,乙勘测员在b处测得点o坐落于南偏西73.7°,测出ac=840m,bc=500m.命令出点o至bc的距离.参照数据:sin73.7°≈,cos73.7°≈,tan73.7°≈20.(8分)已知反比例函数的图象经过三个点a(4,3),b(2m,y1),c(6m,y2),其中m>0.(1)当y1y2=4时,谋m的值;(2)如图,过点b、c分别作x轴、y轴的垂线,两垂线相交于点d,点p在x轴上,若三角形pbd的面积是8,请写出点p坐标(不需要写解答过程).。

2020年山东省青岛市中考数学试卷和答案

2020年山东省青岛市中考数学试卷和答案

2020年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的绝对值是()A.4 B.﹣4 C.D.2.(3分)下列四个图形中,中心对称图形是()A.B.C.D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣9 4.(3分)如图所示的几何体,其俯视图是()A.B.C.D.5.(3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.(3分)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.(3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.48.(3分)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:(﹣)×=.10.(3分)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).甲乙应聘者项目学历98经验76工作态度5711.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.(3分)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF 交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC =16,的长为π,则图中阴影部分的面积为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C 之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD 上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w (元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a (1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S 与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE 的平分线上?若存在,求出t的值;若不存在,请说明理由.答案一、选择题(本大题共8小题,每小题3分,共24分)1.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.2.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.3.【解答】解:将0.000000022用科学记数法表示为2.2×10﹣8.故选:B.4.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.5.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.6.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.7.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.8.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y=x﹣b的图象经过二三四象限.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.【解答】解:原式=(2﹣)×=×=4,故答案为:4.10.【解答】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.11.【解答】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.12.【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.13.【解答】解:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴=,∴AE===2,∴=,∴AH=,即点A到DF的距离为,故答案为:.14.【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.【解答】解:如图所示:⊙O即为所求.四、解答题(本大题共9小题,共74分)16.【解答】解:(1)原式=(+)÷(﹣)=÷=•=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.17.【解答】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.18.【解答】解:如图,过点A作AE⊥BD于点E,过点C作CF ⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×≈4.3(海里).答:观测塔A与渔船C之间的距离约为4.3海里.19.【解答】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.20.【解答】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.22.【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN•GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.23.【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5=9,这2个整数之和共有9﹣3+1=7种不同情况;故答案为:7;(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为n+n﹣1=2n﹣1,这2个整数之和共有2n﹣1﹣3+1=2n﹣3种不同情况;故答案为:2n﹣3;探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为2+3+4=9,这3个整数之和共有9﹣6+1=4种不同情况;故答案为:4;(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为n+(n ﹣1)+(n﹣2)=3n﹣3,这3个整数之和共有3n﹣3﹣6+1=3n ﹣8种不同结果,故答案为:3n﹣8;探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和的最小值为1+2+3+4=10,最大值为n+(n ﹣1)+(n﹣2)+(n﹣3)=4n﹣6,因此这4个整数之和共有4n ﹣6﹣10+1=4n﹣15种不同结果,归纳总结:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取a个整数,这a个整数之和的最小值为1+2+…+a=,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)+…+(n﹣a+1)=na﹣,因此这a个整数之和共有na﹣﹣+1=a(n﹣a)+1种不同结果,故答案为:a(n﹣a)+1;问题解决:将n=100,a=5,代入a(n﹣a)+1得;5×(100﹣5)+1=476,故答案为:476;拓展延伸:(1)设从1,2,3,…,36这36个整数中任取a个整数,使得取出的这些整数之和共有204种不同的结果,由上述结论得,a(36﹣a)+1=204,解得,a=7或a=29;答:从1,2,3,…,36这36个整数中任取7个整数或取29个整数,能使取出的这些整数之和共有204种不同的结果;(2)根据上述规律,从(n+1)个连续整数中任取a个整数,这a 个整数之和共有a(n+1﹣a)+1,故答案为:a(n+1﹣a)+1.24.【解答】解:(1)∵AB∥CD,∴,∴,∴CM=,∵点M在线段CQ的垂直平分线上,∴CM=MQ,∴1×t=,∴t=;(2)如图1,过点Q作QN⊥AF于点N,∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,∴AC===10cm,EF===10cm,∵CE=2cm,CM=cm,∴EM===,∵sin∠PAH=sin∠CAB,∴,∴,∴PH=t,同理可求QN=6﹣t,∵四边形PQNH是矩形,∴PH=NQ,∴6﹣t=t,∴t=3;∴当t=3时,四边形PQNH为矩形;(3)如图2,过点Q作QN⊥AF于点N,由(2)可知QN=6﹣t,∵cos∠PAH=cos∠CAB,∴,∴,∴AH=t,∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,∴S=×6×(8﹣t+6+8﹣t+)﹣××[6﹣(6﹣t)]﹣×(6﹣t)(8﹣t+6)=﹣t2+t+;(4)存在,理由如下:如图3,连接PF,延长AC交EF于K,∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,∴△ABC≌△EBF(SSS),∴∠E=∠CAB,又∵∠ACB=∠ECK,∴∠ABC=∠EKC=90°,∵S△CEM=×EC×CM=×EM×CK,∴CK==,∵PF平分∠AFE,PH⊥AF,PK⊥EF,∴PH=PK,∴t=10﹣2t+,∴t=,∴当t=时,使点P在∠AFE的平分线上.观沧海两汉:曹操东临碣石,以观沧海。

