立体几何二面角问题
怎样求解二面角问题

二面角问题在立体几何中比较常见,常见的命题形式有求二面角的大小、求二面角的余弦值,证明两个平面互相垂直等.此类问题的难度一般较大,需综合运用立体几何知识、平面几何知识、解三角形知识、三角函数知识,才能顺利求得问题的答案.本文结合实例,重点探讨一下求解二面角问题的几种常用方法.一、定义法二面角是由从一条直线出发的两个半平面所组成的,而二面角的大小往往是用其平面角的大小来表示,因此在求二面角的大小时,通常要用到二面角的平面角的定义:过二面角的棱上的一点在两个半平面内作垂直于棱的射线,两射线所成的角.然后根据正余弦定理、勾股定理求得二面角的平面角的大小,即可求得二面角的大小.例1.如图1,已知空间中有三条射线CA 、CP 、CB ,且∠PCA =∠PCB =60°,∠ACB =90°,求二面角B -PC -A 的余弦值.图1解:在PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,连接EF ,所以∠EDF 为二面角B -PC -A 的平面角,设CD =a ,因为∠PCA =∠PCB =60°,所以CE =CF =2a ,DE =DF =3a ,因为∠ACB =90°,所以EF =22a ,在△DEF 中,根据余弦定理得:cos ∠EDF =3a 2+3a 2-8a 22∙3a2=-13.解答本题主要运用了定义法,需根据二面角的平面角的定义,在二面角B -PC -A 的棱PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,从而确定了二面角B -PC -A 的平面角∠EDF ,再根据余弦定理求得cos ∠EDF 的值.二、垂面法垂面法是指作一个垂直的平面,根据其中的垂直关系求得问题的答案.在求解二面角问题时,若题目中涉及的垂直关系较多,可过二面角棱上的一点在两个半平面内作棱的垂线;也可将两个半平面内的垂线平移,使其交于一点;还可过一条垂线上的一点作另一个平面的垂线,从而构成一个垂面,则垂面上的两条垂线或其平行线所形成的夹角即为二面角的平面角.最后根据勾股定理即可求得二面角的平面角的大小.例2.如图2,在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA =AB =a ,求二面角B -PC -D 的大小.图2解:因为PA ⊥平面ABCD ,ABCD 是正方形,所以PA ⊥BD ,BD ⊥AC ,所以BD ⊥平面PAC ,可得BD ⊥PC ,分别过B 、D 作DH ⊥PC ,BH ⊥PC ,则∠BHD 为二面角B -PC -D 的平面角,因为PA =AB =a ,所以BC =a ,PB =AC =2a ,所以PC =3a ,根据勾股定理可得∠PBC =90°,所以在△PBC 中,12PB ∙BC =S △PBC =12PC ∙BH ,则BH ,同理可得DH ,因为BD =2a ,所以在△BHD 中,由余弦定理可得:cos ∠BHD =ö÷2+ö÷2-2a 2-12,因为0<∠BHD <π,则∠BHD =2π3,即二面角B -PC -D 的大小为2π3.本题中的垂直关系较多,于是分别过B 、D 作DH ⊥PC ,BH ⊥PC ,得到PC 的垂面BHD ,据此确定二面角B -PC -D 的平面角∠BHD ,再在△BHD 中由怎样求解二面角问题方法集锦43余弦定理即可求得∠BHD 的大小,进而求得二面角B -PC -D 的大小.值得注意的是,二面角α的范围为:[0,π].三、三垂线法三垂线法是利用三垂线定理解题的方法.运用三垂线法求解二面角问题,需先找到平面的垂线,然后过垂线上的一点作平面的斜线,若平面内的一条直线与平面的斜线垂直,那么这条直线与斜线在平面内的射影垂直,根据这些垂直关系就可以确定二面角的平面角,最后根据勾股定理、正余弦定理即可求得平面角的大小.例3.如图3所示,在四棱锥P -ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA =AB =a ,∠ABC =30°,求二面角P -BC -A 的大小.图3解:如图3,过A 作AH ⊥BC 于H ,连接PH ,因为PA ⊥平面ABCD ,所以PA ⊥BC ,PA ⊥AH ,所以BC ⊥平面PHA ,所以BC ⊥PH ,可知∠PHA 是二面角P -BC -A 的平面角,在Rt△ABH 中,AB =a ,∠ABH =∠ABC =30°所以AH =AB sin ∠ABH =a sin 30°=12a ,因为PA ⊥AH ,所以在Rt△PHA 中,tan ∠PHA =PA AH=2,所以∠PHA =arctan 2,故二面角P -BC -A 的大小为arctan 2.根据题意作AH ⊥BC ,便可知AH 为PH 在平面ABCD 内的射影,由三垂线定理可得BC ⊥PH ,由此可确定∠PHA 是二面角P -BC -A 的平面角,再在Rt△PHA 中根据正切函数的定义求得∠PHA 的大小,进而可得到二面角P -BC -A 的大小.由此可见,求解二面角问题的关键有两步:第一步,根据二面角的平面角的定义、三垂线定理、垂面的性质,确定二面角的平面角;第二步,根据勾股定理、正余弦定理、三角函数的定义求得平面角的大小.(作者单位:江西省赣州市南康第三中学)二次函数是一种基本初等函数.二次函数问题的常见命题形式有求二次函数的解析式、最值、对称轴、单调区间、零点等.这类问题侧重于考查二次函数的图象和性质.下面重点谈一谈如何求解有关二次函数的最值问题、零点问题和不等式问题.一、二次函数的最值问题二次函数y =ax 2+bx +c 的图象是一条抛物线,若a >0,则抛物线的开口向上;若a <0,则抛物线的开口向下.当x =-b 2a 时,函数在R 上有最值b 2-4ac 4a.若函数的定义域为[m ,n ],则需分三种情况考虑:(1)当-b 2a ∈[m ,n ]时,函数在x =-b 2a 处取得最值;(2)当x =-b 2a,在[m ,n ]的左侧时,若a >0,则函数在x =m处取最小值,在x =n 处取最大值,若a <0,则相反;(3)当x =-b2a在[m ,n ]的右侧时,若a >0,则函数在x =m 处取最大值,在x =n 处取最小值;若a <0,则相反.例1.求y=-5x 2-6x +1的最大值.解:y =-5x 2-6x +1是二次函数,x 2的系数是-5,所以二次函数图象的开口向下,当x =-65时,函数有最大值1.利用二次函数的图象,即可确定二次函数在对称轴处取得最值.除了用图象法求解最值问题,还可以用配方法,比如y =x 2+4x +3=()x +22-1,可知当x =-2时函数的最小值为-1.例2.已知函数f (x )=x 2+(2a -1)x -3.方法集锦44。
