高中立体几何证明方法及例题

合集下载

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线垂直的方法(学生)

PE D CB A高中立体几何证明线线垂直方法〔1〕通过“平移〞,根据假设αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ⊥平面PDC.2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;3.如下图,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。

〔1〕证明:PH ABCD ⊥平面;〔2〕假设121PH AD FC ===,,,求三棱锥E BCF -的体积; 〔3〕证明:EF PAB ⊥平面.EF BA C DP〔第2题图〕4.如下图, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。

证明: BE PDC ⊥平面;5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.〔Ⅰ〕求证:PC AB ⊥;〔Ⅱ〕求二面角B AP C --的大小;6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC〔3〕利用勾股定理7.如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ;_ D_ C_ B_ A_ PACBPCADBOE8.如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.〔1〕求证:AM ∥平面BEC ; 〔2〕求证:⊥BC 平面BDE ;图1图29.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ====== 〔1〕求证:AO ⊥平面BCD ;〔2〕求异面直线AB 与CD 所成角的大小;10.如图,四棱锥S-ABCD 中,BCAB ⊥,CD⊥BC ,侧面SAB 为等边三角形,2,1AB BC CD SD ====.〔Ⅰ〕证明:SAB 面⊥SD;〔Ⅱ〕求AB 与平面SBC 所成角的大小. M AFBCD E M E DC BAF〔4〕利用三角形全等或三角行相似11.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点.求证:D1O⊥平面MAC.12.如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点.求证:AB1⊥平面A1BD;13.如图,正四棱柱ABCD—A1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C⊥平面BDE;〔5〕利用直径所对的圆周角是直角14.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . 〔1〕求证:平面PAC ⊥平面PBC ;〔2〕假设D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.O AC BPD.15.如图5,在圆锥PO 中,PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点. 证明:平面POD ⊥平面PAC ;16.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD .以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .求证:平面ABM ⊥平面PCD ;【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】OAPBM。

必修2立体几何证明题详解(五篇)

必修2立体几何证明题详解(五篇)

必修2立体几何证明题详解(五篇)第一篇:必修2 立体几何证明题详解迎接新的挑战!必修2 证明题一.解答题(共3小题)1.(2006•北京)如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求二面角E﹣AC﹣B的大小.考点:三垂线定理;直线与平面平行的判定。

分析:(1)欲证PB∥平面AEC,根据直线与平面平行的判定定理可知只需证PB与平面AEC内一直线平行即可,连BD交AC于点O,连EO,则EO是△PDB的中位线则EO∥PB,满足条件;(2)取AD的中点F,连EF,FO,根据定义可知∠EOF是二面角E﹣AC﹣D的平面角,在△EOF中求出此角,而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补.解答:解:(1)由PA⊥平面ABCD可得PAAC又AB⊥AC,所以AC⊥平面PAB,所以AC⊥PB连BD交AC于点O,连EO,则EO是△PDB的中位线,∴EO∥PB ∴PB∥平面AEC(2)取AD的中点F,连EF,FO,则EF是△PAD的中位线,∴EF∥PA又PA⊥平面ABCD,∴EF⊥平面ABCD同理FO是△ADC的中位线,∴FO∥AB,FO⊥AC由三垂线定理可知∠EOF是二面角E﹣AC﹣D的平面角.又FO=AB=PA=EF∴∠EOF=45°而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补,故所求二面角E﹣AC﹣B的大小为135°.点评:本题主要考查了直线与平面平行的判定,以及二面角等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.2.如图,已知∠BAC在平面α内,P∉α,∠PAB=∠PAC,求证:点P在平面α上的射影在∠BAC的平分线上.考点:三垂线定理。