【真题】青岛市中考数学试题含答案

【真题】青岛市中考数学试题含答案

山东省青岛市中考数学试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察下列四个图形,中心对称图形是()A. B. C. D.2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.7510⨯ B.7510-⨯ C.60.510-⨯ D.6510-⨯3.如图,点A所表示的数的绝对值是()A.3 B.3- C.13D.13-4.计算()32335a a a-⋅的结果是()A.565a a- B.695a a- C.64a- D.64a5.如图,点A B C D、、、在O上,140AOC∠=︒,点B是AC的中点,则D∠的度数是()A.70︒ B.55︒ C.35.5︒ D.35︒6.如图,三角形纸片ABC,,90AB AC BAC=∠=︒,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知32EF=,则BC的长是()A 32.32.3 D.7.如图,将线段AB 绕点P 按顺时针方向旋转90︒,得到线段A B '',其中点A B 、的对应点分别是点A B ''、,,则点A '的坐标是( )A .()1,3-B .()4,0C .()3,3-D .()5,1- 8.已知一次函数by x c a=+的图象如图,则二次函数2y ax bx c =++在平面直角坐标系中的图象可能是( ) A .B .C . D .第Ⅱ卷(共96分)二、填空题(每题3分,满分18分,将答案填在答题纸上)9.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22S S 甲乙、,则2S 甲 2S 乙(填“>”、“=”、“<”)10.计算:12122cos30-︒= .11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .12.已知正方形ABCD 的边长为5,点E F 、分别在AD DC 、上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .13.如图,Rt ABC ∆,90,30B C ∠=︒∠=︒,O 为AC 上一点,2OA =,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE OF 、,则图中阴影部分的面积是 .14.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了 9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.三、作图题:本大题满分4分.15. 已知:如图,ABC ∠,射线BC 上一点D .求作:等腰PBD ∆,使线段BD 为等腰PBD ∆的底边,点P 在ABC ∠内部,且点P 到ABC ∠两边的距离相等.四、解答题 (本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(1)解不等式组:21,321614x x -⎧<⎪⎨⎪+>⎩ (2)化简:22121x x x x ⎛⎫+-⋅ ⎪-⎝⎭.17.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.八年级(1 )班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45︒,乙勘测员在B处测得点O位于南偏西73.7︒,测得840,500AC m BC m==.请求出点O到BC的距离.参考数据:2473.7s25in︒≈,773.7c s25o︒≈,2473.7ta7n︒≈20.已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).21.已知:如图,ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB AF =;(2)若,120AG AB BCD =∠=︒,判断四边形ACDF 的形状,并证明你的结论.22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司 按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.23.问题提出:用若干相同的一个单位长度的细直木棒,按照下图方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法. 探究一用若干木棒来搭建横长是m ,纵长是n 的矩形框架(m n 、是正整数),需要木棒的条数. 如图①,当1,1m n ==时,横放木棒为()111⨯+条,纵放木棒为()111+⨯条,共需4条; 如图②,当2,1m n ==时,横放木棒为()211⨯+条,纵放木棒为()211+⨯条,共需7条;如图③,当2,2m n ==时,横放木棒为()221⨯+)条,纵放木棒为()212+⨯条,共需12条; 如图④,当3,1m n ==时,横放木棒为()311⨯+条,纵放木棒为()311+⨯条,共需10条;如图⑤,当3,2m n ==时,横放木棒为()321⨯+条,纵放木棒为()312+⨯条,共需17条.问题(一):当4,2m n ==时,共需木棒 条.问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为 条, 纵放的木棒为 条. 探究二用若干木棒来搭建横长是m ,纵长是n ,高是s 的长方体框架(m n s 、、是正整数),需要木 棒的条数. 如图⑥,当3,2,1m n s ===时,横放与纵放木棒之和为()()()32131211=34⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121112+⨯+⨯=条,共需46条;如图⑦,当3,2,2m n s ===时,横放与纵放木棒之和为()()()3213122151⨯+++⨯⨯+=⎡⎤⎣⎦条,竖放木棒为()()3121224+⨯+⨯=条,共需75条;如图⑧,当3,2,3m n s ===时,横放与纵放木棒之和为()()()32131231=68⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121336+⨯+⨯=条,共需104条.问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和 为 条,竖放木棒条数为 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .拓展应用:若按照如图方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.24.已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.11 / 11。

2020年山东省青岛市中考数学试卷(有详细解析)

2020年山东省青岛市中考数学试卷(有详细解析)

