第三章-平面任意力系
3第三章平面任意力系

固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
建筑力学-第三章(全)

建筑力学
3.5 平面一般力系平衡条件和平衡方程
众所周知,当主矢 FR 0 时,为力平衡;当主矩 MO 0 时,为力偶平衡。
故平面任意力系平衡的充要条件为: 力系的主矢 FR和 主矩 都M O等于零。
上述平衡条件可表示为
FR ( Fx )2 ( Fy )2 0
Mo Mo (Fi ) 0
YA
XA
A
Q1=12kN
300 S
Q2=7kN 三力矩方程:再去掉Σ X=0方程 B
mC 0, X A60tg300 30Q1 60Q2 0
D
(二)力系的平衡
示例:斜梁。求支座反力
300
2kN/m B
2kN/m B
300
RB
A
300
A
2m
YA XA
C
X 0, X A RB sin 300 0
30cm
30cm Q1=12kN
Q2=7kN
X 0, X A S cos 300 0
X A 22.5kN
A
600
B
Y 0,YA Q1 Q2 S sin 300 0
YA 6kN
二力矩方程:去掉Σ Y=0方程
C
mB 0, 60YA 30Q1 0
FBl cos M 0
从而有:
FB
M l cos
20 kN 5 c os30
4.62kN
故:
FA FB 4.26kN
建筑力学
[例] 求图中荷载对A、B两点之矩.
解:
(a)
(b)
图(a): MA = - 8×2 = -16 kN ·m MB = 8×2 = 16 kN ·m
工程力学-平面任意力系

R' ( X )2 (Y )2 0
LO mO (Fi ) 0
①一般式 (一矩式)
X 0
平面力系中各力在直角坐标系oxy中
Y 0
各坐标轴上投影的代数和及对任意
点的力矩的代数和均为0。
mO (Fi ) 0
②二矩式
∑X=0 或∑Y=0
mA(Fi ) 0
mB (Fi ) 0
AB O
工程中的桁架结构
桁架的优点:轻,充分发挥材料性能。
桁架的特点:①直杆,不计自重,均为二力杆;②杆端铰接;
力
学 中 的 桁 架 模
基 本 三 角 形
型
③外力作用在节点上。
力
学
中 的 桁 架
简 化 计 算 模
模型
型
力
学
中 的 桁 架
简 化 计 算 模
节点
杆件
模型
型
一、节点法 [例3-3] 已知:如图 P=10kN,求各杆内力?
第三章 平面任意力系
平面任意力系(General coplanar force systems):各力的作用 线在同一平面内,既不汇交为一点又不相互平行的力系叫∼。
[例]
研究方法:把未知力系(平面任意力系)变成已知 力系(平面汇交力系和平面力偶系)
第三章 平面一般力系
§3–1 力向一点平移 §3–2 平面力系的简化 §3–3 平面力系的平衡条件 §3–4 刚体系统的平衡问题 §3–5 考虑有摩擦时物体的平衡问题
§3-2 平面力系的简化
一、平面力系向作用面内一点简化
O: 简化中心
主矢(Principal vector) R Fi
大小: R' R'x2 R'y2 ( X )2 (Y )2
3平面任意力系

A、B、C 三点不共线。 三点不共线。
运用平衡条件求解未知力的步骤为: 运用平衡条件求解未知力的步骤为: 1、合理确定研究对象并画该研究对象的受 力图; 力图; 2、由平衡条件建立平衡方程; 由平衡条件建立平衡方程; 3、由平衡方程求解未知力。 由平衡方程求解未知力。 实际计算时,通常规定与坐标轴正向一 实际计算时, 致的力为正。即水平力向右为正, 致的力为正。即水平力向右为正,垂直力向 上为正。 上为正。
合力矩定理 平面任意力系的合力对作用面内任一点的 矩,等于这个力系中的各个力对同一点的矩的 代数和。 代数和。
mo (F) = ∑mo (F ) i
y
mo (F) = mo (Fx ) + mo (Fy )
mo (Fx ) = −yFx
y
O
Fy
A x
B
F
F x
x
mo (Fy ) = xF y
在长方形平板的O 例题 3-1 在长方形平板的 、A、B、C 点上分别作 用着有四个力: 用着有四个力:F1=1kN,F2=2kN,F3=F4=3kN(如 , , ( 图),试求以上四个力构成的力系对点 的简化结果, ),试求以上四个力构成的力系对点O 的简化结果, 试求以上四个力构成的力系对点 以及该力系的最后的合成结果。 以及该力系的最后的合成结果。
§3–2 平面任意力系的平衡方程及其应用
伸臂式起重机如图所示,匀质伸臂AB 重 例题 3-2 伸臂式起重机如图所示,匀质伸臂 P=2200N,吊车 、E 连同吊起重物各重 ,吊车D QD=QE=4000N。有关尺寸为:l = 4.3m,a = 1.5m,b 。有关尺寸为: , , = 0.9m,c = 0.15m, α=25°。试求铰链 对臂 , ° 试求铰链A 对臂AB 的水 平和垂直反力,以及拉索BF 的拉力。 的拉力。 平和垂直反力,以及拉索 y
工程力学教学课件 第3章 平面任意力系