专题:作图题;证明题。

分析:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,证明Rt△AOE≌Rt△AOF,然后得到点P在平面α上的射影在∠BAC的平分线上.解答:证明:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,∵⇒Rt△PAE≌Rt△PAF⇒AE=AF,∵,又∵AB⊥PE,∴AB⊥平面PEO,∴AB⊥OE,同理AC⊥OF.欢迎加入高一数学组联系电话:***迎接新的挑战!必修2 证明题在Rt△AOE和Rt△AOF,AE=AF,OA=OA,∴Rt△AOE≌Rt△AOF,∴∠EAO=∠FAO,即点P在平面α上的射影在∠BAC的平分线上.点评:本题考查三垂线定理,考查学生逻辑思维能力,是基础题.3.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=3.(I)求证:A1C⊥BD;(II)求直线A1C与侧面BB1C1C所成的角的正切值;(III)求二面角B1﹣CD﹣B的正切值.考点:三垂线定理;直线与平面所成的角;与二面角有关的立体几何综合题。

高中数学立体几何证明题汇总

高中数学立体几何证明题汇总

高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。

1)证明EFGH是平行四边形。

2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。

2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。

1)证明AB垂直于平面CDE。

2)证明平面CDE垂直于平面ABC。

3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。

证明A1C平行于平面BDE。

4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。

证明AD垂直于面SBC。

5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。

1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。

1)证明AC垂直于平面B1D1D。

2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。

1)证明平面A1BD平行于平面B1DC。

2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。

8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。

证明BD垂直于平面ACD。

9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。

1)证明XXX垂直于AB。

2)当∠APB=90,AB=2BC=4时,求MN的长度。

10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。

证明平面D1EF平行于平面BDG。

11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。

1)证明A1C平行于平面BDE。

2)证明平面A1AC垂直于平面BDE。

12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。

高中立体几何证明线面平行的常见方法

高中立体几何证明线面平行的常见方法

高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。

证明AF∥平面PCE。

证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。

因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。

因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。

题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。

证明:连接PE,因为E为PC的中点,所以PE∥AD。

又因为CD⊥AD,所以CD∥PE。

又因为CD=2AB,所以AB∥PE。

因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。

2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。

证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。

因此,EF∥AD,EG∥BD,FG∥AC。

又因为M为BC的中点,所以AM∥FG。

因此,AM∥平面EFG。

3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。

高中立体几何证明方法及例题

高中立体几何证明方法及例题

(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系; 高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。

1.线线、线面、面面平行关系的转化:面面平行性质 IIa,a ,ba II ba b A a // bII(a//b,b//c a I Ic )V线线// 线面平行判定 线面// 面面平行判定1面面// < --------------------------- < --------------------------- a II面面平行性质 公理4 II a II , b //a ,b a II a II a IIII II II 成直二面角ababaaa//baa be oX!AO 8O/ /3.平行与垂直关系的转化:a / /b 线面垂直判定2 面面平行判定22.三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(3)指出所求作的角;(2)证明其符合定义; (4)计算大小。

线面垂直性质2面面平行性质34.应用以上“转化”的基本思路一一“由求证想判定,由已知想性质。

5•唯一性结论:① 过直线外一点.有且只有一条直线与己知直线平行 ② 过空间一点.有且只有一条直线与已知平面垂直 ③ 过空间一点,有且只有一个平画与已知直线垂直应用中常用于反 证袪”或"同一法”(2)直线与平面所成的角: 0°<0< 90°(3)二面角:二面角的平面角0°<0< 180 °(走义法)(三垂蛭定理法)(垂面法・江棱门1.三类角的定义:(1)异面直线所成的角B:0°<0< 90 °a / /b面面线面丄线线A.60 °B.45 °C.30 °D.120 °解:取AC 中点G ,连结EG 、FG ,贝U1 1EG // — PC , FG // — AB2 2•••/ EGF 为AB 与PC 所成的角 在厶EGF 中,由余弦定理,/EG 2 FG 2 EF 2 52 32 7 1 cos Z EGF2 • EG • FG2 5 32• AB 与PC 所成的角为180° - 120°= 60° •••选 A3B. -6由题意:丄4 12【典型例题】(一)与角有关的问题 例1.(1)如图,E 、F 分别为三棱锥 P — ABC 的棱AP 、BC 的中点,PC = 10, AB = 6, EF = 7,则异面直线AB 与PC 所成的角为()设正四棱锥的高为解:斜高为h'(2 )已知正四棱锥以棱长为 1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正 四棱锥的侧棱与底面所成的角的余弦值为()① 点P 到平面QEF 的距离为定值;② 直线PQ 与平面PEF 所成的角为定值; ③ 二面角P — EF — Q 的大小为定值; ④ 三棱锥P — QEF 的体积为定值 其中正确命题的序号是二A 1D 1上定点P 到面A 1B 1CD 的距离为定值•••①对,②错二面角P — EF — Q ,即面PDF 与面A 1B 1CD 所成的角,且平面角/ PDA 1为定 值,.••③对因为A 1B 1 // DC ,且EF 为定值,• S QEF 为定值又P 点到平面QEF 的距离为定值,• V P QEF 为定值,•④对综上,①③④正确。