2020年山东省青岛市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共24.0分)1.−4的绝对值是()A. 4B. −4C. 14D. −142.下列四个图形中,中心对称图形是()A. B. C. D.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A. 2.2×108B. 2.2×10−8C. 0.22×10−7D. 22×10−94.如图所示的几何体,其俯视图是()A.B.C.D.5.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)6.如图,BD是⊙O的直径,点A,C在⊙O上,AB⏜=AD⏜,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A. 99°B. 108°C. 110°D. 117°7.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√528.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=c的图象如图所示,xx−b的图象可能是()则一次函数y=caA. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:(√12−√4)×√3=______.310. 某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么______将被录用应聘者 项目 甲 乙 学历 9 8 经验 7 6 工作态度5711. 如图,点A 是反比例函数y =kx (x >0)图象上的一点,AB 垂直于x 轴,垂足为B ,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a =______.12. 抛物线y =2x 2+2(k −1)x −k(k 为常数)与x 轴交点的个数是______. 13. 如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G.若DE =2,OF =3,则点A 到DF 的距离为______.14. 如图,在△ABC 中,O 为BC 边上的一点,以O 为圆心的半圆分别与AB ,AC 相切于点M ,N.已知∠BAC =120°,AB +AC =16,MN⏜的长为π,则图中阴影部分的面积为______.三、计算题(本大题共2小题,共16.0分)15. 如图,在东西方向的海岸上有两个相距6海里的码头B ,D ,某海岛上的观测塔A 距离海岸5海里,在A 处测得B 位于南偏西22°方向.一艘渔船从D 出发,沿正北方向航行至C 处,此时在A 处测得C 位于南偏东67°方向.求此时观测塔A 与渔船C 之间的距离(结果精确到0.1海里).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈35,sin67°≈1213,cos67°≈513,tan67°≈125)16.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共8小题,共62.0分)17.已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.18.(1)计算:(1a +1b)÷(ab−ba);(2)解不等式组:{2x−3≥−5, 13x+2<x.19.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.20.某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=______;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是______分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.21.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(ℎ)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(ℎ)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时倍.求单独打开甲进水口注满游泳池需多少小时?间的4322.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.23.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表所取的2个整数1,21,32,32个整数之和345如表①,所取的个整数之和可以为,,,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.24.已知:如图,在四边形ABCD和Rt△EBF中,AB//CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A 出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.答案和解析1.A解:∵|−4|=4,∴−4的绝对值是4.2.D解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.3.B解:将0.000000022用科学记数法表示为2.2×10−8.4.A解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.5.D解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(−1,4).6.B解:∵BD 是⊙O 的直径,∴∠BAD =90°,∵AB⏜=AD ⏜, ∴∠B =∠D =45°,∵∠DAC =12∠COD =12×126°=63°,∴∠AGB =∠DAC +∠D =63°+45°=108°.7. C解:∵矩形ABCD ,∴AD//BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,∴AE =AF =3,由折叠得,FC =AF ,OA =OC ,∴BC =3+5=8,在Rt △ABF 中,AB =√52−32=4,在Rt △ABC 中,AC =√42+82=4√5,∴OA =OC =2√5,8. B解:观察函数图象可知:a <0,b >0,c >0,∴c a <0,−b <0,∴一次函数y =c a x −b 的图象经过二三四象限.9. 4解:原式=(2√3−2√33)×√3 =4√33×√3=4,10. 乙解:∵x 甲−=9×2+7×1+5×32+1+3=203,x 乙−=8×2+6+7×32+1+3=436, ∴x 甲−<x 乙−,∴乙将被录用,11.127解:∵AB垂直于x轴,垂足为B,|k|,∴△OAB的面积=12|k|=6,即12而k>0,∴k=12,∴反比例函数为y=12,x∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=12.712.2解:∵抛物线y=2x2+2(k−1)x−k(k为常数),∴当y=0时,0=2x2+2(k−1)x−k,∴△=[2(k−1)]2−4×2×(−k)=4k2+4>0,∴0=2x2+2(k−1)x−k有两个不相等的实数根,∴抛物线y=2x2+2(k−1)x−k(k为常数)与x轴有两个交点,13.4√55解:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,AE,∴DF=AF=EF=12∴OF垂直平分AD,∴AG=DG,∴FG=1DE=1,2∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴AHDE =ADAE,∴AE=√AD2+DE2=√42+22=2√5,∴AH2=2√5,∴AH=4√55,即点A到DF的距离为4√55,14.3(8−√3−π)解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).15.