立体几何二面角

立体几何二面角1、如图,正三棱柱ABC-A1B1C1的所有棱长都为2,(I)当λ=时,求证AB1丄平面A1BD;(II)当二面角A—A1D—B的大小为-时,求实数λ的值.2、3、如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,且.(Ⅰ)求证:平面;(Ⅱ)若,求二面角的余弦值.4、如图,三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求异面直线AE和PB所成角的余弦值.(2)求三棱锥A-EBC的体积.5、在四棱锥P﹣ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥BD,异面直线PA,CD所成角等于60°(1)求证:面PCD⊥面PBD;(2)求直线PC和平面PAD所成角的正弦值;(3)在棱PA上是否存在一点E使得二面角A﹣BE﹣D的余弦值为?6、已知四棱锥P﹣ABCD的底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点.(1)求异面直线AC与PB所成的角的余弦值;(2)求直线BC与平面ACM所成角的正弦值.7、在四棱锥中,,,平面平面,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.8、如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明:B1C1⊥CE;(Ⅱ)求二面角B1-CE-C1的正弦值;9、在如图所示的四棱锥中,已知平面∥为的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的余弦值.11、如图,四棱锥中,底面为平行四边形,,,底面(1)证明:;(2)若,求二面角余弦值.12、如图,四棱锥P﹣ABCD的底面是矩形,侧面PAD丄底面ABCD,∠APD=.④若α⊥γ,β⊥γ,α∩β=l,则l⊥γ,其中真命题是.(填序号)20、设a,b为两条直线,α,β为两个平面,给出下列命题:(1)若a∥b,a⊥α,则b⊥α;(2)若a∥α,b∥α,则a∥b;(3)若a⊥b,b⊥α,则a∥α;(4)若a⊥α,a⊥β,则α∥β.其中正确命题的个数是.21、如图在直三棱柱ABC﹣A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC 所成角的余弦值是.四、综合题22、如图,四棱锥中,底面,,,,,是的中点.(1)求证:;(2)求证:面.五、计算题23、如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点。
立体几何中二面角的求法

二面角的求法一、定义法:例1:如图1,设正方形ABCD-A1B1C1D!中,E为CC1中点,求截面A1BD和EBD所成二面角的度数。
二、垂面法例2如图3,设三棱锥V-ABC中,VA⊥底面ABC,AB⊥BC,DE垂直平分VC,且分别交AC、VC于D、E,又VA=AB,VB=BC,求二面角E-BD-C的度数。
三、三垂线法:例3如图6,设正方体ABCD-A1B1C1D1中,E、F分别是AB、C1D1的中点。
(1)求证:A1、E、C、F四点共面;(2)求二面角A1-EC-D的大小。
四、延伸法例4. 如图10,设正三棱柱ABC- '''A B C各棱长均为α,D为C'C中点,求平面'A BD与平面ABC所成二面角的度数.五、射影法例5如图12,设正方体ABCD-A 1B 1C 1D 1中,M 为AA 1上点,A 1M:MA=3:1,求截面B 1D 1M 与底面ABCD 所成二面角。
1.如图,在三棱柱ABC-111A B C 中,B 1B ⊥平面ABC ,∠BAC=90°,AC=AB=1AA ,E 是BC 的中点.1. (1)求证:AE ⊥1B C ;(2)求异面直线AE 与1AC 所成的角的大小;(3)若G 为1CC 中点,求二面角C-AG-E 的正切值.2.如图,已知正方形ABCD 和矩形BDFE 所在的平面互相垂直,AC 交BD 于O 点,M 为EF 的中点,BC =,BF =1(Ⅰ)求证:BC ⊥AF :(Ⅱ)求证:BM ∥平面ACE ;(Ⅲ)求二面角B-AF-C 的大小.3.如图,多面体ABCDS 中,面ABCD 为矩形,SD ⊥AD ,且SD ⊥AB ,AD=1,AB=2,SD=.(1)求证:CD ⊥平面ADS ;(2)求AD 与SB 所成角的余弦值;(3)求二面角A-SB-D 的余弦值.。
立体几何二面角问题

立体几何二面角问题
立体几何二面角问题是数学中常见的一个概念。
它是指一个多面体(可以是四面体、八面体、十六面体等)的每个面上,两个夹角的总和。
举个例子,一个三角形的立体几何二面角总和是180度,而一个四边形的立体几何二面角总和是360度。
立体几何二面角问题是在几何学中有重要意义的一个概念,它经常被用来分析多面体的构和形状,并且能够解决几何学中各种复杂的问题。
首先,关于立体几何二面角的总和,有一个重要的定理。
它叫做Euler定理,它定义了一个多面体的立体几何二面角总和应该是
V+F-E的形式,其中V为多面体的顶点数,F为多面体的面的数量,以及E为多面体的边的数量。
这个定理被用来表示一个多面体的结构和特性,并且也用于研究多面体的性质,以及理解多面体之间的关系。
此外,立体几何二面角的总和也可以用来推导几何学中各种几何形状的性质。
比如,人们知道一个垂直的直角三角形的立体几何二面角的总和是180度,那么由此可以推导出,一个垂直的直角三角形的两个长度之比是1:1:√2,这就是余弦定理。
另外,根据立体几何二面角的定理,还可以推导出其它几何形状的性质,比如二维平面上的四边形、三角形等等。
最后,立体几何二面角的性质也可以用来解决几何学中复杂的问题。
比如,在三角形中,如果要求根据三条边的长度求两个角的大小,那么就可以利用立体几何二面角的定理来解决这个问题。
总的来说,立体几何二面角在几何学中扮演着重要的角色,它不仅能推导出几何形状的性质,还可以用来解决复杂的几何学问题。
