Triz技术创新方法案例分析

合集下载

triz创新方法资源分析及案例

triz创新方法资源分析及案例

案例三:特斯拉电动汽车的创新之路
总结词
特斯拉电动汽车的创新之路是运用TRIZ创新方法推动 电动汽车产业发展的典范。
详细描述
特斯拉电动汽车的创新之路始于如何解决传统电动汽车 存在的续航里程短、充电时间长等问题。通过应用 TRIZ理论,特斯拉成功地开发出了高性能的电池技术 和充电解决方案,提高了电动汽车的续航里程和充电体 验,推动了电动汽车产业的快速发展。同时,特斯拉还 通过创新的销售和服务模式,为用户提供了更加便捷的 购车和用车体验,进一步巩固了其在电动汽车市场的领 先地位。
特点
TRIZ强调对问题进行系统分析,通过 运用科学原理、效应和矛盾解决原理 ,寻求创新解决方案。
TRIZ的起源与发展
起源
TRIZ起源于前苏联,由发明家根里奇·阿 奇舒勒及其研究团队在20世纪50年代提 出。
VS
发展
TRIZ经历了从理论框架的建立到实际应 用的推广,逐渐成为全球范围内广泛应用 的创新方法。
TRIZ创新方法在企业中的推广与应用
培训和专业认证
通过专业的培训课程和认证机制,提高企业员工对 TRIZ的认知和应用能力。
建立创新团队
在企业内部建立专门的创新团队,负责推广和应用 TRIZ。
TRIZ创新方法在企业中的推广与应用
• 合作与交流:与其他企业、研究机构等进行合作和交流, 共同推动TRIZ在企业中的应用和发展。
TRIZ创新方法在企业中的推广与应用
某汽车制造企业
利用TRIZ解决了一系列技术难题,提高了产品的性能 和质量。
某医疗器械企业
通过引入TRIZ,优化了产品设计和生产流程,缩短了 上市时间。
某科技创业公司
在产品研发过程中运用TRIZ,成功开发出具有市场竞 争力的新产品。

TRIZ理论应用案例

TRIZ理论应用案例

TRIZ理论应用淬火工艺的案例车间得到一份订单,对很大的金属零件进行热处理。

要进行这项工作,吊车司机必须从炼铁炉中吊出通红的铸铁,将它运到一个油池上方并使其落人油槽。

工作了几天之后,吊车司机找到老板抱怨说:“这样干我很难呼吸。

我的控制室离房顶很近,所有从油槽里升起的烟都向我飘来,我不干了。

”烟雾本来不是问题,因为处理小部件时,车问里的通风设备满足要求;现在,在处理大型部件时,烟就变成了主要问题。

因为处理过程不能改变,老板面临一个典型的管理局面:得想出一种办法,但他还不知办法在哪里。

从定义上来说,一个技术系统应该有三种成分:两种物质和一个场(能量)。

要解决问题,首先应明确引起问题的技术系统。

在这个例子中,引起问题的技术系统是油池里的油、金属部件,以及该部件的热能。

烟是这个过程的副产物,对吊车司机造成危害。

现在,需要确定在技术系统中必须改善的特性。

为做到这一步,我们来填写附表1,指出需改善的特性。

???1.标明技术系统的名称金属处理过程???2.指出技术系统的系统对大型金属部件进行过油处理???3.列出该技术系统中的主要成分及相应作用4.描述技术系统的操作本例中,吊车司机将通红的部件放到装满油的油槽中,金属部件一接触油就会激起浓烟,污染环境。

