半导体器件物理及工艺

合集下载

半导体器件物理(详尽版)ppt

半导体器件物理(详尽版)ppt

半导体 电阻率介于导体和绝缘体之间 。导体(电阻率小于10-8Ω·m), 绝缘体(电阻率大于106Ω·m)。
晶体 自然界中存在的固体材料,按其结构形式不同,可以分为晶 体(如石英、金刚石、硫酸铜等)和非晶体(玻璃、松香、沥青等)。
1.1 半导体的晶格结构
五种常见的晶格结构
●简单立方结构 ●体心立方结构 ●面心立方结构 ●金刚石结构 ●闪锌矿结构
图中“● ”表示价带内的电子 ;图中“○ ”表示价带内的空穴。
思考
• 既然半导体电子和空穴都能导电,而导体只有电子导电,为什么半导体的导 电能力比导体差?
●导带底EC
导带电子的最低能量
●价带顶EV
价带电子的最高能量
●禁带宽度 Eg
Eg=Ec-Ev
●本征激发 由于温度,价键上的电子 激发成为准自由电子,亦 即价带电子激发成为导带 电子的过程 。
●价带
由价电子形成的能带,但半导体 材料价电子形成的低能级能带通 常称为价带。
●禁带宽度/Eg
导带和价带之间的能级宽度,
单位是能量单位:eV(电子伏特)
图1-6
导体、绝缘体、半导体的能带示意图
3~6eV
禁带比较窄,常 温下,部分价带 电子被激发到空 的导带,形成有 少数电子填充的 导带和留有少数 空穴的价带,都
电子不仅可以围绕自身原子核旋转,而且可以转到另一个原子周围,即 同一个电子可以被多个原子共有,电子不再完全局限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。
共有化运动
由于晶体中原子的周期性 排列而使电子不再为单个 原子所有的现象,称为电 子共有化。
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动;

现代半导体器件物理与工艺(杂质掺杂详解~)

现代半导体器件物理与工艺(杂质掺杂详解~)

现代半导体器件物理与工艺Physics and Technology of Modern Semiconductor Devices杂质掺杂杂质掺杂所谓杂质掺杂是将可控数量的杂质掺入半导体内。

杂质掺杂的实际应用主要是改变半导体的电特性。

扩散和离子注入是半导体掺杂的两种主要方式。

方式高温扩散:一直到20世纪70年代,杂质掺杂主要是由高温的扩散方式来完成,杂质原子通过气相源或掺杂过的氧化物扩散或淀积到硅晶片的表面,这些杂质浓度将从表面到体内单调下降,而杂质分布主要是由高温面杂质浓度将从表面到体内单降杂质分布由高与扩散时间来决定。

离子注入:掺杂离子以离子束的形式注入半导体内,杂质浓度在半导体内有个峰值分布,杂质分布主要由离子质量和注入能量决定。

扩散和离子注入两者都被用来制作分立器件与集成电路,因为二者互补不足,相得益彰。

基本扩散工艺杂质扩散通常是在经仔细控制的石英高温炉管中放入半导体硅晶片并通入含有所需掺杂剂的气体混合物。

硅的温度在800-1200℃;砷化镓的温6001000扩散进入半导体内部的杂质原子数量与气体混合物中度在600-1000℃。

扩散进入半导体内部的杂质原子数量与气体混合物中的杂质分压有关。

对硅而言型掺杂剂它们在硅中都有极对硅而言,B 、P 和As 分别是常用的p 型和n 型掺杂剂,它们在硅中都有极高的固溶度,可高于5×1020cm-3。

引入方式有:固态源(BN 、As2O3、P2O5);液态源(BBr3、AsCl3、POCl3);气体源(B2H6、AsH3、PH3 ),其中液态源最常用。

使用液态源的磷扩散的化学反应如下:3225243 26POCl O P O Cl +→+在硅晶片上形成层玻璃并由硅还原出磷氯气被带走P2O5在硅晶片上形成一层玻璃并由硅还原出磷,氯气被带走。