高中立体几何证明题

高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。

解析1. 连接AC。

- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。

2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。

- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。

- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。

- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。

题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。

解析1. 连接BC_{1},交B_{1}C于点E。

- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。

2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。

- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。

- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。

二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。

解析1. 连接AC,BD交于点O,连接PO。

- 因为底面ABCD是正方形,所以O为AC,BD中点。

- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。

- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。

- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。

- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。

(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。

(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。

7、夹在两个平行平面之间的平行线段相等。

二、线面平行的证明方法1、定义法:直线和平面没有公共点。

2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。

(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。

4、反证法。

三、面面平行的证明方法1、定义法:两个平面没有公共点。

2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

(面面平行的判定定理)3、平行于同一个平面的两个平面平行。

4、经过平面外一点,有且只有一个平面与已知平面平行。

5、垂直于同一条直线的两个平面平行。

四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。

7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。

(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。

9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。

(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。

1. 线线、线面、面面平行关系的转化:αβαγβγ//,// ==⇒⎫⎬⎭a b a b面面平行性质⎫⎬⎪⎭⎪ 面面平行性质αγβγαβ//////⎫⎬⎭⇒2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定 线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角线线∥线面⊥面面∥线面垂直判定2 面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

”5. 唯一性结论:1. 三类角的定义:(1)异面直线所成的角θ:0°<θ≤90°(2)直线与平面所成的角:0°≤θ≤90°(3)二面角:二面角的平面角θ,0°<θ≤180°2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角; (4)计算大小。

【典型例题】(一)与角有关的问题例1. (1)如图,E 、F 分别为三棱锥P —ABC 的棱AP 、BC 的中点,PC =10,AB =6,EF =7,则异面直线AB 与PC 所成的角为( )A. 60°B. 45°C. 30°D. 120°解:取AC 中点G ,连结EG 、FG ,则EG PC FG AB∥∥,==1212∴∠EGF 为AB 与PC 所成的角在△EGF 中,由余弦定理,cos ∠··EGF EG FG EF EG FG =+-=+-⨯⨯=-222222253725312∴AB 与PC 所成的角为180°-120°=60°∴选A(2)已知正四棱锥以棱长为1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为( )A B C D ....131336332626解:设正四棱锥的高为,斜高为h h h '=+⎛⎝ ⎫⎭⎪2212由题意:1241121612222⨯⨯+⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪⎪+=⨯h∴h 26=∴侧棱长PB h OB =+=+⎛⎝ ⎫⎭⎪=222622262∴∠cos PBO OBPB===222621313∴选A()如图,在正方体中,为上的一个定点,为3111111ABCD A B C D P A D Q -A B E F CD EF 11上的任意一点,、为上任意两点,且的长为定值,有下列命题:①点P 到平面QEF 的距离为定值;②直线PQ 与平面PEF 所成的角为定值; ③二面角P —EF —Q 的大小为定值; ④三棱锥P —QEF 的体积为定值其中正确命题的序号是___________。