A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
第三章 平面任意力系和平面平行力系

X ) 0
m A ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A、B、C 不在同一直线上
Y 0
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不⊥AB 连线
向一点简化
汇交力系+力偶系 (已知力系)
力 , R'(主矢) , (作用在简化中心) 力偶 ,MO (主矩) , (作用在该平面上)
5
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
1
第三章
平面任意力系与平面平行力系
§3–1 平面任意力系向一点的简化
§3–2 平面任意力系的平衡问题
§3–3 平面平行力系
2
引言
平面任意力系:各力的作用线在同一平面内,既不汇交为一 点又不相互平行的力系,叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变成已 知力系(平面汇交力系和平面力偶系)
3
§3-1 平面任意力系向一点简化
一、力的平移定理
作用在刚体上点A的力 F,可以平行移到任一点B,但必须
同时附加一个力偶。这个力偶的矩,等于原来的力 F 对新作
用点B的矩。 [证 ] 力 F 力系 F , F , F
力F 力偶(F,F )
4
二、平面任意力系的简化
一般力系(任意力系) (未知力系) 汇交力系 力偶系
出平衡重的最大值Wmax=375 kN 。实际工作时不允许处于
极限状态,需使其安全工作,平衡重应在这两者之间,即 Wmin<W<Wmax。
静力学:第三章-平面任意力系(1)详解