25225 45P O Si P SiO +→+对砷化镓的扩散工艺而言,因砷的蒸汽压高,所以需要特别的方式来防止砷的分解或蒸发所造成的损失。

半导体器件物理与工艺+施敏++答案

半导体器件物理与工艺+施敏++答案

Solutions Manual to Accompany SEMICONDUCTOR DEVICESPhysics and Technology2nd EditionS. M. SZEUMC Chair ProfessorNational Chiao Tung UniversityNational Nano Device LaboratoriesHsinchu, TaiwanJohn Wiley and Sons, IncNew York. Chicester / Weinheim / Brisband / Singapore / TorontoContentsCh.1 Introduction--------------------------------------------------------------------- 0 Ch.2 Energy Bands and Carrier Concentration-------------------------------------- 1 Ch.3 Carrier Transport Phenomena-------------------------------------------------- 7 Ch.4p-n Junction--------------------------------------------------------------------16 Ch.5 Bipolar Transistor and Related Devices----------------------------------------32 Ch.6 MOSFET and Related Devices-------------------------------------------------48 Ch.7 MESFET and Related Devices-------------------------------------------------60 Ch.8 Microwave Diode, Quantum-Effect and Hot-Electron Devices---------------68 Ch.9Photonic Devices-------------------------------------------------------------73 Ch.10 Crystal Growth and Epitaxy---------------------------------------------------83 Ch.11 Film Formation----------------------------------------------------------------92 Ch.12 Lithography and Etching------------------------------------------------------99 Ch.13 Impurity Doping---------------------------------------------------------------105 Ch.14 Integrated Devices-------------------------------------------------------------113CHAPTER 21. (a) From Fig. 11a, the atom at the center of the cube is surround by fourequidistant nearest neighbors that lie at the corners of a tetrahedron. Therefore the distance between nearest neighbors in silicon (a = 5.43 Å) is1/2 [(a /2)2 + (a 2/2)2]1/2 = a 3/4 = 2.35 Å.(b) For the (100) plane, there are two atoms (one central atom and 4 corner atoms each contributing 1/4 of an atom for a total of two atoms as shown in Fig. 4a)for an area of a 2, therefore we have2/ a 2 = 2/ (5.43 × 10-8)2 = 6.78 × 1014 atoms / cm 2Similarly we have for (110) plane (Fig. 4a and Fig. 6)(2 + 2 ×1/2 + 4 ×1/4) /a 22 = 9.6 × 1015 atoms / cm 2,and for (111) plane (Fig. 4a and Fig. 6)(3 × 1/2 + 3 × 1/6) / 1/2(a 2)(a23) =2232a= 7.83 × 1014 atoms / cm 2.2. The heights at X, Y, and Z point are ,43,41and 43.3. (a) For the simple cubic, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere.4 Maximum fraction of cell filled= no. of sphere × volume of each sphere / unit cell volume = 1 × 4ð(a /2)3 / a 3 = 52 %(b) For a face-centered cubic, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere. The fcc also contains half a sphere at each of the six faces for a total of three spheres. The nearest neighbor distance is 1/2(a 2). Therefore the radius of each sphere is 1/4 (a 2).4 Maximum fraction of cell filled= (1 + 3) {4ð[(a /2) / 4 ]3 / 3} / a 3 = 74 %.(c) For a diamond lattice, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere, 1/2 of a sphere at each of the six faces for a total of three spheres, and 4 spheres inside the cell. The diagonal distancebetween (1/2, 0, 0) and (1/4, 1/4, 1/4) shown in Fig. 9a isD =21222222+ + a a a = 34a The radius of the sphere is D/2 =38a4 Maximum fraction of cell filled= (1 + 3 + 4)33834a π/ a 3 = ð3/ 16 = 34 %.This is a relatively low percentage compared to other lattice structures.4. 