高中立体几何二面角专项练习

第5讲 二面角一.选择题(共7小题)1.在边长为1的菱形ABCD 中,60ABC ∠=°,将菱形沿对角线AC 折起,使折起后1BD =,则二面角B AC D −−的余弦值为( )A .13B .12C D 2.已知矩形ABCD 的两边3AB =,4AD =,PA ⊥平面ABCD ,且45PA =,则二面角A BD P −−的正切值为( )A .12B .13C .12−D .13−3.在平面α内,已知AB BC ⊥,过直线AB ,BC 分别作平面β,γ,使锐二面角AB αβ−−为3π,锐二面角BC αγ−−为3π,则平面β与平面γ所成的锐二面角的余弦值为( )A .14B C .12D .344.如图,60°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,则CD 的长为( )A B .7 C . D .95.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =( ) A .150°B .45°C .60°D .120°6.设二面角a αβ−−的大小是60°,P 是二面角内的一点,P 点到α,β的距离分别为1cm ,2cm ,则点P 到棱a 的距离是( )A B C .23cmD 7.正四棱锥相邻两个侧面所成的二面角的平面角为α,侧面与底面的二面角的平面角为β,则2cos cos 2αβ+的值是( ) A .1B .2C .1−D .32二.填空题(共4小题)8.已知四棱锥P ABCD −的底面是正方形,PA ⊥平面ABCD ,且PA AD =,则平面PAB 与平面PCD 所成的二面角的度数为 .9.如图所示的正方体1111ABCD A B C D −中,过顶点B 、D 、1C 作截面,则二面角1B DC C −−的平面角的余弦值是 .10.将直角三角形ABC 沿斜边上的高AD 折成120°的二面角,已知直角边AB AC =,那么二面角A BC D −−的正切值为 . 11.已知二面角a αβ−−等于120°,二面角内一点P 满足,PA α⊥,A α∈,PB β⊥,B β∈.4PA =,6PB =.则点P 到棱a 的距离为 .三.解答题(共10小题)12.如图,四棱锥V ABCD −中,底面ABCD 是边长为2的正方形,其它四个侧面都是侧棱的等腰三角形,E 、F 分别为AB 、VC 的中点. (1)求证://EF 平面VAD ; (2)求二面角V AB C −−的大小.13.如图,在四面体ABCD 中,D 在平面ABC 的射影O 为棱AB 的中点,E 为棱BD 的中点,过直线OE 作一个平面与平面ACD 平行,且与BC 交于点F ,已知AC BC ==,2AO DO ==.(1)证明:F 为线段BC 的中点;(2)求平面ACD 与平面DOF 所成锐二面角的余弦值.14.已知四棱锥P ABCD −中,底面ABCD 是矩形,PA ⊥平面ABCD ,1AP AD ==,2AB =,E 、F 分别是AB 、PD 的中点.(1)求证://AF 平面PEC ;(2)求PC 与平面ABCD所成角的大小;(3)求二面角P EC D −−的大小.15.如图所示,四棱锥P ABCD −的底面ABCD 是边长为1的菱形,60BCD ∠=°,E 是CD的中点,PA ⊥底面ABCD ,PA =. (1)证明:平面PBE ⊥平面PAB ; (2)求异面直线PC 与BD 所成的角 (3)求二面角A BE P −−的大小.16.如图甲,直角梯形ABCD 中,//AB CD ,2DAB π∠=,点M 、N 分别在AB ,CD 上,且MN AB ⊥,MC CB ⊥,2BC =,4MB =,现将梯形ABCD 沿MN 折起,使平面AMND 与平面MNCB 垂直(如图乙). (Ⅰ)求证://AB 平面DNC ; (Ⅱ)当32DN =时,求二面角D BC N −−的大小.17.如图,正方形ABCD 的边长为2,将四条边对应的等腰三角形折起构成一个正四棱锥P ABCD −.(1)当Q 为PC 为中点时,证明//PA 平面BDQ ;(2)当等腰三角形的腰长为多少时,异面直线PA 与BC 所成的角为60°; (3)当侧棱与底面所成的角为60°时,求相邻两个侧面所成的二面角的余弦值.18.已知,PA 垂直于正方形ABCD 所在平面,且PA AB =. (1)求平面PDC 与平面ABCD 所成二面角的大小; (2)求二面角B PC D −−的大小; (3)求二面角A PB C −−的大小;(4)求平面PAC 与平面PCD 所成二面角的大小.19.如图,在棱长为2的正方体1111ABCD A B C D −中,E ,F ,M ,N 分别是棱AB ,AD ,11A B ,11A D 的中点,点P ,Q 分别在棱1DD ,1BB 上移动,且(02)DP BQ λλ==<<.(Ⅰ)当1λ=时,证明:直线1//BC 平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体1111ABCD A B C D −试画出图形;(Ⅲ)在(Ⅱ)的情形下,设正方体1111ABCD A B C D −的棱1CC 的中点为E ,求平面1AB E 与平面ABCD 所成二面角的余弦值.21.如图,四边形PDCE 为矩形,四边形ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ∠=∠=°,112AB AD CD ===. (1)若M 为PA 中点,求证://AC 平面MDE ; (2)若平面PAD 与PBC 所成的锐二面角的大小为3π,求线段PD 的长度.。
解二面角问题三种方法(习题及答案)

C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。
(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。
下面举几个例子来说明。
例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。
例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。
这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。