解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE⋅tan22°=5×25=2,∴DE=BD−BE=6−2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC=FCsin67∘=4×1312≈4.3(海里).答:观测塔A与渔船C之间的距离约为4.3海里.16.解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.17.解:如图所示:⊙O即为所求.18.解:(1)原式=(bab +aab)÷(a2ab−b2ab)=a+bab ÷a2−b2ab=a+bab ⋅ab(a+b)(a−b)=1a−b;(2)解不等式2x−3≥−5,得:x≥−1,解不等式13x+2<x,得:x>3,则不等式组的解集为x>3.19.解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P (小颖)=36=12,P (小亮)=36=12, 因此游戏是公平.20. 20% 84.5解:(1)8÷16%=50(人),50−4−8−10−12=16(人),补全频数直方图如图所示:(2)m =10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为84+852=84.5, 因此中位数是84.5,故答案为:84.5;(4)1200×12+1650=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.21. 解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380−100)÷2=140(m 3/ℎ);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.∴甲进水口进水的速度是乙进水口进水速度的34,∵同时打开甲、乙两个进水口的注水速度是140m3/ℎ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m3/ℎ),480÷60=8(ℎ),即单独打开甲进水口注满游泳池需8h.22.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,{AD=CB∠ADE=∠CBF DE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD//BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.23.7 2n−3 4 3n−84n−15a(n−a)+1476 a(n−a+1)+1解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5=9,这2个整数之和共有9−3+1=7种不同情况;故答案为:7;(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为n+n−1=2n−1,这2个整数之和共有2n−1−3+1=2n−3种不同情况;故答案为:2n−3;探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为2+3+4=9,这3个整数之和共有9−6+1=4种不同情况;故答案为:4;(2)从1,2,3,…,n(n 为整数,且n ≥4)这n 个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为n +(n −1)+(n −2)=3n −3,这3个整数之和共有3n −3−6+1=3n −8种不同结果,故答案为:3n −8;探究三:从1,2,3,…,n(n 为整数,且n ≥5)这n 个整数中任取4个整数,这4个整数之和的最小值为1+2+3+4=10,最大值为n +(n −1)+(n −2)+(n −3)=4n −6,因此这4个整数之和共有4n −6−10+1=4n −15种不同结果,归纳总结:从1,2,3,…,n(n 为整数,且n ≥5)这n 个整数中任取a 个整数,这a 个整数之和的最小值为1+2+⋯+a =a(a+1)2,最大值为n +(n −1)+(n −2)+(n −3)+⋯+(n −a +1)=na −a(a−1)2,因此这a 个整数之和共有na −a(a−1)2−a(a+1)2+1=a(n −a)+1种不同结果,故答案为:a(n −a)+1;问题解决:将n =100,a =5,代入a(n −a)+1得;5×(100−5)+1=476,故答案为:476;拓展延伸:(1)设从1,2,3,…,36这36个整数中任取a 个整数,使得取出的这些整数之和共有204种不同的结果,由上述结论得,a(36−a)+1=204,解得,a =7或a =29;答:从1,2,3,…,36这36个整数中任取7个整数或取29个整数,能使取出的这些整数之和共有204种不同的结果;(2)根据上述规律,从(n +1)个连续整数中任取a 个整数,这a 个整数之和共有a(n +1−a)+1,故答案为:a(n +1−a)+1.24. 解:(1)∵AB//CD ,∴CM BF =CE BE , ∴8−68=CM 6, ∴CM =32,∵点M 在线段CQ 的垂直平分线上,∴CM =MQ ,∴1×t =32,∴t =32;(2)如图1,过点Q作QN⊥AF于点N,∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,∴AC=√AB2+BC2=√64+36=10cm,EF=√BF2+BE2=√64+36=10cm,∵CE=2cm,CM=32cm,∴EM=√EC2+CM2=√4+94=52,∵sin∠PAH=sin∠CAB,∴BCAC =PHAP,∴610=PH2t,∴PH=65t,同理可求QN=6−45t,∵四边形PQNH是矩形,∴PH=NQ,∴6−45t=65t,∴t=3;∴当t=3时,四边形PQNH为矩形;(3)如图2,过点Q作QN⊥AF于点N,由(2)可知QN=6−45t,∵cos∠PAH=cos∠CAB,∴AHAP =ABAC,∴AH2t =810,∴AH=85t,∵四边形QCGH的面积为S=S梯形GMFH−S△CMQ−S△HFQ,∴S=12×6×(8−85t+6+8−85t+32)−12×32×[6−(6−45t)]−12×(6−45t)(8−85t+6)=−1625t2+15t+572;(4)存在,理由如下:如图3,连接PF,延长AC交EF于K,∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,∴△ABC≌△EBF(SSS),∴∠E=∠CAB,又∵∠ACB=∠ECK,∴∠ABC=∠EKC=90°,∵S△CEM=12×EC×CM=12×EM×CK,∴CK=2×3 25 2=65,∵PF平分∠AFE,PH⊥AF,PK⊥EF,∴PH=PK,∴65t=10−2t+65,∴t=72,∴当t=72时,使点P在∠AFE的平分线上.。