1d = 2d = 3d = 4d = d 1d +2d +3d +4d = 01d • (1d +2d +3d +4d ) = 1d • 0 = 021d +1d •2d +1d •3d + 1d •4d = 04d 2+ d 2 cos è12 + d 2cos è13 + d 2cos è14 = d 2 +3 d 2 cos è= 04 cos è =31−è= cos -1 (31−) = 109.470 .5. Taking the reciprocals of these intercepts we get 1/2, 1/3 and 1/4. The smallest three integers having the same ratio are 6, 4, and 3. The plane is referred to as (643) plane.6. (a) The lattice constant for GaAs is 5.65 Å, and the atomic weights of Ga and Asare 69.72 and 74.92 g/mole, respectively. There are four gallium atoms and four arsenic atoms per unit cell, therefore4/a 3 = 4/ (5.65 × 10-8)3 = 2.22 × 1022 Ga or As atoms/cm 2,Density = (no. of atoms/cm 3 × atomic weight) / Avogadro constant = 2.22 × 1022(69.72 + 74.92) / 6.02 × 1023 = 5.33 g / cm 3.(b) If GaAs is doped with Sn and Sn atoms displace Ga atoms, donors are formed, because Sn has four valence electrons while Ga has only three. The resulting semiconductor is n -type.7. (a) The melting temperature for Si is 1412 ºC, and for SiO 2 is 1600 ºC. Therefore,SiO 2 has higher melting temperature. It is more difficult to break the Si-O bond than the Si-Si bond.(b) The seed crystal is used to initiated the growth of the ingot with the correctcrystal orientation.(c) The crystal orientation determines the semiconductor’s chemical and electricalproperties, such as the etch rate, trap density, breakage plane etc.(d) The temperating of the crusible and the pull rate.8. E g (T ) = 1.17 – 636)(4.73x1024+−T T for Si∴ E g ( 100 K) = 1.163 eV , and E g (600 K) = 1.032 eVE g (T ) = 1.519 –204)(5.405x1024+−T T for GaAs∴E g ( 100 K) = 1.501 eV, and E g (600 K) = 1.277 eV .9. The density of holes in the valence band is given by integrating the product N (E )[1-F (E )]d E from top of the valence band (V E taken to be E = 0) to the bottom of the valence band E bottom :p = ∫bottomE 0N (E )[1 – F (E )]d E (1)where 1 –F(E) = ()[]{}/kT1 e/1 1F E E −+− = []1/)(e1−−+kTE EF If E F – E >> kT then1 – F (E ) ~ exp ()[]kT E E F −− (2)Then from Appendix H and , Eqs. 1 and 2 we obtainp = 4ð[2m p / h 2]3/2∫bottomE 0E 1/2 exp [-(EF – E ) / kT ]d E (3)Let x a E / kT , and let E bottom = ∞−, Eq. 3 becomesp = 4ð(2m p / h 2)3/2(k T)3/2exp [-(E F / kT )]∫∞− 0x 1/2e x d xwhere the integral on the right is of the standard form and equals π / 2.4 p = 2[2ðm p kT / h 2]3/2 exp [-(E F / kT )]By referring to the top of the valence band as E V instead of E = 0 we have,p = 2(2ðm p kT / h 2)3/2 exp [-(E F – E V ) / kT ]orp = N V exp [-(E F –E V ) / kT ]where N V = 2 (2ðm p kT / h 2)3 .10. From Eq. 18N V = 2(2ðm p kT / h 2)3/2The effective mass of holes in Si is m p = (N V / 2) 2/3 ( h 2 / 2ðkT ) = 3236192m 101066.2××−()()()30010381210625623234−−××..π = 9.4 × 10-31 kg = 1.03 m 0.Similarly, we have for GaAsm p = 3.9 × 10-31 kg = 0.43 m 0.11. Using Eq. 19(()C VV C N NkTE E E i ln 22)(++== (E C + E V )/ 2 + (3kT / 4) ln32)6)((n p m m (1)At 77 KE i = (1.16/2) + (3 × 1.38 × 10-23T ) / (4 × 1.6 × 10-19) ln(1.0/0.62) = 0.58 + 3.29 × 10-5 T = 0.58 + 2.54 × 10-3 = 0.583 eV.At 300 KE i = (1.12/2) + (3.29 × 10-5)(300) = 0.56 + 0.009 = 0.569 eV.At 373 KE i = (1.09/2) + (3.29 × 10-5)(373) = 0.545 + 0.012 = 0.557 eV.Because the second term on the right-hand side of the Eq.1 is much smallercompared to the first term, over the above temperature range, it is reasonable to assume that E i is in the center of the forbidden gap.12. KE =()())(/)( / d d e C F top C F topCE E x kTE E C E E kT E E C E E C EeE E EE E E E −≡−−−−−−−∫∫= kT ∫∫∞−∞− 021 023d e d e x x x x x x= kTΓ Γ2325 = kTππ505051...×× = kT 23.13. (a) p = mv = 9.109 × 10-31 ×105 = 9.109 × 10-26 kg–m/sλ = p h = 2634101099106266−−××..= 7.27 × 10-9m = 72.7 Å(b) n λ=λp m m 0= 06301.