解:平面即是平面QEF A B CD 11∴上定点到面的距离为定值A D P A B CD 1111∴①对,②错二面角——,即面与面所成的角,且平面角∠为定P EF Q PDF A B CD PDA 111 值,∴③对 因为∥,且为定值,∴为定值A B DC EF S QEF 11∆又点到平面的距离为定值,∴为定值,∴④对P QEF V P QEF -综上,①③④正确。

例2. 图①是一个正方体的表面展开图,MN 和PQ 是两条面对角线,请在图(2)的正方体中将MN ,PQ 画出来,并就这个正方体解答下列各题: (1)求MN 和PQ 所成角的大小; (2)求四面体M —NPQ 的体积与正方体的体积之比;(3)求二面角M —NQ —P 的大小。

解:(1)如图②,作出MN 、PQ∵PQ ∥NC ,又△MNC 为正三角形 ∴∠MNC =60°∴PQ 与MN 成角为60°()·213V V S MQ M NPQ Q PMN PMN --==∆===1621616···正方体S MQ S MQ V PMN PMDN ∆即四面体M —NPQ 的体积与正方体的体积之比为1:6(3)连结MA 交PQ 于O 点,则MO ⊥PQ又NP ⊥面PAQM ,∴NP ⊥MO ,则MO ⊥面PNQ 过O 作OE ⊥NQ ,连结ME ,则ME ⊥NQ ∴∠MEO 为二面角M —NQ —P 的平面角 在Rt △NMQ 中,ME ·NQ =MN ·MQ设正方体的棱长为aME a a aa MO a ===236322·,又 在中,∠Rt MEO MEO MOMEaa ∆sin ===226332∴∠MEO =60°即二面角M —NQ —P 的大小为60°。

例3. 如图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°。

(1)求点P 到平面ABCD 的距离; (2)求面APB 与面CPB 所成二面角的大小。

解:(1)作PO ⊥平面ABCD ,垂足为O ,连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE∵AD ⊥PB ,∴AD ⊥OB (根据___________) ∵PA =PD ,∴OA =OD于是OB 平分AD ,点E 为AD 中点 ∴PE ⊥AD∴∠PEB 为面PAD 与面ABCD 所成二面角的平面角∴∠PEB =120°,∠PEO =60°又,∴·PE PO PE o====36033232sin即为P 点到面ABCD 的距离。

(2)由已知ABCD 为菱形,及△PAD 为边长为2的正三角形 ∴PA =AB =2,又易证PB ⊥BC 故取PB 中点G ,PC 中点F 则AG ⊥PB ,GF ∥BC 又BC ⊥PB ,∴GF ⊥PB∴∠AGF 为面APB 与面CPB 所成的平面角 ∵GF ∥BC ∥AD ,∴∠AGF =π-∠GAE 连结GE ,易证AE ⊥平面POB又,为中点PE BE G PB ==3∴∠∠PEG PEB o ==1260∴GE PE o==⨯=cos6031232在中,Rt AGE AE AD ∆==121∴∠tan GAE GE AE ==32∴∠GAE =arctan32∴∠AGF =-πarctan32所以所求二面角的大小为π-arctan32(2)解法2:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DAP B (,,),(,,)003203320PB G AG 的中点的坐标为(,,),连结033434又(,,),(,,)A C 132023320-由此得到(,,),(,,),GA PB →=--→=-13434033232BC →=-(,,)200于是·,·GA PB BC PB →→=→→=00 ∴⊥,⊥GA PB BC PB →→→→∴、的夹角为所求二面角的平面角GA BC →→θ于是··cos ||||θ=→→→→=-GA BC GA BC 277∴所求二面角大小为π-arccos277(二)与距离有关的问题例4. (1)已知在△ABC 中,AB =9,AC =15,∠BAC =120°,它所在平面外一点P 到△ABC 三个顶点的距离都是14,那么点P 到平面ABC 的距离是( )A. 13B. 11C. 9D. 7 解:设点P 在△ABC 所在平面上的射影为OAB C O R∵PA =PB =PC ,∴O 为△ABC 的外心△ABC 中,AB =9,AC =15,∠BAC =120°∴BC o=+-⨯⨯⨯=91529151202122cos由,∴aAR R sin ==⨯=22123273()∴PO =-=1473722()在直三棱柱中,,,∠2221111ABC A B C AB BC BB ABC -====90E F o,、分别为、的中点,沿棱柱的表面从到两点的最短路径的AA C B E F 111长度为___________。