青岛中考数学试题与答案(初中数学)

青岛中考数学试题与答案(初中数学)

青岛市中考数学真题一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006B .2007C .2008D .20095.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23-- B .13--C .23-+D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩32左视图4俯视图(第5题图)CA O B(第6题图)标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是() A .73cmB .74cmC .75cmD .76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .①②(第12题图)A DCPB(第10题图)60°x x x x x14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)化简:0293618(32)(12)23+--+-+-.20.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.序号 1 2 3 …图形…(第15题图)A E DB FC (第18题图) (第20题图)21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).4天 3天 2天 7天 6天 5天 30% 15% 10% 5%15% a 60 50 4030 20 102天 3天 4天 5天 6天 7天 (第21题图)时间人数DCB A②①(第22题图)23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG.. 求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.(第24题图) A D GE C B (第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分.一、选择题(本题共12个小题,每小题4分,满分48分)二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++. ····························································2分111 =.·································································4分1 =····································································································6分20.(本题满分8分)解:(1)12···································································································1分(2)13········································································································3分(3)根据题意,画树状图: ·············································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·····································································8分或根据题意,画表格: ····················································································6分1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始P (4的倍数)41164==. ·············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ···································· 1分 初一学生总数:2010%200÷=(人). ····························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ················································ 3分 频数分布直方图(如图)···················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ··························· 5分 (4)众数是4天,中位数是4天. ···································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································· 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ························· 3分 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==°, ··············· 4分5cos 5cos3032CE AC ACE =∠==° ·············5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分DB BA(第22题图)C(第21题图)551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.····································································· 4分 解这个方程,得12100200x x ==,. ································································ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°.······················· 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································· 6分BED BME ∴∠=∠. ····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······························ 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F .(第24题图)AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································· 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ····································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ······················································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ······································· 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································ 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,··············2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ··············································································· 6分 A D G E C B (第25题图)FP(第26题图)第 11 页 共 11 页 在223y x x =--中,令3y =-,得1202x x ==,. 2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ······································································ 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······················· 14分。

山东省青岛市2021年中考数学试题和答案解析详解完整版

山东省青岛市2021年中考数学试题和答案解析详解完整版
【答案】
三、作图题(本大题满分4分)
15.已知: 及其一边上的两点 , .
求作: ,使 ,且点 在 内部, .
【答案】见解析
四、解答题(本大题共9小题,共74分)
16.(1)计算: ;
(2)解不等式组: ,并写出它的整数解.
【答案】(1) ;(2) ,整数解 -1,0,1
17.为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘.请用列表或画树状图的方法说明这个游戏是否公平.
21.如图,在 中, 为 边的中点,连接 并延长,交 的延长线于点 ,延长 至点 ,使 ,分别连接 , , .
(1)求证: ;
(2)当 平分 时,四边形 是什么特殊四边形?请说明理由.
【答案】(1)见解析;(2)矩形,见解析
22.科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度 (米)与小钢球运动时间 (秒)之间的函数关系如图所示;小钢球离地面高度 (米)与它的运动时间 (秒)之间的函数关系如图中抛物线所示.
【答案】>
13.如图,正方形 内接于 , , 分别与 相切于点 和点 , 的延长线与 的延长线交于点 .已知 ,则图中阴影部分的面积为___________.

山东省青岛市2020年中考数学试题(解析版)

山东省青岛市2020年中考数学试题(解析版)

山东省青岛市2020年中考数学试题(解析版)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.【分析】(1)当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

山东省青岛市中考数学真题试题(含答案)

山东省青岛市中考数学真题试题(含答案)