× 72.7 = 1154 Å .14. From Fig. 22 when n i = 1015 cm -3, the corresponding temperature is 1000 / T = 1.8.So that T = 1000/1.8 = 555 K or 282 .15. From E c – E F = kT ln [N C / (N D – N A )]which can be rewritten as N D – N A = N C exp [–(E C – E F ) / kT ]Then N D – N A = 2.86 × 1019 exp(–0.20 / 0.0259) = 1.26 × 1016 cm -3or N D = 1.26 × 1016 + N A = 2.26 × 1016 cm -3A compensated semiconductor can be fabricated to provide a specific Fermi energy level.16. From Fig. 28a we can draw the following energy-band diagrams:17. (a) The ionization energy for boron in Si is 0.045 eV. At 300 K, all boronimpurities are ionized. Thus p p = N A = 1015 cm -3n p = n i 2 / n A = (9.65 × 109)2 / 1015 = 9.3 × 104 cm -3.The Fermi level measured from the top of the valence band is given by:E F – E V = kT ln(N V /N D ) = 0.0259 ln (2.66 × 1019 / 1015) = 0.26 eV(b) The boron atoms compensate the arsenic atoms; we havep p = N A – N D = 3 × 1016 – 2.9 × 1016 = 1015 cm -3Since p p is the same as given in (a), the values for n p and E F are the same as in (a). However, the mobilities and resistivities for these two samples are different.18. Since N D >> n i , we can approximate n 0 = N D andp 0 = n i 2 / n 0 = 9.3 ×1019 / 1017 = 9.3 × 102 cm -3From n 0 = n i exp−kT E E i F ,we haveE F – E i = kT ln (n 0 / n i ) = 0.0259 ln (1017 / 9.65 × 109) = 0.42 eV The resulting flat band diagram is :19.Assuming complete ionization, the Fermi level measured from the intrinsic Fermi level is 0.35 eV for 1015 cm -3, 0.45 eV for 1017 cm -3, and 0.54 eV for 1019cm -3.The number of electrons that are ionized is given byn ≅ N D [1 – F (E D )] = N D / [1 + e ()T k E E F D /−− ]Using the Fermi levels given above, we obtain the number of ionized donors as n = 1015 cm -3 for N D = 1015 cm -3n = 0.93 × 1017 cm -3 for N D = 1017 cm -3n = 0.27 × 1019 cm -3 for N D = 1019 cm -3Therefore, the assumption of complete ionization is valid only for the case of 1015 cm -3.20. N D +=kT E E F D e /)(16110−−+ =135016e 110.−+ = 1451111016.+= 5.33 × 1015 cm -3The neutral donor = 1016 – 5.33 ×1015 cm -3 = 4.67 × 1015 cm -34 Theratio of +DD N N O = 335764..= 0.876 .CHAPTER 31. (a) For intrinsic Si, µn = 1450, µp = 505, and n = p = n i = 9.65×109We have 51031.3)(11×=+=+=p n i p n qn qp qn µµµµρ Ω-cm(b) Similarly for GaAs, µn = 9200, µp = 320, and n = p = n i = 2.25×106We have 81092.2)(11×=+=+=p n i p n qn qp qn µµµµρ Ω-cm.2. For lattice scattering, µn ∝ T -3/2T = 200 K, µn = 1300×2/32/3300200−− = 2388 cm 2/V-s T = 400 K, µn = 1300×2/32/3300400−− = 844 cm 2/V-s.3. Since21111µµµ+=∴500125011+=µ µ = 167 cm 2/V-s.4. (a) p = 5×1015 cm -3, n = n i 2/p = (9.65×109)2/5×1015 = 1.86×104 cm -3µp = 410 cm 2/V-s, µn = 1300 cm 2/V-s ρ =pq p q n q p p n µµµ11≈+ = 3 Ω-cm(b) p = N A – N D = 2×1016 – 1.5×1016 = 5×1015 cm -3, n = 1.86×104 cm -3µp = µp (N A + N D ) = µp (3.5×1016) = 290 cm 2/V-s,µn = µn (N A + N D ) = 1000 cm 2/V-s ρ =pq p q n q p p n µµµ11≈+ = 4.3 Ω-cm(c) p = N A (Boron) – N D + N A (Gallium) = 5×1015 cm -3, n = 1.86×104 cm -3µp = µp (N A + N D + N A ) = µp (2.05×1017) = 150 cm 2/V-s,µn = µn (N A + N D + N A ) = 520 cm 2/V-s ρ = 8.3 Ω-cm.5. Assume N D − N A >> n i , the conductivity is given byσ ≈ qn µn = q µn (N D − N A )We have that16 = (1.6×10-19)µn (N D − 1017)Since mobility is a function of the ionized impurity concentration, we can use Fig. 3 along with trial and error to determine µn and N D . For example, if we choose N D = 2×1017, then N I = N D + + N A - = 3×1017, so that µn ≈ 510 cm 2/V-s which gives σ = 8.16.Further trial and error yieldsN D ≈ 3.5×1017 cm -3andµn ≈ 400 cm 2/V-swhich givesσ ≈ 16 (Ω-cm)-1.6. )/( )( 2n n bn q p n q i p p n +=+=µµµσFrom the condition d σ/dn = 0, we obtainbn n i / =Thereforeb b b n q n b b bn qìi p i i p i m 21 )1(1)/( +=++=µρρ.7. At the limit when d >> s, CF =2ln π= 4.53. Then from Eq. 16226.053.410501011010433=×××××=××=−−−CF W I V ρ Ω-cm From Fig. 6, CF = 4.2 (d/s = 10); using the a/d = 1 curve we obtain 78.102.4105010226.0)/(43=×××=⋅⋅=−−CF W I V ρ mV.8. Hall coefficient,7.42605.0)101030(105.2106.1101049333=××××××××==−−−−W IB A V R z H H cm 3/C Since the sign of R H is positive, the carriers are holes. From Eq. 2216191046.17.426106.111×=××==−H qR p cm -3Assuming N