合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
(中英文)第三章-平面任意力系

principal moment)
F1 F1 M1 M0 (F1)
F2 F2 M2 M0 (F2 )
Fn Fn
Mn M0 (Fn )
MO (Fi )
exit 6
- 12 -
=
=
≠
=
exit 12
- 13 -
3、 平面任意力系的简化结果分析 3) The reduction of a general planar force system
=
exit 13
- 14 -
主矢
FR 0
FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最后结果
(
F y
)2
cos(F
, i
)
F x
R
F
R
cos(F , R
j)
F y
F R
(3 1)
M O
M
o
(
F i
)
(
F ix
F iy
FF) iy ix
(3 2)
exit 9
- 10 -
平面固定端约束 Fixed support
exit 10
- 11 -
exit 11
说明
合 力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心的位置无关
平 衡 与简化中心的位置无关
exit 14
Principal Vector
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 平面任意力系[习题3-1] x 轴与y 轴斜交成α角,如图3-23所示。
设一力系在xy 平面内,对y 轴和x 轴上的A 、B 两点有0=∑iA M ,0=∑iB M ,且0=∑iy F ,0≠∑ix F 。
已知a OA =,求B 点在x 轴上的位置。
解:因为0==∑iA A M M ,但0≠∑ix F ,即0≠R F ,根据平面力系简化结果的讨论(2)可知,力系向A 点简化的结果是:R F 是原力系的合力,合力R F 的作用线通过简化中心A 。
又因为0==∑iB B M M ,但0≠∑ix F ,即0≠R F ,根据平面力系简化结果的讨论(2)可知,力系向B 点简化的结果是:R F 是原力系的合力,合力R F 的作用线通过简化中心B 。
一个力系的主矢量是一个常数,与简化中心的位置无关。
因此,合力R F 的作用线同时能过A 、B 两点。
又因为0==∑iy Ry F F ,所以合力R F 与y 轴垂直。
即AB 与y 垂直。
由直角三角形OAB 可知,B 点离O 点的距离为: αcos ab =[习题3-2] 如图3-24所示,一平面力系(在oxy 平面内)中的各力在x 轴上投影之代数和等于零,对A 、B 两点的主矩分别为m kN M A ⋅=12,m kN M B ⋅=15,A 、B 两点的坐标分别为(2,3)、(4,8),试求该力系的合力(坐标值的单位为m)。
解:由公式(3-5)可知:)(212R O O O F M M M +=)(R B A B F M M M +=)()(Ry B Rx B A B F M F M M M ++=依题意0=Rx F ,故有:)(Ry B A B F M M M +=)24(1215-⨯+=Ry F 32=Ry F )(5.1kN F Ry = kN F F Ry R 5.1==)(85.112m F M a R A ===故C 点的水平坐标为:m x 6-=。
[习题3--3] 某厂房排架的柱子,承受吊车传来的力F P =250kN,屋顶传来的力F Q =30kN,试将该两力向底面中心O 简化。
图中长度单位是mm。
解:主矢量:)(28030250kNFFFQPR=+=+=(↓),作用在O点。
主矩: )(3315.0)30250(15.015.0mkNFFMQPO⋅-=⨯+-=⨯+⨯-=[习题3--4] 已知挡土墙自重kNW400=,土压力kNF320=,水压力kNFP176=,如图3-26所示。
求这些力向底面中心O简化的结果;如能简化为一合力,试求出合力作用线的位置。
图中长度单位为m。
解:(1) 求主矢量)(134.6940cos32017640cos00kNFFFPRx-=-=-=)(692.60540sin32040040sin00kNFWFRy-=--=--=)(625.609)692.605()134.69(2222kNFFFRyRxR=-+-=+=RF与水平面之间的夹角:"'0182983134.69692.605arctanarctan=--==RxRyFFα(2) 求主矩)(321.296)60cos33(40sin32060sin340cos32021768.040000mkNMO⋅=-⨯-⨯+⨯-⨯=(3)把主矢量与主矩合成一个力)(486.0625.609321.296mFMdRO===)(0555.0134.69692.605486.0tanmdx===α[习题3--5] 某桥墩顶部受到两边桥梁传来的铅垂力F 1=1940kN,F 2=800kN及制动力F T =193kN。
桥墩自重W =5280kN,风力F P =140kN。
各力作用线位置如图所示。
求将这些力向基底截面中心O 简化的结果;如能简化为一合力,试求出合力作用线的位置。
解:(1) 求主矢量)(333193140kN F F F T P Rx -=--=--=)(80208001940528021kN F F W F Ry -=---=---=)(91.8026)8020()333(2222kN F F F Ry Rx R =-+-=+=R F 与水平面之间的夹角:"'021*******8020arctanarctan=--==RxRy F F α (2) 求主矩)(25.60554.019404.080025.211937.10140m kN M O ⋅=⨯+⨯-⨯+⨯=(3)把主矢量与主矩合成一个力)(754.091.802625.6055m F M d R O ===)(0313.03338020754.0tan m d x ===α'[习题3--6] 图示一平面力系,已知F 1=200N,F 2=100N,M=300N·m。