2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。
(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。
总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。
并且能够很快地利用图形的一些条件来求出所要求的。
在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。
至于求角,通常是把这角放在一个三角形中去求解。
由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。
(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。
立体几何二面角5种常见解法

立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
六种方法求二面角的大小

六种方法求二面角的大小河北省武邑县职教中心 053400 李凤迎 李洪涛求二面角的大小是高考立体几何题中的重要题型,它几乎涉及到了立体几何中的所有知识点,考查到了所有思想和方法,具有很强的综合性.我们要根据题目环境条件的不同灵活地采用适当的方法.下面总结一下二面角的常见求法,以供大家学习和参考.一、定义法例1. 在三棱锥A BCD -中,AB AC AD BC ===,CD BD =,90BAC ∠=,90BDC ∠=,求二面角A BC D --的大小.分析 因为ABC ∆和BCD ∆是有公共边的等腰三角形,此时宜采用“定义法”.解答 取BC 的中点O ,连接OA 、OD ,因为OA 、OD 分别为等腰ABC ∆和BCD ∆的中线,所以AO BC ⊥,DO BC ⊥,则AOD ∠即为所求二面角A BC D --的平面角.设AB a =,则AD a =,AO =,2OD a =,在AOD ∆中,因为2222a a ⎫⎛⎫+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,即222AO OD AD +=,所以90AOB ∠=,所以二面角A BC D --大小为90.说明 当二面角的两个面是有公共边的等腰三角形和矩形的组合时,可采用“定义法”;当二面角的两个面是关于公共边对称的两个全等三角形时,同时取公共边上的高,由定义可作出二面角的平面角.变式训练1 (2008年高考题)在四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =, CD =,AB AC =.设侧面ABC 为等边三角形,求二面角C AD E --的大小. 二、三垂线定理法例2. 在三棱锥P ABC -中,AP BP BC==,90APB ABC ∠=∠=,面APB ⊥面PBC .(1)求证:APB ABC ⊥面面;(2)求二面角P AC B --的大小.分析 由(1)中APB ABC ⊥面面可知,此时宜采用“三垂线定理法”作出二面角P AC B --的平面角.只需过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH ,则PHO∠即为所求. 解答 (1)略.(2)过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH .因为APB ABC ⊥面面,=APB ABC AB 面面,PO APB ⊂面,PO AB ⊥,所以DCO ABO HCA B PEGOB DCAPO ABC ⊥面,则OH 为斜线PH 在面ABC 内的射影.又因为AC OH ⊥,所以AC PH ⊥(三垂线定理),则PHO ∠即为所求.设AP a =,则PB BC a ==.在Rt APB ∆中2PO AO a ==,在Rt ABC ∆中AC =,由Rt AOH ∆∽Rt ABC ∆得OH BC AO AC=,所以BC OH AO AC =⋅2a ==,又因为PO ABC ⊥面,OH ABC ⊂面,所以PO OH ⊥,则在Rt ABC ∆中,tan PO PHO HO ∠===60PHO ∠=,即二面角P AC B --的大小为60.说明 当题目中有一条从一个半平面内的一点到另一个半平面的垂线段时,可采用“三垂线定理法”.垂线段可由题目中的线面垂直、面面垂直等条件作出.变式训练2 如图,三棱柱111ABC A B C -,底面是边长为的正三角形,点1A 在底面ABC 上的射影O 恰是BC 的中点.若侧棱1AA 和底面ABC 所成的角为45时,求二面角1A AC B --的正切值.三、垂面法例3. 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且3PA =,4PB =若ABC S ∆=l αβ--的度数为______.分析 由已知得l PAB ⊥面.设PAB l O =面,连接,OA OB ,则l OA ⊥,l OB ⊥,则AOB ∠即为二面角l αβ--的平面角,且180AOB P ∠+∠=.要想求AOB ∠,只需由ABC ∆的面积公式求出P ∠即可.解答 因为1sin 2ABC S PA PB P ∆=⋅⋅⋅∠134sin 2P =⋅⋅⋅∠=所以sin 2P ∠=,所以60P ∠=或120,又因为180AOB P ∠+∠=,从而=120AOB ∠或60.说明 180AOB P ∠+∠=可作为结论使用.若给出ABP ∆的三边,则可通过余弦定理l OA BPβαHC 1B 1A 1OC B A求出P ∠的度数.变式训练 3 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且7PA =,8PB =,13AB =,则二面角l αβ--的度数为______.四、面积射影法例4. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,PBC ABC ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”.解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD MEDP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S ==45θ=. 