A ≈ p , from Fig. 7 we obtain ρ = 1.1 Ω-cm The mobility µp is given by Eq. 15b 3801.11046.1106.1111619=××××==−ρµqp p cm 2/V-s.9. Since R ∝ ρ and p n qp qn µµρ+=1, hence pn p n R µµ+∝1From Einstein relation µ∝D 50//==p n p n D D µµpA n D nD N N N R .R µµµ+=15011We have N A = 50 N D .10. The electric potential φ is related to electron potential energy by the charge (− q )φ = +q1(E F − E i )The electric field for the one-dimensional situation is defined asE (x ) = −dx d φ=dx dE q i1n = n i exp−kT E E i F = N D (x )HenceE F − E i = kT lni D n )x (N dx )x (dN )x (N q kT (x) D D1 −=E.11. (a) From Eq. 31, J n = 0 anda qkT e N e a N q kT n dx dnDx ax axnn+=−==−− )(- - )(00µE(b) E (x ) = 0.0259 (104) = 259 V/cm.12. At thermal and electric equilibria, 0)()(=+=dxx dn qD x n q J nn n E µ xN N LN N N D LN N L xN N N D dx x dn x n D x L L n n L L n nn n )( ))((1)()(1)(000000−+−−=−−+−=−=µµµE000 0n ln )(D -N ND x N N LN N N V L n n L L Lµµ−=−+−=∫.13. 1116610101010=××==∆=∆−L p G p n τ cm -3151115101010≈+=∆+=∆+=n N n n n D no cm -3.cm 101010)1065.9(3-111115292≈+×=∆+=p N n p D i 14. (a)815715101021010511−−=××××=≈t th p p N νστ s 48103109−−×=×==p p p D L τ cm20101021010167=×××==−sts s th lr N S σν cm/s (b) The hole concentration at the surface is given by Eq. 67.cm 10 2010103201011010102)10(9.65 1)0(3-98481781629≈ ×+××−×+××=+−+=−−−−lr p p lr p L p no n S L S G p p τττ15. pn qp qn µµσ+=Before illuminationnon no n p p n n == ,After illumination,G n n n n p no no n τ+=∆+=Gp p p p p no no n τ+=∆+=.)( )()]()([G q p q n q p p q n n q p p n no p no n no p no n τµµµµµµσ+=+−∆++∆+=∆16. (a) diff ,dxdp qD J pp −== − 1.6×10-19×12×410121−××1015exp(-x /12)= 1.6exp(-x /12) A/cm 2(b) diff,drift ,p total n J J J −== 4.8 − 1.6exp(-x /12) A/cm 2(c) En n qn J µ=drift , Q ∴ 4.8 − 1.6exp(-x /12) = 1.6×10-19×1016×1000×E E = 3 − exp(-x /12) V/cm.17. For E = 0 we have022=∂∂+−−=∂∂xp D p p t p np p no n τat steady state, the boundary conditions are p n (x = 0) = p n (0) and p n (x = W ) =p no .Therefore[]−−+=p p no n non L W L x W p p p x p sinh sinh )0()([]−=∂∂−===p ppno n x npp L W L D p p q xp qD x J coth )0()0(0[]−=∂∂−===p p pno n Wx np p L W L D p p q xpqD W x J sinh 1)0()(.18. The portion of injection current that reaches the opposite surface by diffusion isgiven by)/cosh(1)0()(0p p p L W J W J ==α26105105050−−×=××=≡p p p D L τ cm98.0)105/10cosh(1220=×=∴−−αTherefore, 98% of the injected current can reach the opposite surface.19. In steady state, the recombination rate at the surface and in the bulk is equalsurface,surface ,bulk,bulk ,p n p n p p ττ∆=∆so that the excess minority carrier concentration at the surface∆p n , surface = 1014⋅671010−−=1013 cm -3The generation rate can be determined from the steady-state conditions in the bulkG = 6141010− = 1020 cm -3s -1From Eq. 62, we can write22=∆−+∂∆∂p p p G x p D τThe boundary conditions are ∆p (x = ∞) = 1014 cm -3 and ∆p (x = 0) = 1013 cm -3Hence ∆p (x ) = 1014(p L x e /9.01−−)where L p = 61010−⋅= 31.6 µm.20.The potential barrier heightχφφ−=m B = 4.2 − 4.0 = 0.2 volts.21. The number of electrons occupying the energy level between E and E +dE isdn = N (E )F (E )dEwhere N (E ) is the density-of-state function, and F (E ) is Fermi-Dirac distribution function. Since only electrons with an energy greater than m F q E φ+ and having a velocity component normal to the surface can escape the solid, the thermionic current density isdE e E v hm qv J kT E E x q E x F m F )(21 323)2(4−−∞+∫∫==φπwhere x v is the component of velocity normal to the surface of the metal. Since the energy-momentum relationship)(2122222z y x p p p mm P E ++==Differentiation leads to mPdP dE =By changing the momentum component to rectangular coordinates,zy x dp dp dp dP P =24πHencezmkTp y mkT p x x mkT mE p p zy x p mkTmE p p p x dp e dp e dp p e mhq dp dp dp e p mhq J zy f x x x f z y x 22 2)2( 3 p p 2/)2(322200y 2222 2−∞∞−−∞∞−−−∞∞∞−∞=∞−∞=−++−∫∫∫∫∫∫== where ).