???5.表示出应该改善或取消的特性:例如通过取消烟雾或减少烟雾所造成的危害,改善吊车司机的工作条件。

利用附表2构建技术矛盾。

(填写附表2,能够有助于清楚地确定问题中的技术矛盾。

)在问题中,从1a项到1d项都与问题无关,因为不是要改善技术系统的特性。

相反,我们是想去除有害的作用。

2a.“讲明需要减掉、去除或使其中性化的负面特性”。

这个特性就是烟雾。

2b.“列出传统的减掉、去除该特性或使该特性中性化的方法”。

利用金属盖来覆盖油槽,这样可以防止油烟四散。

2c.“写出在2b项条件中更加恶化的特性”。

系统的复杂性和重量增加。

2d.“构建技术矛盾如下”:???技术矛盾1:如果利用金属盖将(油烟雾带来的有害)特性减少(去除),则系统的复杂性增加。

基于TRIZ理论的40个原理案例分析

基于TRIZ理论的40个原理案例分析

基于TRIZ理论的40个原理案例分析在创新和问题解决领域中,TRIZ(Theory of Inventive Problem Solving,创新问题解决理论)是一种被广泛运用的理论方法。

TRIZ通过研究创新的基本原则,提出了40个创新原理,这些原理为解决问题、创造新产品和优化流程提供了指导。

本文将基于TRIZ理论,分析40个原理的案例应用,以揭示其在实际问题解决中的价值。

1. 分割原理(Segmentation)分割原理适用于将整体分割为互不相关的部分,从而解决问题。

例如,将汽车座椅分割成一个个独立的单元,以便更好地进行调整和维护。

2. 提前预防原理(Taking out)提前预防原理强调在问题发生之前采取措施,防止其发生。

例如,通过使用优质材料或加强机器部件的设计,可以减少故障率和维修成本。

3. 局部质量原理(Local Quality)局部质量原理着眼于提高系统中的局部性能,以实现整体效益的提高。

例如,在电池管理系统中,通过改进电池的密封性能,提高整体能量存储效率。

4. 渐进变化原理(Progressive Change)渐进变化原理指出,在改进产品或技术时,应采取逐步渐进的变化,以减少不确定性和风险。

例如,推出新版软件时,可以先进行小规模测试和反馈,再逐步进行升级和改进。

5. 扩展原理(Expanding)扩展原理适用于提高系统的某个参数或指标,以增加其效能。

例如,在太阳能电池中,通过扩大电池的表面积,可以提高能量捕捉和转换效率。

6. 反向原理(Reversal)反向原理是指通过反向思考问题,找到解决方案的方法。

例如,在设计自动门时,通过反向思考,可以将门锁设计为只需一定的力量即可打开,以提高便利性和舒适度。

7. 促进型因素原理(Catalysis)促进型因素原理关注如何提高或引入促进因素,以改善系统性能。

例如,在生产线中,引入自动化设备和机器人,可以提高生产效率和质量。

8. 对称性原理(Symmetry)对称性原理指出,通过引入对称或平衡因素,可以对系统进行改进。

triz案例分析

triz案例分析

triz案例分析TRIZ案例分析TRIZ,即“发明问题解决理论”(Theory of Inventive Problem Solving),是一套系统化的问题解决工具,它基于对大量专利的分析,总结出了创新过程中的规律和模式。