青岛市二〇一五年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分; 第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.2的相反数是( ).A .2-B .2C .21 D .22.某种计算机完成一次基本运算的时间约为0.000 000 001s ,把0.000 000 001s 用科学计数法可以表示为( ). A .s 8101.0-⨯ B .s 9101.0-⨯ C .s 8101-⨯ D .s 9101-⨯ 3.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).4.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE =1,则BC =( ). A .3 B .2C .3D .23+5.小刚参加射击比赛,成绩统计如下表成绩(环)6 7 8 9 10 次数13231关于他的射击成绩,下列说法正确的是( ).A .极差是2环B .中位数是8环C .众数是9环D .平均数是9环 6.如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB =( )A .30°B .35°C .45°D .60°7.如图,菱形ABCD 的对角线AC 、BC 相交于点O ,E 、F 分别是AB 、BC 边上的中点,连接EF ,若EF =3,BD =4,则菱形ABCD 的周长为( ).A .4B .64C .74D .288. 如图,正比例函数x k y 11=的图像与反比例函数xk y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ).A .22>或<x x -B .202<<或<x x -C .2002<<或<<x x -D .202>或<<x x - 第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.计算:.________232723=÷-⋅a a a a10.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的31,那么 点A 的对应点A '的坐标是_______.11.把一个长、宽、高分别为3cm 、2cm 、1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (2cm )与高)(cm h 之间的函数关系是为_________________________12.如图,平面直角坐标系的原点O 是正方形ABCD 的中心,顶点A ,B 的坐标分别为(1,1)、(-1,1),把正方形ABCD 绕原点O 逆时针旋转45°得到正方形A 'B'C'D'则正方形ABCD 与正方形A 'B'C'D' 重叠部分形成的正八边形的边长为_____________________°.13.如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E=30°,则∠F= .14.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小正方体,王亮所搭几何体表面积为________________. 三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段c ,直线l l 及外一点A .求作:Rt △ABC ,使直角边为AC (AC ⊥l ,垂足为C )斜边AB =c .四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:nn n n n 1)12(2-÷++;(2)关于x 的一元二次方程 0322=-+m x x 有两个不相等的实数根,求m 的取值范围17.(本小题满分6分)某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?18.(本小题满分6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★★★★★二○○九年山东省青岛市初级中学学业水平考试数学试题考试时间:120 分钟;满分:120 分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24 道题.其中1-8 题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14 题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24 题请在试题给出的本题位置上做答.一、选择题(本题满分24 分,共有8道小题,每小题 3 分)下列每小题都给出标号为A、B、C、D 的四个结论,得分;不选、选错或选出的标号超过一个的不得分.请将在第8 小题后面给出表格的相应位置上.其中只有一个是正确的.每小题选对1.下列四个数中,其相反数是正整数的是( 1 B . 3 A .3C . 2 1D . 23.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图 形的有( )A .1种B .2种C .3种D .4 种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出 一球,记下颜色后放回袋中, 充分摇匀后, 再随机摸出一球, 两次都摸到黄球的概率是 ( ) 111 A . B . C . 2345.如图所示,数轴上点 P 所表示的可能是( 1 D . 6 ) B . 10 C . 15P 10 1 2 3 4第 5 题图6.一根水平放置的圆柱形输水管道横截面如图所示, 水深 0.2 米,则此输水管道的直径是( )其中有水部分水面宽0.8 米,最深处 第 2 题2.如图所示的几何体是由一些小立方块搭成的, 则这个几何体的俯视图是( D . 31 第 6 题D .1 米I (A )与电阻 R (Ω)之间 如果以此蓄电池为电源的用电器限制电流不得超过 10A ,那么此用电8.一艘轮船从港口 O 出发,以 15 海里 /时的速度沿北偏东 60°的方向航行 4小时后到达 A 处,此时观测到其正西方向 50 海里处有一座小岛 B .若以港口 O 为坐标原点, 正东方向为 x 轴的正方向, 正北方向为 y 轴的正方向, 1 海里为 1 个单位长度建立平面直角坐标系 (如图), 则小岛 B 所在位置的坐标是( )A .(30 3 50,30)B . (30,30 3 50)C .(30 3,30)D . (30,30 3)二、填空题(本题满分 18 分,共有 6道小题,每小题 3 分) 请将 9- 14各小题的答案填写在第 14 小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发 射升空,预计历经约 10个月,行程约 380 000 000 公里抵达火星轨道并定位. 将 380 000 000 公里用科学记数法可表示为 公里.10.在第 29 届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会 射箭金牌, 为祖国争得了荣誉. 下表记录了她在备战奥运会期间的一次训练序号 1 2 3 4 5 6 7 8 9 10 11 12 成绩 9 9 10 9 8 10 10 9 8 7 10 9 根据表中的数据可得: 张娟娟这次训练成绩的中位数是 环,众数是 环. 11.如图, AB 为⊙O 的直径, CD 为⊙O 的弦, ACD 42°,则 BAD °.12.某公司 2006 年的产值为 500 万元, 2008 年的产值为 720 万元,则该公司产值的年平均 增长率为 .13.