(220m F x q E m p φ+= Since 21 2=−∞∞−∫a dx eax π, the last two integrals yield (2ðmkT )21.The first integral is evaluated by setting u mkTmE p Fx =−222 .Therefore we have mkTdpp du xx = The lower limit of the first integral can be written as kT q mkT mE q E m m F m F φφ=−+22)(2 so that the first integral becomes kTq u ktq mm e mkT du e mkT φφ−−∞=∫ / Hence−==−kTq T A eT h qmk J mkTq mφπφexp 42*232.22. Equation 79 is the tunneling probability 110234193120m 1017.2)10054.1()106.1)(220)(1011.9(2)(2−−−−×=××−×=−=h E qV m n β []6121001019.3)220(241031017.2sinh(201−−−×=−××××××+=T .23. Equation 79 is the tunneling probability[]403.0)2.26(2.24)101099.9sinh(61)10(1210910=−×××××+=−−−T ()[]()912999108.72.262.24101099.9sinh 61)10(−−−−×=−×××××+=T .19234193120m 1099.9)10054.1()106.1)(2.26)(1011.9(2)(2−−−−×=××−×=−=hE qV m n β24. From Fig. 22As E = 103 V/sνd ≈ 1.3×106 cm/s (Si) and νd ≈ 8.7×106 cm/s (GaAs)t ≈ 77 ps (Si) and t ≈ 11.5 ps (GaAs)As E = 5×104 V/sνd ≈ 107 cm/s (Si) and νd ≈ 8.2×106 cm/s (GaAs)t ≈ 10 ps (Si) and t ≈ 12.2 ps (GaAs).cm/s105.9m/s 109.5 101.9300101.382 22 velocity Thermal 25.643123-0×=×=××××===−m kT m E v thth For electric field of 100 v/cm, drift velocitythn d v v <<×=×==cm/s 1035.110013505E µ For electric field of 104 V/cm.th n v ≈×=×=cm/s 1035.110135074E µ.The value is comparable to the thermal velocity, the linear relationship betweendrift velocity and the electric field is not valid.CHAPTER 41. The impurity profile is,space charge per unit area in the p -side must equal the total positive space charge per unit area in the n -side, thus we can obtain the depletion layer width in the n -side region:141410321088.0××=××n W Hence, the n -side depletion layer width is:m0671µ.W n =The total depletion layer width is 1.867 µm.We use the Poisson ’s equation for calculation of the electric field E (x).In the n -side region,()V/cm108640)100671(1031006710m 067134144×−===×−××=∴××−=⇒==+=⇒=−−.)x (.x qx .N qK ).x (K x N q )x (N q dx d n maxsn D sn D sn D s E E E E E E εεµεεIn the p -side region, the electrical field is:()()()V/cm10864010802108020m 8023242242×−===×−××=∴×××−=⇒=−=+×=⇒=−−.)x (.x a qx .a qK ).x (K ax q )x (N q dx d p maxsp s'p 'sp A s E E E EE E εεµεεThe built-in potential is:()()()V 52.0 0 0=−−=−=∫∫∫−−−−nn ppx side n x x x side p bi dx x dx x dx x V E E E.2. From ()∫−=dx x V bi E, the potential distribution can be obtainedWith zero potential in the neutral p -region as a reference, the potential in the p -side depletion region is()()()[]()(()()×−×−××−= ×−×−−=×−××−=−=−−−−−∫∫34243114243 0242108.032108.03110596.7108.032108.0312 108.02 x x x x qadx x a q dx x x V sxxs p εεEWith the condition V p (0)=V n (0), the potential in the n -region is()×−×−××−= ×+×−××−=−−−−734277342141098.010067.1211056.41098.010067.121103x x x x q x V s n εThe potential distribution isDistance p-region n-region-0.80.000-0.70.006-0.60.022-0.50.048-0.40.081-0.30.120-0.20.164-0.10.2110.2590.2594133330.10.3057885330.20.3476037330.30.3848589330.40.4175541330.50.4456893330.60.4692645330.70.4882797330.80.5027349330.90.51263013310.5179653331.0670.518988825Potentia l DistributionD i s t a nce (um)P o t e n t i a l (3. The intrinsic carriers density in Si at different temperatures can be obtained by using Fig.22 inChapter 2 :Temperature (K)Intrinsic carrier density (n i )250 1.50×1083009.65×109350 2.00×10114008.50×10124509.00×10135002.20×1014The V bi can be obtained by using Eq. 12, and the results are listed in the following table.T niVbi (V)250 1.500E+080.7773009.65E+90.717350 2.00E+110.6534008.50E+120.4884509.00E+130.3665002.20E+140.329Thus, the built-in potential is decreased as the temperature is increased.The depletion