本文将通过一个具体的案例来分析TRIZ的应用。

案例背景:一家制造企业在生产过程中遇到了一个技术难题:如何提高产品A的组装效率。

产品A由多个部件组成,需要在流水线上进行组装。

目前,组装过程中存在部件定位不准确、组装速度慢等问题,导致生产效率低下。

问题分析:使用TRIZ中的“问题定义”工具,首先明确了问题的核心:提高组装效率。

接下来,通过“矛盾矩阵”分析了问题的主要矛盾,即在保持组装质量的前提下,如何减少组装时间。

解决方案探索:根据TRIZ的“40个发明原则”,团队选择了“预先反作用”原则,即在组装前就对部件进行预定位,以减少组装过程中的调整时间。

此外,还采用了“能量转换”原则,通过引入自动化设备来替代人工操作,提高组装速度。

实施步骤:1. 设计预定位装置,确保部件在进入组装环节前已经准确定位。

2. 引入自动化组装设备,减少人工操作,提高组装速度和准确性。

3. 对流水线进行重新布局,优化组装流程,减少不必要的移动和等待时间。

4. 进行小规模试验,验证新方案的有效性,并根据反馈进行调整。

5. 推广至整个生产线,全面提高组装效率。

效果评估:经过实施,产品A的组装效率提高了30%,同时组装质量也得到了保证。

自动化设备的引入减少了人工操作的误差,预定位装置的加入使得组装过程更加流畅。

总结:通过TRIZ理论的应用,企业成功解决了组装效率低下的问题。

TRIZ不仅提供了一套系统化的问题解决框架,还通过其丰富的工具和原则,帮助团队在面对复杂问题时能够快速找到创新的解决方案。

这个案例展示了TRIZ在实际工业生产中的应用价值,证明了其作为一种创新方法论的有效性。

Triz技术创新方法案例分析

Triz技术创新方法案例分析

Triz技术创新方法案例分析Triz技术创新方法选修课作业一、“双环拱型分体轿箱垂直旋转式”新型立体车库设计分析针对城市旅游风景区等区域停车难、与现有立体车库类型不相配问题, 有人基于TRIZ 理论, 提出一种“双环拱型分体轿箱垂直旋转式”新型立体车库的设计。

本文将对此设计进行分析。

该设计为半地上半地下组装式垂直旋转式立体车库, 在景观区建设一外观貌似巨大摩天轮的新型立体车库, 给风景区添加一壮观景象, 再加以装饰, 使之与自然浑然一体, 实现停车景观两相宜。

它基于TRIZ理论的技术冲突解决原理分析存在的矛盾, 得到一系列的发明原理, 在这些原理的指导下可以找到改进创新的方向。

综合考虑各影响因素的作用及查找到的发明原理给出的设计方向, 设计出了该车库。

为了便于运输和安装, 该立体车库创新性地采用了标准节结构形式, 把内外环每个轿箱分别做成标准节。

该车库为双环半地下式, 主轴固定在轴承上, 轴承安装在地面上的轴承座上。

主轴的一边套有套筒, 套筒内缘与主轴之间采用键联接, 套筒外缘焊接法兰盘;主轴的另一边安装滑动轴承, 滑动轴承的外套上焊接法兰盘, 法兰盘上用高强螺栓联接用角钢做成的支臂, 形成单侧轮辐支撑系统。

各支臂之间设计为网架结构, 增强其强度、刚度和稳定性。

每个轿箱都联接于支臂上, 轿箱与轿箱之间采用螺栓联接成拱型结构。

各标准节之间相互支撑力, 从而减小整环对支臂的弯矩, 其主要用于承受重量和传递动力。

载车台为重力自平衡式调节, 两侧设有6组滚轮, 每组两个滚轮, 由于重力作用, 载车台在随车库公转的同时也产生自转, 实现载车台始终保持水平。

为了增加载车台支撑点, 标准节内设有三环T型钢弯成的轨环形道, 采用T型钢可以使两轮子分布于腹板两侧, 防止轮子脱离轨道。

为降低驱动力、节约能源, 内外环驱制动安置在每环的外缘。

拱型环的每个轿箱标准节外侧联接一定厚度的弧形板, 使之形成一圆环, 在圆环周向安置与链条相啮合的弧形齿条或与柱销相配合的柱销孔。

triz创新方法作业案例

triz创新方法作业案例

triz创新方法作业案例
以防止学生沉迷游戏为例:
首先将学生沉迷游戏的问题拆解成三个重要因素:“家长未能引导”、“学校学业压力大”、“游戏具有吸引力”;
然后通过改善家长的引导能力和易于被学生接受的乐趣方式来解决
“家长引导”问题;
通过降低学习压力,提高学习兴趣等手段来解决“学校学业压力大”
问题;
通过控制游戏时间、禁止游戏中的攻击行为等措施消除游戏的吸引力,以解决“游戏具有吸引力”问题。