如图.边长为 1 的两个正方形互相重合,按住其中一个不动,将另一个绕顶点 A 顺时 针旋转 45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为 1cm 和 3cm ,高为 6cm .如果用一根细线从点 A A .0.4米 B .0.5米 C .0.8 米7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流 的函数关系如图所示,xCA B 第 13 题图B C第 14 题开始经过 4 个侧面缠绕一圈到达点 B,那么所用细线最短需要cm;如果从点 A 开始经过4个侧面缠绕 n 圈到达点 B ,那么所用细线最短需要三、作图题(本题满分 4 分) 用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.为美化校园,学校准备在如图所示的三角形( 形花坛,请在图中画出这个圆形花坛.解:结论:16.(本小题满分 8分,每题 4 分)3x 2 x 2,2)解不等式组: 1 3x 1≤ 7 x.2217.(本小题满分 6 分)某中学为了解该校学生的课余活动情况, 采用抽样调查的方式,从运动、娱乐、阅读和其他 四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.人数统计图 分布统计图 根据图中提供的信息解答下列问题:cm .△ABC)空地上修建一个面积最四、解答题(本题满分 74 分,共有 9道小题)1)化简: x 1 x 2 1 2 xx 人数/人(1)补全人数统计图;(2)若该校共有 1500 名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数30 字).不超过18.(本小题满分 6 分)在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动 的转盘(如图,转盘被平均分成 20 份),并规定:顾客每购物满 100 元,就能获得一次转动 转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别 获得 80 元、50 元、 20 元的购物券, 凭购物券可以在该商场继续购物. 如果顾客不愿意转转 盘,那么可直接获得 15 元的购物券. 转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.第 18 题图19.(本小题满分 6 分)在一次数学活动课上, 老师带领同学们去测量一座古塔 CD 的高度.他们首先从 A 处安置测 倾器,测得塔顶 C 的仰角 CFE 21°,然后往塔的方向前进 50米到达 B 处,此时测得仰 角 CGE 37°,已知测倾器高 1.5 米,请你根据以上数据计算出古塔 CD 的高度. 33, tan 37°≈ , sin215420.(本小题满分 8 分)北京奥运会开幕前, 某体育用品商场预测某品牌运动服能够畅销, 就用 32000 元购进了一批 这种运动服, 上市后很快脱销, 商场又用 68000 元购进第二批这种运动服, 所购数量是第一 批购进数量的 2 倍,但每套进价多了 10 元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于 20%,那么每套售参考数据: sin 37°≈ 第 19 题利润价至少是多少元?(利润率利润100% )成本21.(本小题满分 8 分)已知:如图,在ABCD中, AE是 BC边上的高,将△ABE沿BC方向平移,使点 E 与点 C 重合,得△ GFC .(1)求证:BE DG ;2)若B 60°,当 AB 与 BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的第 21 题图22.(本小题满分 10 分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1 (元)与销售月份x (月)满足关系式y 3x 36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.8(1)试确定b、c 的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?23.(本小题满分 10 分)我们在解决数学问题时,经常采用“转化” (或“化归” )的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n(n≥9 )个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法” .基本分割法 1:如图①,把一个正方形分割成 4 个小正方形,即在原来 1 个正方形的基础上增加了 3 个正方形.基本分割法 2:如图②,把一个正方形分割成 6 个小正方形,即在原来 1 个正方形的基础上增加了 5 个正方形.图①图⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n≥9 )个小正方形.(1)把一个正方形分割成 9 个小正方形.一种方法:如图③,把图①中的任意 1 个小正方形按“基本分割法 2”进行分割,就可增加 5 个小正方形,从而分割成4 5 9 (个)小正方形.另一种方法:如图④,把图②中的任意 1 个小正方形按“基本分割法 1”进行分割,就可增加 3 个小正方形,从而分割成6 3 9 (个)小正方形.(2)把一个正方形分割成 10 个小正方形.方法:如图⑤,把图①中的任意 2 个小正方形按“基本分割法 1”进行分割,就可增加3 2 个小正方形,从而分割成4 3 2 10 (个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成 11 个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n≥9 )个小正方形.方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成 9 个、 10个和 11 个小正方形,再在此基础上每使用 1 次“基本分割法1”,就可增加 3 个小正方形,从而把一个正方形分割成 12 个、13 个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥ 9 )个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥ 9 )个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n ≥ 9 )个小正三角形.(1)基本分割法 1:把一个正三角形分割成 4 个小正三角形(请你在图 a 中画出草图).(2)基本分割法 2:把一个正三角形分割成 6 个小正三角形(请你在图 b 中画出草图).(3)分别把图 c、图 d和图 e中的正三角形分割成 9 个、10个和 11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)请你写出把一个正三角形分割成 n ( n ≥9 )个小正三角形的分割方法(只写出分割方法,不用画图) .24.(本小题满分 12 分)如图,在梯形 ABCD 中,AD∥BC ,AD 6cm ,CD 4cm ,BC BD 10cm ,点P 由 B 出发沿 BD 方向匀速运动,速度为 1cm/s;同时,线段 EF 由 DC 出发沿 DA 方向匀速运动,速度为 1cm/s,交BD 于 Q,连接 PE.若设运动时间为t(s)(0 t 5).解答下列问题:(1)当t 为何值时,PE∥AB?(2)设△PEQ 的面积为y ( cm2),求y与t之间的函数关系式;2(3)是否存在某一时刻t,使S△PEQ S△BCD?