layer width and the maximum field at 300 K areV/cm. 10476.11085.89.1110715.910106.1m9715.010106.1717.01085.89.112241451519max151914×=××××××===××××××==−−−−−s D D bis W qN qN V W εµεE18162/11818141952/1max 10110755.1 10101085.89.1130106.121042 .4DDD D D A D A sRN N N N N N N N qV +=×⇒+×××××=×⇒+≈−−ε.E We can select n-type doping concentration of N D = 1.755×1016 cm -3 for the junction.5. From Eq. 12 and Eq. 35, we can obtain the 1/C 2 versus V relationship for doping concentration of1015, 1016, or 1017 cm -3, respectively.For N D =1015 cm -3,()()()V V N qåV V C B s bi j−×=×××××−×=−=−−837.010187.110108.8511.9101.60.837221161514192For N D =1016 cm -3,()()()V V N qåV V C B s bi j−×=×××××−×=−=−−896.010187.110108.8511.9101.60.896221151614192For N D =1017 cm -3,()()()V V N qåV V C s bi j −×=×××××−×=−=−−956.010187.110108.8511.9101.60.95622114171419B2When the reversed bias is applied, we summarize a table of 2j C 1/ vs V for various N D values asfollowing,V N D =1E15N D =1E16N D =1E17-4 5.741E+165.812E+155.883E+14-3.5 5.148E+165.218E+155.289E+14-3 4.555E+164.625E+154.696E+14-2.5 3.961E+164.031E+154.102E+14-2 3.368E +163.438E+153.509E+14-1.5 2.774E +162.844E+152.915E+14-1 2.181E +162.251E+152.322E+14-0.5 1.587E+161.657E+151.728E+149.935E+151.064E+151.134E+14Hence, we obtain a series of curves of 1/C 2 versus V as following,The slopes of the curves is positive proportional to the values of the doping concentration.1/C ^2 vs V-4.5-4-3.5-3-2.5-2-1.5-1-0.5Applied Volta ge1/C ^The interceptions give the built-in potential of the p-n junctions.6. The built-in potential is()V5686.01065.9106.180259.01085.89.111010ln 0259.0328ln 323919142020322=×××××××××××= =−−i s bi n q kT a q kT V εFrom Eq. 38, the junction capacitance can be obtained ()()()3/12142019-3/125686.0121085.89.1110101.612−×××××=−==−R R bi s s j V V V qa W C εεAt reverse bias of 4V, the junction capacitance is 6.866×10-9 F/cm 2.7. From Eq. 35, we can obtain()()22221jsR bi D B s bi jC q V V N N q V V C εε−=⇒−=We can select the n-type doping concentration of 3.43×1015cm -3.8. From Eq. 56,16915151571515108931065902590020exp 1002590020exp 1010101010exp exp ×=××−+ ×××=−+−=−=−−−−......n kT E E kT E E N U G it i p i t n tth n p σσυσσand()3152814192cm 10433)10850(108589111061422−−−−×=⇒×××××××=≅⇒>>.N ....C q V N V V d j s R D bi R εQ()m 266.1cm 1066.1210106.1)5.0717.0(1085.89.11225151914µε=×=××+××××=+=−−−A bi s qN V V W Thus2751619A/cm 10879.71066.121089.3106.1−−×=×××××==qGW J gen .9. From Eq. 49, and Di noN n p 2=We can obtain the hole concentration at the edge of the space charge region,()3170259.08.01629)0259.08.0(2cm 1042.2101065.9−×=×==ee N n p D i n .10. ()()()1/−=−+=kTqV s p n n p eJ x J x J J V. 017.0195.010259.00259.0=⇒−=⇒−=⇒V e e J J VVs11. The parameters aren i = 9.65×109 cm -3D n = 21 cm 2/secD p =10 cm 2/sec τp0=τn0=5×10-7 secFrom Eq. 52 and Eq. 54()()()3150259.07.0297192/cm 102.511065.910510106.1711−−−×=⇒−××××××=⇒−××=−=D DkT qV D i po p kT qV p no p n p N e N e N n D q e L p qD x J a τ()()()3160259.07.0297192/cm 10278.511065.910521106.12511−−−×=⇒−××××××=⇒−××=−=−A A kT qV A i no n kTqV npon p n N e N e N n D q eL n qD x J a τWe can select a p-n diode with the conditions of N A = 5.278×1016cm -3 and N D =5.4×1015cm -3.12. Assume ôg =ôp =ôn = 10-6 s, D n = 21 cm 2/sec, and D p = 10 cm 2/sec(a) The saturation current calculation.From Eq. 55a and p p p D L τ=, we can obtain+=+=002011n n Ap p D i np n pn p s D N D N qn L n qD L p qD J ττ()2126166182919A/cm 1087.6102110110101011065.9106.1−−−−×=+×××=And from the cross-sectional area A = 1.2×10-5 cm 2, we obtainA 10244.81087.6102.117125−−−×=×××=×=s s J A I .(b) The total current density is −=1kt qV s e J J ThusA.10244.8110244.8A 1051.41047.510244.8110244.8170259.07.0177.0511170259.07.0177.0−−−−−−−×=−×=×=×××=−×=e I e I VV。