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练4 若一正四棱锥的表面积与其底面积满足关系式21=x x S S x++表底,则其侧面与底面所成的二面角的范围是______.五、三正弦定理法例5. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==;取A B ''的中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN'∠M EDC BAPB B'A'C'AD N即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a '=,D C '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=.说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练 5 如图,平面角为锐角的二面角EF αβ--,若A EF ∈,AG α⊂,45GAE ∠=,若AG 与β所成的角为30,则该二面角的大小为______.六、向量法例6. 题目同例5.分析 由(1)可证BC CC A A ''⊥面,则BC CA ⊥,所以,,CA CB CC '两两互相垂直,此时可以采用“向量法”求二面角的大小.解答 (1) 略.(2)建立如图所示的空间直角坐标系.设所求二面角为θ,平面BDC '的法向量为()1,,n x y z =,又因为()101DC '=-,,,()012BC '=-,,,则1100DC n BC n ⎧'⋅=⎪⎨'⋅=⎪⎩,即020x z y z -+=⎧⎨-+=⎩,取1x =,则2y =,1z =,所以()11,2,1n =;同理设平面ABB A ''的法向量为2n ,取AB 的中点M ,则可知CM ABB A ''⊥面,所以取211==,022n CM ⎛⎫⎪⎝⎭,,又因为121212cos ,n n n n nn ⋅=32==,由题意知所求二面角为锐二面角,所以30θ=. 说明 向量法又俗称“万能法”.当题目中出现三条线段具有或可以证明存在两两互相垂直的位置关系时,可采用“向量法”.但计算时一定要认真,并且要根据所求二面角是锐二面角还是钝二面角合理取舍.变式训练 6 如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.求平面1ADC 与平面1ABA 所成二面角的正弦值.βαGE FA(参考答案:1.π- 2. 2;3.60;4.6090θ≤<;5.45;6.sinθ=.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体证明题(2)1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求二面角B﹣AC﹣E的余弦值.2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=.(1)求证:平面EFP⊥平面ABFE;(2)求二面角B﹣AP﹣E的大小.3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:EF⊥平面PDC.4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.(1)求证:AB⊥CD;(2)求二面角D﹣AB﹣C的正切值.5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ;(Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值.7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点.(Ⅰ)证明:AB ⊥平面BEF ;(Ⅱ)若PA=,求二面角E ﹣BD ﹣C .8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点.(1)求证:DM ⊥平面PBC ;(2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为32?若存在,求出实数λ的值;若不存在,请说明理由.9.如图,ABED是长方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中点(Ⅰ)求证:AM⊥平面BEC;(Ⅱ)求三棱锥B﹣ACE的体积;(Ⅲ)若点Q是线段AD上的一点,且平面QEC⊥平面BEC,求线段AQ的长.10.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB(1)求证:EA⊥平面EBC(2)求二面角C﹣BE﹣D的余弦值.11.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.(1)求证:平面POB⊥平面PAD;12.如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E、F分别是CC1,BC的中点.(1)求证:平面AB1F⊥平面AEF;(2)求二面角B1﹣AE﹣F的余弦值.13.如图,在菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.( I)求证:BD⊥平面ACFE;( II)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦角.14.如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是.15.如图,已知斜三棱柱ABC一A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1.(Ⅰ)求证:AC1⊥平面A1BC;(Ⅱ)求二面角A﹣A1B﹣C的平面角的余弦值.试卷答案1.【考点】与二面角有关的立体几何综合题;直线与平面垂直的判定.【分析】(1)由已知中直二面角D﹣AB﹣E中,四边形ABCD是正方形,且BF⊥平面ACE,我们可以证得BF⊥AE,CB⊥AE,进而由线面垂直的判定定理可得AE⊥平面BCE.