最后,综合以上分析,采取综合性干预措施,采取更加有效措施,有
效地预防学生沉迷游戏。

TRIZ理论案例分析

TRIZ理论案例分析

TRIZ理论案例分析国家基础性工作专项计划技术创新方法(TRIZ理论)试点建设与推广项目—黑龙江省推广应用TRIZ理论方法的战略研究研究报告(第三部分)哈尔滨理工大学2009年10月20日第3章黑龙江省推广应用TRIZ理论的现状及影响因素分析TRIZ理论作为一种先进的技术创新方法,其推广与应用必然受到环境中各种因素的影响。

即使在同样环境下,企业、高校和科研院所等不同功能的创新体对于TRIZ理论的推广要求,以及TRIZ理论应用的广度、深度和效果也各有不同。

因此,对黑龙江省区域创新以及TRIZ理论推广应用的现状、环境等进行分析,为制定黑龙江省推广应用TRIZ理论的战略目标与布局提供决策依据和基础。

3.1 黑龙江省区域创新现状及TRIZ理论推广应用进展3.1.1 黑龙江省区域创新现状一方面,TRIZ理论的推广应用对提高区域创新能力具有重要的促进作用;另一方面,区域创新状况又不可避免地影响着TRIZ理论推广应用的进度与效果。

因此,应对黑龙江省区域创新的现状进行分析。

(1)初步形成了“6+1”区域科技创新体系。

2003年,黑龙江省在国内率先提出了构建“政产学研金介”相结合的区域科技创新体系,大力推进政府、企业、高校、科研机构、金融、科技中介的协调合作,推动产业及企业科技进步。

围绕黑龙江省六大基地建设和高新技术产业发展,优化整合优势科技资源,重点建立“6+1”科技创新体系,即装备制造科技创新体系、化工科技创新体系、能源科技创新体系、食品加工科技创新体系、医药科技创新体系、森工科技创新体系以及高新技术创新体系。

2005年,“哈大齐国家级高新技术产业带”获国家科技部批准,这是全国第五家、东北三省唯一一家国家级高新技术产业开发带。

黑龙江省经过近几年的快速发展,目前已初步建立了相对完整的区域科技创新体系。

(2)哈大齐高新技术产业带成为区域科技创新龙头和辐射区。

“哈大齐工业高新技术产业带”是以哈尔滨为龙头,以大庆、齐齐哈尔为区域骨干,包括沿线的肇东、安达等市在内的经济区域。

triz案例分析

triz案例分析

triz案例分析TRIZ案例分析。

TRIZ是一种系统的创新方法,它通过分析问题的本质,找到问题的根源,并提供了一系列的工具和方法来解决问题。

在工程领域,TRIZ被广泛应用于产品设计、工艺改进、问题解决等方面。

下面我们将通过一个实际的案例来分析TRIZ的应用。

某汽车制造公司在生产过程中遇到了一个问题,在汽车发动机的设计中,由于燃烧室内的空间受限,导致燃烧效率不高,同时还会产生较多的尾气排放。

这个问题严重影响了汽车的性能和环保指标,需要寻找一种创新的解决方案。

首先,我们可以通过TRIZ的矛盾矩阵来分析这个问题。

矛盾矩阵是TRIZ中的一个重要工具,它可以帮助我们找到矛盾的本质,并提供相应的解决方法。

在这个案例中,燃烧室内的空间受限,这是一个技术矛盾,即在燃烧室内需要有足够的空间来实现充分的燃烧,但又需要保持燃烧室的紧凑设计。

通过矛盾矩阵的分析,我们可以找到一些与此类似的问题,并找到相应的解决方法。

其次,我们可以利用TRIZ的40个原则来寻找解决方案。

在这个案例中,可以考虑利用“分割”原则,即将燃烧室分割成若干部分,以增加燃烧室的有效容积;同时可以考虑利用“局部质量”原则,即在燃烧室的关键部位增加质量,以改善燃烧效率。