欲使力系的合力通过O 点,问水平力之值应为若干? 解:12053200cos 1-=⨯-=-=F F F F F Rx θ )(26054200100sin 12kN F F F Ry -=⨯--=--=θ主矢量:22)260()120(-+-=F F R)(560254200253200)(10m kN F M ⋅=⨯⨯+⨯⨯=)(2002100)(20m kN F M ⋅-=⨯-= F F M 5.1)(0-=主矩:F F M 5.1603005.12005600-=---=要使合力通过O 点,必使:05.1600=-=F M ,即kN F 40=[习题3--7] 在刚架的A 、B 两点分别作用1F 、2F 两力,已知1F =2F =10kN。
欲以过C点的一个力F 代替1F 、2F ,求F的大小、方向及B 、C 间的距离。
解:)(55.0101060cos 012kN F F F Rx =⨯-=-=)(66.8866.01060sin 01kN F F Ry -=⨯-=-= 主矢量:)(10)66.8(522kN F R =-+= 方向060566.8arctanarctan-=-==RxRy F F α(↘) x x F M C 66.860sin 10)(01-=-= (设x BC =))(20210)(2m kN F M C ⋅=⨯=主矩:2066.8+-=x M C要使F 通过C 点, 且与1F ,2F 两力等效,必使:02066.8=+-=x M C ,即)(309.2m x =当)(309.2m x =时, )(10kN F F R ==,方向与x 轴正向成060((↘).[习题3--8] 外伸梁AC 受集中力P F 及力偶(F ,F ′)的作用。
已知P F =2kN,力偶矩M =1.5kN·m,求支座A 、B 的反力。
解:(1)以AC 为研究对象,画出其受力图如图所示。
(2)因为AC 平衡,所以 ①0)(=∑i AF M0645sin 40=⨯--⨯F M R B)(49.24/)67071.025.1(4/)645sin (0kN F M R B =⨯⨯+=⨯+= ②0=∑ixF045cos 0=+F R Ax)(41.145cos 20kN R Ax -=-= ③0=∑iyF045sin 0=-+F R R B Ay)(08.17071.025.245sin 0N F R R B Ay -=⨯+-=+-=m5.[习题3-9] 求图示刚架支座A 、B 的反力,已知:图(a )中,M =2.5kN·m,F =5kN;图(b)中,q=1kN/m,F =3kN。
解:图(a )(1)以刚架ABCD 为研究对象,画出其受力图如图所示。
(2)因为AC 平衡,所以 ①0)(=∑i AF M02545.2532=⨯⨯-⨯⨯++⨯F F M R B085.75.22=-++B R )(1kN R B = ②0=∑ixFBR 053=⨯-F R Ax )(3535kN R Ax =⨯=③0=∑iyF054=⨯-+F R R B Ay )(38.05154kN F R R B Ay =⨯+-=⨯+-=解:图(b )(1)以刚架ABCD 为研究对象,画出其受力图如图所示。
(2)因为AC 平衡,所以 ①0)(=∑i AF M02434=⨯⨯-⨯-⨯q F R B 0241334=⨯⨯-⨯-B R )(25.44/)89(kN R B =+= ②0=∑ixF0=+F R Ax )(3kN F R Ax -=-= ③0=∑iyF04=⨯-+q R R B Ay)(25.04125.44kN q R R B Ay -=⨯+-=⨯+-=[习题3-10] 弧形闸门自重W =150kN,水压力P F =3000kN,铰A处摩擦力偶的矩M =60kN·m。
求开始启门时的拉力T F 及铰A 的反力。
解:开始打开闸门时,B 与地面脱开,0=B N 。
因为此时闸门平衡,所以 ①0)(=∑i A F M061.04=⨯-⨯-⨯+T P F F W M 061.03000415060=⨯-⨯-⨯+T F 0630060060=⨯--+T F 05010010=--+T F )(60kN F T =②0=∑ix F030cos 0=+P Ax F R)(2598866.03000kN R Ax -=⨯-=③0=∑iy F030sin 0=-++W F F R P T AyPF TF Ax R AyR BC)(14101505.030006030sin 0kN W F F R P T Ay -=+⨯--=+--=[习题3-11] 图为一矩形进水闸门的计算简图。
设闸门宽(垂直于纸面)1m,AB =2m,重W =15kN,上端用铰A 支承。
若水面与A 齐平后无水,求开启闸门时绳的张力T F 。
解:)(15.0230sin 0m AB AC =⨯== )(732.1866.0230cos 0m AB BC =⨯==开启闸门时,0=B N ,此时,因为AB 平衡,所以0)(=∑i AF M5.073.132]73.1)73.1(21[1=⨯+⨯⨯⨯⨯⨯+⨯-W F w T γ05.01573.13273.173.18.9211=⨯+⨯⨯⨯⨯⨯+⨯-T F05.7914.16=+⨯-T F )(414.24kN F T =[习题3-12] 拱形桁架的一端A 为铰支座,另一端B 为辊轴支座,其支承面与水平面成倾角30°。
桁架重量W 为100kN,风压力的合力Q F 为20kN,其方向平行于AB 。
求支座反力。
AxR AyR B R QF AxR AyR AM 解:因为桁架平衡,所以 ①0)(=∑i A F M04102030cos 0=⨯+⨯+⨯-Q B F W R080100032.17=++-B R )(4.62kN R B =②0=∑ix F030sin 0=-+Q B Ax F R R0205.036.62=-⨯+Ax R )(2.11kN R Ax -=③0=∑iy F030cos 0=-+W R R B Ay0100866.04.62=-⨯+Ay R )(46kN R Ay =[习题3-13] 悬管刚架受力如图。