(2)连接BD与AC交于G,连接FG,设正方形ABCD的边长为2,由三垂线定理及二面角的平面角的定义,可得∠BGF是二面角B﹣AC﹣E的平面角,解Rt△BFG即可得到答案.【解答】证明:(1)∵BF⊥平面ACE∴BF⊥AE…∵二面角D﹣AB﹣E为直二面角,且CB⊥AB,∴CB⊥平面ABE∴CB⊥AE…∴AE⊥平面BCE.…解:(2)连接BD与AC交于G,连接FG,设正方形ABCD的边长为2,∴BG⊥AC,BG=,…∵BF垂直于平面ACE,由三垂线定理逆定理得FG⊥AC∴∠BGF是二面角B﹣AC﹣E的平面角…由(1)AE⊥平面BCE,得AE⊥EB,∵AE=EB,BE=.∴在Rt△BCE中,EC==,…由等面积法求得,则∴在Rt△BFG中,故二面角B﹣AC﹣E的余弦值为.…2.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)用分析法找思路,用综合法证明.取EF中点O,连接OP、OC.等腰三角形CEF中有CO⊥EF,即OP⊥EF.根据两平面垂直的性质定理,平面PEF和平面ABFE的交线是EF,且PO⊥EF,分析得PO⊥平面ABFE.故只需根据题中条件证出PO⊥平面ABFE,即可利用面面垂直的判定定理证得平面EFP⊥平面ABFE.(2)根据第一问分析空间位置关系,可建立空间直角坐标线求得平面ABP和平面AEP的法向量的所成角,利用向量角和二面角关系,确定二面角大小.【解答】解:(1)证明:在△ABC中,D为AB中点,O为EF中点.由AC=BC=,AB=2.∵E、F分别为AC、BC的中点,∴EF为中位线,得CO=OD=1,CO⊥EF∴四棱锥P﹣ABFE中,PO⊥EF,…2分∵OD⊥AB,AD=OD=1,∴AO=,又AP=,OP=1,∴四棱锥P﹣ABFE中,有AP2=AO2+OP2,即OP⊥AO,…4分又AO∩EF=O,EF、AO⊂平面ABFE,∴OP⊥平面ABFE,…5分又OP⊂平面EFP,∴平面EFP⊥平面ABFE.…6分(2)由(1)知OD,OF,OP两两垂直,以O为原点,建立空间直角坐标系(如图):则A(1,﹣1,0),B(1,1,0),E(0,,0),P(0,0,1)…7分∴,,设,分别为平面AEP、平面ABP的一个法向量,则⇒取x=1,得y=2,z=﹣1∴.…9分同理可得,…11分由于=0,所以二面角B﹣AP﹣E为90°.…12分3.【考点】空间中直线与平面之间的位置关系.【专题】证明题.【分析】对于(Ⅰ),要证EF∥平面PAD,只需证明EF平行于平面PAD内的一条直线即可,而E、F分别为PC、BD的中点,所以连接AC,EF为中位线,从而得证;对于(Ⅱ)要证明EF⊥平面PDC,由第一问的结论,EF∥PA,只需证PA⊥平面PDC即可,已知PA=PD=AD,可得PA⊥PD,只需再证明PA⊥CD,而这需要再证明CD⊥平面PAD,由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性质可以证明,从而得证.【解答】证明:(Ⅰ)连接AC,则F是AC的中点,在△CPA中,EF∥PA(3分)且PA⊂平面PAD,EF⊊平面PAD,∴EF∥平面PAD(6分)(Ⅱ)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,又CD⊥AD,所以CD⊥平面PAD,∴CD⊥PA(9分)又PA=PD=AD,所以△PAD是等腰直角三角形,且∠APD=,即PA⊥PD(12分)而CD∩PD=D,∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC(14分)【点评】本题考查线面平行的判定及线面垂直的判定,而其中的转化思想的应用值得注意,将线面平行转化为线线平行;证明线面垂直,转化为线线垂直,在证明线线垂直时,往往还要通过线面垂直来进行.4.【考点】与二面角有关的立体几何综合题;空间中直线与直线之间的位置关系.【分析】(1)利用平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,可得DC⊥平面ABC,利用线面垂直的性质,可得DC⊥AB;(2)过C作CE⊥AB于E,连接ED,可证∠CED是二面角D﹣AB﹣C的平面角.设CD=a,则BC==,从而EC=BCsin60°=,在Rt△DEC中,可求tan∠DEC.【解答】(1)证明:∵DC⊥BC,且平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴DC⊥平面ABC,又AB⊂平面ABC,∴DC⊥AB.…(2)解:过C作CE⊥AB于E,连接ED,∵AB⊥CD,AB⊥EC,CD∩EC=C,∴AB⊥平面ECD,又DE⊂平面ECD,∴AB⊥ED,∴∠CED是二面角D﹣AB﹣C的平面角,…设CD=a,则BC==,∵△ABC是正三角形,∴EC=BCsin60°=,在Rt△DEC中,tan∠DEC=.…5.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(1)令AD=1,求出BD=,从而AD⊥BD,进而BD⊥平面PAD,由此能证明平面PAD⊥平面PBD.(2)以D为坐标原点,DA为x轴,DC为y轴,过D作垂直于平面ABCD的直线为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣PB﹣C的余弦值.【解答】证明:(1)在平行四边形ABCD中,令AD=1,则BD==,在△ABD中,AD2+BD2=AB2,∴AD⊥BD,又平面PAD⊥平面ABCD,∴BD⊥平面PAD,BD⊂平面PBD,∴平面PAD⊥平面PBD.解:(2)由(1)得AD⊥BD,以D为坐标原点,DA为x轴,DC为y轴,过D作垂直于平面ABCD的直线为z轴,建立空间直角坐标系,令AD=1,则A(1,0,0),B(0,,0),C(﹣1,,0),P(,0,),=(﹣1,,0),=(﹣),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则,取y=1,得=(),设平面PBC的法向量=(a,b,c),,取b=1,得=(0,1,2),∴cos<>===,由图形知二面角A﹣PB﹣C的平面角为钝角,∴二面角A﹣PB﹣C的余弦值为﹣.6.【考点】直线与平面垂直的判定;直线与平面所成的角.【分析】(Ⅰ)由ABC﹣A1B1C1是直三棱柱,可知CC1⊥AC,CC1⊥BC,∠ACB=90°,AC⊥BC.