通过这些原则的应用,我们可以找到一些创新的设计方案。

最后,我们可以结合TRIZ的技术演化趋势来指导解决方案的设计。

在这个案例中,可以考虑利用高温高压燃烧技术,以提高燃烧效率;同时可以考虑利用智能控制技术,以实现对燃烧过程的精准控制。

这些技术的应用都可以帮助我们解决这个问题。

通过以上分析,我们可以看到,TRIZ作为一种系统的创新方法,可以帮助我们找到问题的根源,并提供创新的解决方案。

在工程领域,TRIZ的应用可以帮助我们提高产品的设计质量,改进工艺流程,解决各种技术问题。

因此,掌握和应用TRIZ方法对于工程师和设计师来说是非常重要的。

希望这个案例分析可以帮助大家更好地理解TRIZ的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Triz技术创新方法选修课作业
一、“双环拱型分体轿箱垂直旋转式”新型立体车库设计分析
针对城市旅游风景区等区域停车难、与现有立体车库类型不相配问题,有人基于TRIZ 理论,提出一种“双环拱型分体轿箱垂直旋转式”新型立体车库的设计。

本文将对此设计进行分析。

该设计为半地上半地下组装式垂直旋转式立体车库,在景观区建设一外观貌似巨大摩天轮的新型立体车库,给风景区添加一壮观景象,再加以装饰,使之与自然浑然一体,实现停车景观两相宜。

它基于TRIZ理论的技术冲突解决原理分析存在的矛盾,得到一系列的发明原理,在这些原理的指导下可以找到改进创新的方向。

综合考虑各影响因素的作用及查找到的发明原理给出的设计方向,设计出了该车库。

为了便于运输和安装,该立体车库创新性地采用了标准节结构形式,把内外环每个轿箱分别做成标准节。

该车库为双环半地下式,主轴固定在轴承上,轴承安装在地面上的轴承座上。

主轴的一边套有套筒,套筒内缘与主轴之间采用键联接,套筒外缘焊接法兰盘;主轴的另一边安装滑动轴承,滑动轴承的外套上焊接法兰盘,法兰盘上用高强螺栓联接用角钢做成的支臂,形成单侧轮辐支撑系统。

各支臂之间设计为网架结构,增强其强度、刚度和稳定性。

每个轿箱都联接于支臂上,轿箱与轿箱之间采用螺栓联接成拱型结构。

各标准节之间相互支撑力,从而减小整环对支臂的弯矩,其主要用于承受重量和传递动力。

载车台为重力自平衡式调节,两侧设有6组滚轮,每组两个滚轮,由于重力作用,载车台在随车库公转的同时也产生自转,实现载车台始终保持水平。

为了增加载车台支撑点,标准节内设有三环T型钢弯成的轨环形道,采用T型钢可以使两轮子分布于腹板两侧,防止轮子脱离轨道。

为降低驱动力、节约能源,内外环驱制动安置在每环的外缘。

拱型环的每个轿箱标准节外侧联接一定厚度的弧形板,使之形成一圆环,在圆环周向安置与链条相啮合的弧形齿条或与柱销相配合的柱销孔。

该设计依据冲突分析和“动态化”、“机械系统的替代”、“参数变化”、“抛弃与修复”、“不对称”、“未达到的或超过的作用”等发明原理引导,综合考虑结构设计及周边环境因素,采用“双环拱型分体轿箱垂直旋转式立体车库”结构。

该方案设计中存在许多关键技术,如增加泊车位、实现稳态驱制动、实现快速停取车、实现组装式安装和设计支撑结构等。

综合
考虑各项技术要求与可操作性,基于TRIZ冲突分析理论,该设计采用了组装式双环单侧支撑双驱动式垂直旋转式立体车库,双环增加了泊车位,双驱制动提高了停取车效率并节约能源,链传动或柱销传动实现其稳态驱制动,组装式安装有利于设备的运输、安装与拆卸。

该“双环拱型分体式轿箱旋转立体车库”采用轿箱标准节式、垂直旋转方式,结构、工艺、安装、维修均较简单,功能齐全,拆装方便,具有新颖性、实用性、安全性、环保性、节能性、景观性和经济性等优点。

此外该新型车库还有以下几方面特点:
(1)在车库外围建设防护罩,可防雨、防风、防晒。

(2)据资料分析,平面自走式停车场,含场内车道每车位平均需要25~30 m2;而该车库含场外车道每车位平均需要6~8 m2,大大减少了占地面积,提高了地面利用率。