解:(采用展开图的方法)将平面沿旋转使两矩形与在同一平面内B BCC B B A ABB B BCC 1111111连接,则为所求的最短路径EF EF如图①,EF A E A F =+=+⎛⎝ ⎫⎭⎪=1212221322222如图②展开,EF =++⎛⎝ ⎫⎭⎪=+()2122722222如图③展开,EF =⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=3212132222比较这三种方式展开,可见沿表面从到的最短路径长度为。

E F 322点评:此类试题,求沿表面运动最短路径,应展开表面为同一平面内,则线段最短。

但必须注意的是,应比较其各种不同展开形式中的不同的路径,取其最小的一个。

(3)在北纬45°圈上有甲、乙两地,它们的经度分别是东经140°与西经130°,设地球半径为R ,则甲、乙两地的球面距离是( )A RB RC RD R ....12143213ππππ解:()由题意∠AO B o o o o136014013090=-+=(O 1为小圆圆心)又由题意O A O B R 1122==则中,∆O 1AB AB R =∴△AOB 为正三角形(O 为球心)∴∠AOB =π3∴、两点球面距离为A B R π3∴选D例5. 如图,四棱锥P —ABCD ,底面ABCD 是矩形,PA ⊥平面ABCD ,E 、F 分别是AB 、PD 中点。

(1)求证:AF ∥平面PEC ;()若=,,二面角——为,求点到平面2AD 2CD P CD B F PEC o=2245距离。

解:G 为PC 中点,连结FG 、EG 又∵F 为PD 中点∴,又∥∥FG CD AE CD==1212∴∥FG AE =∴四边形AEGF 为平行四边形∴∥,又面,面AF EG EG PEC AF PEC ⊂⊄∴AF ∥平面PEC(2)∵CD ⊥AD ,又PA ⊥面ABCD ∴AD 为PD 在面ABCD 上射影 ∴CD ⊥PD∴∠PDA 为二面角P —CD —B 的平面角,且∠PDA =45° 则△PAD 为等腰直角三角形 ∴AF ⊥PD ,又CD ⊥平面PAD ∴CD ⊥AF ∴AF ⊥面PCD作FH ⊥PC 于H ,则AF ⊥FH 又EG ∥AF ,∴EG ⊥FH∴FH ⊥面PEC ,∴FH 为F 到面PEC 的距离在Rt △PEG 中,FH ·PG =PF ·FG∴FH =⨯+=2222122方法2:(体积法)∵AF ∥面PEC ,故只要求点A 到面PEC 的距离d由即··V V S d S PAA PEC P AEC PEC AEC --==1313∆∆易证AF ⊥面PCD ,∴EG ⊥面PCD∴EG ⊥PC()∴·S PC EG PEC∆==++⨯=12122222222222S AE BC AEC ∆=⨯=⨯⨯=1212222∴·d S PA S AEC PEC ==⨯=∆∆22221(三)对命题条件的探索例6. (1)如图已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件E 点有两个时,a 的取值范围是( )A aB a ..>≥66C aD a ..0606<<<≤解:∵PA ⊥面ABCD ,PE ⊥DE由三垂线定理的逆定理知PE 的射影AE ⊥BE所以满足条件的点E 是以AD 为直径的圆与BC 的交点,要有两个交点,则 AD >2AB =6∴选A(2)如图,在三棱柱ABC -A'B'C'中,点E 、F 、H 、K 分别为AC'、CB'、A'B 、B'C'的中点,G 为△ABC 的重心,从K 、H 、G 、B'中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为( )A. KB. HC. GD. B分析:从题目中的“中点”条件,联想到“中位线”。

相关文档
最新文档