建立空间直角坐标系C﹣xyz.则A,B1,E,A1,可得,,,可知,根据,,推断出AB1⊥CE,AB1⊥CA1,根据线面垂直的判定定理可知AB1⊥平面A1CE.(Ⅱ)由(Ⅰ)知是平面A1CE的法向量,,进而利用向量数量积求得直线A1C1与平面A1CE所成角的正弦值【解答】(Ⅰ)证明:∵ABC﹣A1B1C1是直三棱柱,∴CC1⊥AC,CC1⊥BC,又∠ACB=90°,即AC⊥BC.如图所示,建立空间直角坐标系C﹣xyz.A(2,0,0),B1(0,2,2),E(1,1,0),A1(2,0,2),∴,,.又因为,,∴AB1⊥CE,AB1⊥CA1,AB1⊥平面A1CE.(Ⅱ)解:由(Ⅰ)知,是平面A1CE的法向量,,∴|cos<,>|==.设直线A1C1与平面A1CE所成的角为θ,则sinθ=|cos<,>|=.所以直线A1C1与平面A1CE所成角的正弦值为.7.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)只需证明AB⊥BF.AB⊥EF即可.(Ⅱ)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,求出平面CDB的法向量为,平面EDB的法向量为,设二面角E﹣BD﹣C的大小为θ,则=,【解答】解:(Ⅰ)证:由已知DF∥AB且∠DAB为直角,故ABFD是矩形,从而AB⊥BF.又PA⊥底面ABCD,∴平面PAD⊥平面ABCD,∵AB⊥AD,故AB⊥平面PAD,∴AB⊥PD,在△PCD内,E、F分别是PC、CD的中点,EF∥PD,∴AB⊥EF.由此得AB⊥平面BEF…(Ⅱ)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,则设平面CDB的法向量为,平面EDB的法向量为,则可取设二面角E﹣BD﹣C的大小为θ,则=,所以,…8.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)取PB中点N,连结MN,AN.由三角形中位线定理可得四边形ADMN为平行四边形.由AP⊥AD,AB⊥AD,由线面垂直的判定可得AD⊥平面PAB.进一步得到AN⊥MN.再由AP=AB,得AN⊥PB,则AN⊥平面PBC.又AN∥DM,得DM⊥平面PBC;(2)以A为原点,方向为x轴的正方向,方向为y轴的正方向,方向为z轴的正方向,建立如图所示的空间直角坐标系.设E(2,t,0)(0≤t≤4),再求得P,D,B的坐标,得到的坐标,求出平面PDE的法向量,再由题意得到平面DEB的一个法向量,由两法向量夹角的余弦值得到实数λ的值.【解答】(1)证明:如图,取PB中点N,连结MN,AN.∵M是PC中点,∴MN∥BC,MN=BC=2.又∵BC∥AD,AD=2,∴MN∥AD,MN=AD,∴四边形ADMN为平行四边形.∵AP⊥AD,AB⊥AD,AP∩AB=A,∴AD⊥平面PAB.∵AN⊂平面PAB,∴AD⊥AN,则AN⊥MN.∵AP=AB,∴AN⊥PB,又MN∩PB=N,∴AN⊥平面PBC.∵AN∥DM,∴DM⊥平面PBC;(2)解:存在符合条件的λ.以A为原点,方向为x轴的正方向,方向为y轴的正方向,方向为z轴的正方向,建立如图所示的空间直角坐标系.设E(2,t,0)(0≤t≤4),P(0,0,2),D(0,2,0),B(2,0,0),则,.设平面PDE的法向量=(x,y,z),则,令y=2,则z=2,x=t﹣2,取平面PDE的一个法向量为=(2﹣t,2,2).又平面DEB即为xAy平面,故其一个法向量为=(0,0,1),∴cos<>==.解得t=3或t=1,∴λ=3或.9.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)推导出BE⊥AM,BC⊥AM,由此能证明AM⊥平面BEC.(Ⅱ)由V B﹣ACE=V E﹣ABC,能求出三棱锥B﹣ACE的体积.(Ⅲ)在平面QEC内作QN⊥EC,QN交CE于点N.QN与AM共面,设该平面为a,推导出四边形AMNQ是平行四方形,由此能求出AQ.【解答】证明:(Ⅰ)∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,BE⊥AB,BE⊂平面ABED,∴BE⊥平面ABC,又AM⊂平面ABC,∴BE⊥AM.又AB=AC,M是BC的中点,∴BC⊥AM,又BC∩BE=B,BC⊂平面BEC,BE⊂平面BEC,∴AM⊥平面BEC.解:(Ⅱ)由(Ⅰ)知,BE⊥平面ABC,∴h=BE=6.在Rt△ABM中,,又,∴.(Ⅲ)在平面QEC内作QN⊥EC,QN交CE于点N.∵平面QEC⊥平面BEC,平面QEC∩平面BEC﹣EC,∴QN⊥平面BEC,又AM⊥平面BEC.∴QN∥AM.∴QN与AM共面,设该平面为a,∵ABED是长方形,∴AQ∥BE,又Q⊄平面BEC,BE⊂平面BEC,∴AQ∥平面BEC,又AQ⊂α,α∩平面BEC=MN,∴AQ∥MN,又QN∥AM,∴四边形AMNQ是平行四方形.∴AQ=MN.∵AQ∥BE,AQ∥MN,∴MN∥BE,又M是BC的中点.∴,∴AQ=MN=3.10.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)根据线面垂直的判定定理即可证明EA⊥平面EBC;(2)求出平面的法向量,利用向量法进行求解即可.【解答】(1)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE∵EA⊂平面ABE,∴EA⊥BC,∵EA⊥EB,EB∩BC=B,∴EA⊥平面EBC(2)取AB中O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵平面ABE⊥平面ABCD,∴EO⊥平面ABCD∵AB=2CD,AB∥CD,AB⊥BC,∴DO⊥AB,建立如图的空间直角坐标系O﹣xyz如图:设CD=1,则A(0,1,0),B(0,﹣1,0),C(1,﹣1,0),D(1,0,0),E(0,0,1),由(1)得平面EBC的法向量为=(0,1,﹣1),设平面BED的法向量为=(x,y,z),则,即,设x=1,则y=﹣1,z=1,则=(1,﹣1,1),则|cos<,>|===,故二面角C﹣BE﹣D的余弦值是.11.