(3)该车库与现有存容量相当的立体车库相比,存取时间短。

根据停车设备设计要求,最远存车位一次取车时间少于2 min。

该车库内外环可正反转且独立驱动,最远存车位为外环离进出口1/4圆周处,满负荷运行时32辆车依次取出(存入)作业的时间小于40 min。

而普通立体车库,高峰取车时间依次取车时间过长,依次取车第20辆需30 min以上。

(4)该设计考虑到旅游旺季和淡季车位需求量的差距,采取拆装方便的标准节式组装方式,总体框架也是采用大型型材组装而成,从而可根据需求不同进行拆装,避免了设备的长期闲置,节约资源,提高其利用率。

设计有原始的自主创新性,外形美观,占地面积小,存容量大,易于安装制造,存储自动化、效率高,对旅游风景区、已有或将建地下停车场的公共场所有着极大的经济、实用价值。

该新型立体车库结构已申请发明专利和实用新型专利。

该设计目前还存在一定的不足,其设计结构仍存在待优化部分,需进一步进行实验研究,从而完善其结构,进一步降低成本,提高安全性。

二、用triz法解决车窗结霜问题
在北方严冬时节,在大客车和小客车的车窗上经常结上厚厚的霜,直接影响了乘务员和乘客观察外部环境,经常导致乘客坐过站,带来乘客出行的不便(在现实生活中,小客车的乘务员以硬币为垫,用透明胶带将一块玻璃固定在靠近的车窗上,在车窗与玻璃之间形成封闭的空间,利用空气不导热的原理,解决了临近车窗结霜的问题。

问题:如何在不改变车内温度的条件下解决车窗结霜问题。

首先,运用TRIZ理论九
屏法对客车系统进行分析。

其次,找到要解决问题的矛盾(技术矛盾)。

本示例中的主要技术矛盾在于系统中车厢内外温度不改变的情况下,解决车窗不结霜问题,也就是温度不变,改善车内的亮度。

在该系统中,空气是我们可以直接利用的资源。

第三,到TRIZ技术
矛盾索引表找到相应解决办法。

通过查找TRIZ技术矛盾索引表,找到的对应解决方案是TRIZ理论技术矛盾解决40法中的32(色彩法)、35(性能转化法)、19(离散法)。

在(色彩法)中,改变物体或环境的颜色,显然不能解决这对技术矛盾;改变物体或环境的透明度,是我们要解决的问题,也不能利用;在物体中增加颜色添加剂,也不行;如果已经用了添加剂,则考虑增加发光成分,也行不通。

在(性能转化法)中,改变系统的物理状态是我们要解决的问题,就是要把霜的固态变成气态,所以也不行;改变浓度或密度和改变灵活性程度也无法解决;改变温度和体积,我们用热风吹车窗,霜可以融化消失,但停止吹风,车窗又要马上结霜,还浪费能源。

目前有的客车在车厢里将汽车尾气排出的余热用于车内取暖,但客车如果夜晚在室外停放,要把车厢内所有车窗上的结霜消除,也需要很长时间,并且汽车尾气泄漏,还会对人体健康造成侵害,显然也不是最理想的办法,并且,我们所确定的技术矛盾是在不改变温度的前提下进行的。

我们在中学学习的物理课程中知道,空气不导热,热量是通过空气对流来传导的。

利用间隙,将间隙中的空气封闭,可以直接消除对流,这样车内和车外温度差异由于没有对流,就切断了车窗结霜的路径,我们提出的技术矛盾就迎刃而解了。

经过上述分析,解决严冬季节大客车和小客车的车窗结霜问题的办法也就出来了,就是将销往北方高寒地区的大客车和小客车的车窗做成双层玻璃的车窗,既可以在夏天拉开车窗,又在冬季解决了车窗上霜问题,还提高了车厢的保温性能,是一种理想的解决方案。

相关文档
最新文档