若存在,求出此时t 的值;若不存在,25说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.二○○九年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则. 2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这 道题的内容和难度, 可视影响程度决定后面部分的给分. 但不得超过后面部分应给分数的一 半,如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略 非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.、选择题(本题满分 24 分,共有 8道小题,每小题 3 分)、填空题(本题满分 18 分,共有 6道小题,每小题 3 分) 四、解答题(本题满分 74 分,共有 9道小题) 16.(本小题满分 8 分)分) 三、作图题(本题满分 4 分) 15.正确画出两条角平分线,确定圆心; ······ · ······ ··· ·····2 分确定半径; ·· ······· · ···· · ····· · ······ ··· ··· ··3 分正确画出图并写出结论. ···· ······ · ····· ···· ······4 分1)解:原式x 1x2x (x 1)(x 1)x x13x 2 x 2 ①131x 1 ≤ 7 3x ②22解:解不等式①得x 2 ,解不等式②得x≤ 4 .所以原不等式组的解集为2 x≤ 4.······ · ·············4 分17.(本小题满分 6 分)4分2)解:(1)正确补全统计图; · ··· ····· · ······ ···· ······2 分(2)300人. ··· ······· ···· ······ · ···· ··· ····4 分 (3)合理即可. ······ ····· ······ · ······ ··· ·····6 分20.(本小题满分 8 分) 解:( 1)设商场第一次购进 x 套运动服,由题意得:68000 3200010 , ..... ... ...... . ..... ..... .. (3)分2x x 解这个方程,得 x 200 . 经检验, x 200 是所列方程的根. 2x x 2 200 200 600 .所以商场两次共购进这种运动服 600 套. ······ · ······ ··· ·····5 分 (2)设每套运动服的售价为 y 元,由题意得: 600y 32000 68000≥ 20% ,32000 68000解这个不等式,得 y≥ 200,所以每套运动服的售价至少是 200元. ·· ······ · ······ ··· ·····8 分 21.(本小题满18.(本小题满分 6 分)13解: 80 50 20 20 20 ∵ 16.5元 5元 ∴选择转转盘对顾客更合算. 19.(本小题满分 6 分) 解:由题意知 CD ⊥ AD , 25016.5(元), 204分 6分 EF ∥ AD , ∴ CEF 90°,设 CE x , 在 Rt △CEF 中,tan CFECEEF 在 Rt △CEG中,tan CGECEGE CE则 GECECE,则 EFtan CFEtan21 8x ;tan CGE FG EG , 4 50 x . 3 4x ; tan37°34分B 第 19 题图∵ EF 8 ∴x3x 37. ,5∴ CD CE ED 37.5 1.5 39(米). 答:古塔的高度约是 39米. ·6分 CG FD分 8 分)证明:(1)∵四边形ABCD 是平行四边形,∴ AB CD .∵ AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成.∴ CG⊥ AD .∴ AEB CGD 90 °.∵ AE CG ,∴ Rt△ ABE ≌ Rt△CDG .∴ BE DG .··································4 分3(2)当BC AB 时,四边形ABFC 是菱形.2 ∵ AB∥GF ,AG∥ BF ,∴四边形ABFG 是平行四边形.∵ Rt△ABE 中,B 60°,∴ BAE 30 °,1∴ BE AB .23∵BE CF,BC AB ,21 ∴ EF AB .2 ∴ AB BF .∴四边形ABFG 是菱形.··· ··· ······ · ······ ···· ·····8 分22.(本小题满分 10 分)解:(1)由题意:1225 32 81224 42 817829123x 36 1x2 15x 29 18 8 8 21x2 3x 6 1;···8 2 2y 1x23x 618221 2 1 1(x2 12x 36) 4 68 2 21(x 62) 1183b c4b c解得4分2) y1 y26分第 21 题3)∵1 ∵a0 , 8 ∴抛物线开口向下. 在对称轴 x 6左侧 y随 x的增大而增大. 由题意 x 5,所以在 4 月份出售这种水产品每千克的利润最大. 1 21最大利润 (4 6)2 11 10(元). · ····· ·8223.(本小满分 10 分) 解:把一个正方形分割成 11 个小正方形: 9分 10 分2分把一个正三角形分割成 4 个小正三角形: 3分把一个正三角形分割成 6 个小正三角形: 5分把一个正三角形分割成····· · ··· · ··· ··8 分 n( n ≥9)个小正三角形的分割方法:通过“基本分割法 1”、“基 本分割法 2”或其组合,把一个正三角形分割成 9 个、 10 个和 11 个小正三角形,再在此基 础上每使用 1 次“基本分割法 1”,就可增加 3 个小正三角形,从而把一个正三角形分割成 12个、 13个、 14个小正三角形,依次类推,即可把一个正三角形分割成 n (n ≥9)个小 正三角形. ···· ······· ···· ······ · ····· · ··· ··· 10 分 24.(本小题满分 12 分) 解:( 1)∵ PE ∥ AB ∴ DE DP . DA DB .而 DE t ,DP 10 t , ∴ t 10 t ∴6 10 ,∴ t 15.4把一个正三角形分割成 C∴当 t (s),PE ∥ AB .····· 2分4(2)∵ EF 平行且等于 CD , ∴四边形 CDEF 是平行四边形.∴DEQ C , DQE BDC .∵ BC BD 10 , ∴ DEQC DQE BDC .∴ △ DEQ ∽△ BCD .∴DE EQ .BC CD .t EQ.10 4.∴ EQ2t.5过 B 作 BM ⊥ CD ,交 CD 于 M ,过 P 作 PN ⊥ EF ,交 EF 于 N . BM10222100 4 96 4 6 .∵ ED DQ BP t , ∴ PQ 10 2t . 又 △ PNQ ∽△ BMDPQ PN BD BM10 2t PN 10 4 6 ,PN 4 6 1 t511 1CD BM 14 4 6 8 6 .22若 S △ PEQ 2S △ 1S △PEQ 2EQ PN225t 4 6 15t 4256t 2456t .6分3)S △ BCD△ BCD25则有4 6 2 4 6t2t25 5 2258 6 ,解得t1 1, t2 4 .···· (4)在△ PDE和△FBP 中,DE BP t,PD BF 10 t,△PDE ≌△ FBP PDE FBP ,∴ S五边形 PFCDE S△ PDE S四边形 PFCDS△FBPS四边形 PFCDS△ BCD9分∴在运动过程中,五边形PFCDE 的面积不变.12 分人生中每一次对自己心灵的释惑,都是一种修行,都是一种成长。

相关文档
最新文档