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明四边形BCDO是平行四边形,得出OB⊥AD;再证明BO⊥平面PAD,从而证明平面POB⊥平面PAD;(2)解法一:由,M为PC中点,证明N是AC的中点,MN∥PA,PA∥平面BMO.解法二:由PA∥平面BMO,证明N是AC的中点,M是PC的中点,得.【解答】解:(1)证明:∵AD∥BC,,O为AD的中点,∴四边形BCDO为平行四边形,∴CD∥BO;又∵∠ADC=90°,∴∠AOB=90°,即OB⊥AD;又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴BO⊥平面PAD;又∵BO⊂平面POB,∴平面POB⊥平面PAD;(2)解法一:,即M为PC中点,以下证明:连结AC,交BO于N,连结MN,∵AD∥BC,O为AD中点,AD=2BC,∴N是AC的中点,又点M是棱PC的中点,∴MN∥PA,∵PA⊄平面BMO,MN⊂平面BMO,∴PA∥平面BMO.解法二:连接AC,交BO于N,连结MN,∵PA∥平面BMO,平面BMO∩平面PAC=MN,∴PA∥MN;又∵AD∥BC,O为AD中点,AD=2BC,∴N是AC的中点,∴M是PC的中点,则.12.【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定.【分析】(1)连结AF,由已知条件推导出面ABC⊥面BB1C1C,从而AF⊥B1F,由勾股定理得B1F⊥EF.由此能证明平面AB1F⊥平面AEF.(2)以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系,利用向量法能求出二面角B1﹣AE﹣F的余弦值.【解答】(1)证明:连结AF,∵F是等腰直角三角形△ABC斜边BC的中点,∴AF⊥BC.又∵三棱柱ABC﹣A1B1C1为直三棱柱,∴面ABC⊥面BB1C1C,∴AF⊥面BB1C1C,AF⊥B1F.…设AB=AA1=1,则,EF=,.∴=,∴B1F⊥EF.又AF∩EF=F,∴B1F⊥平面AEF.…而B1F⊂面AB1F,故:平面AB1F⊥平面AEF.…(2)解:以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系如图,设AB=AA1=1,则F(0,0,0),A(),B1(0,﹣,1),E(0,﹣,),, =(﹣,,1).…由(1)知,B1F⊥平面AEF,取平面AEF的法向量:=(0,,1).…设平面B1AE的法向量为,由,取x=3,得.…设二面角B1﹣AE﹣F的大小为θ,则cosθ=|cos<>|=||=.由图可知θ为锐角,∴所求二面角B1﹣AE﹣F的余弦值为.…13.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】( I)只需证明DB⊥AC,BD⊥AE,即可得BD⊥平面ACFE;( II)取EF的中点为M,以O为坐标原点,以OA为x轴,以OB为y轴,以OM为z 轴,建立空间直角坐标系,则,D(0,﹣,0),F(﹣1,0,h),E (1,0,2),则,,利用向量法求解【解答】( I)证明:在菱形ABCD中,可得DB⊥AC,又因为AE⊥平面ABCD,∴BD⊥AE,且AE∩AC=A,BD⊥平面ACFE;( II)解:取EF的中点为M,以O为坐标原点,以OA为x轴,以OB为y轴,以OM为z 轴,建立空间直角坐标系,则,D(0,﹣,0),F(﹣1,0,h),E(1,0,2),则,,设平面BDE的法向量,由,可取,|cos|=,⇒h=3,故F(﹣1,0,3),,,设平面BFE的法向量为,由,可取,,设平面DFE的法向量为,由,可取,cos=,二面角B﹣EF﹣D的余弦值为.14.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)证明:AD⊥平面ABFE,即可证明平面PAD⊥平面ABFE;(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立方程关系即可求正四棱锥P ﹣ABCD的高.【解答】(Ⅰ)证明:直三棱柱ADE﹣BCF中,AB⊥平面ADE,所以:AB⊥AD,又AD⊥AF,所以:AD⊥平面ABFE,AD⊂平面PAD,所以:平面PAD⊥平面ABFE….(Ⅱ)∵AD⊥平面ABFE,∴建立以A为坐标原点,AB,AE,AD分别为x,y,z轴的空间直角坐标系如图:设正四棱锥P﹣ABCD的高为h,AE=AD=2,则A(0,0,0),F(2,2,0),C(2,0,2),=(2,2,0),=(2,0,2),=(1,﹣h,1),=(x,y,z)是平面AFC的法向量,则,令x=1,则y=z=﹣1,即=(1,﹣1,﹣1),设=(x,y,z)是平面ACP的法向量,则,令x=1,则y=﹣1,z=﹣1﹣h,即=(1,﹣1,﹣1﹣h),∵二面角C﹣AF﹣P的余弦值是.∴cos<,>===.得h=1或h=﹣(舍)则正四棱锥P﹣ABCD的高h=1.15.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】证明题;数形结合;综合法;空间位置关系与距离.【分析】(1)推导出BC⊥AC,BC⊥AC1,BA1⊥AC1,由此能证明AC1⊥平面A1BC.(2)推导出平面A1AB⊥平面BCF,过C作CH⊥BF于H,则CH⊥面A1AB,求出CH=,过H作HG⊥A1B于G,连CG,则CG⊥A1B,从而∠CGH为二面角A﹣A1B﹣C的平面角,由此能求出二面角A﹣A1B﹣C的平面角的余弦值.【解答】证明:(1)因为A1D⊥平面ABC,所以,平面AA1C1C⊥平面ABC,又BC⊥AC,所以,BC⊥平面AA1C1C,得BC⊥AC1,又BA1⊥AC1,所以,AC1⊥平面A1BC.解:(2)因为AC1⊥A1C,所以四边形AA1C1C为菱形,故AA1=AC=2,又D为AC中点,知∠A1AC=60°,取AA1的中点F,则AA1⊥平面BCF,从而,平面A1AB⊥平面BCF,过C作CH⊥BF于H,则CH⊥面A1AB,在Rt△BCF,BC=2,CF=,故CH=,过H作HG⊥A1B于G,连CG,则CG⊥A1B,从而∠CGH为二面角A﹣A1B﹣C的平面角,在Rt△A1BC中,A1C=BC=2,所以,CG=,在Rt△CGH中,sin∠CGH=,cosCGH==.故二面角A﹣A1B﹣C的平面角的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.。