国科大-半导体器件物理

国科大-半导体器件物理

国科⼤-半导体器件物理第⼀章半导体物理基础1.主要半导体材料的晶体结构。

简单⽴⽅(P/Mn)、体⼼⽴⽅(Na/W)、⾯⼼⽴⽅(Al/Au)⾦刚⽯结构:属⽴⽅晶系,由两个⾯⼼⽴⽅⼦晶格相互嵌套⽽成。

Si Ge闪锌矿结构(⽴⽅密堆积),两种元素,GaAs, GaP等主要是共价键纤锌矿结构(六⽅密堆积),CdS, ZnS闪锌矿和纤锌矿结构的异同点共同点:每个原⼦均处于另⼀种原⼦构成的四⾯体中⼼,配种原⼦构成的四⾯体中⼼,配位数4不同点:闪锌矿的次近邻,上下彼此错开60,⽽纤锌矿上下相对2.⾦属、半导体和绝缘体能带特点。

1)绝缘体价电⼦与近邻原⼦形成强键,很难打破,没有电⼦参与导电。

能带图上表现为⼤的禁带宽度,价带内能级被填满,导带空着,热能或外场不能把价带顶电⼦激发到导带。

2)半导体近邻原⼦形成的键结合强度适中,热振动使⼀些键破裂,产⽣电⼦和空⽳。

能带图上表现为禁带宽度较⼩,价带内的能级被填满,⼀部分电⼦能够从价带跃迁到导带,在价带留下空⽳。

外加电场,导带电⼦和价带空⽳都将获得动能,参与导电。

3)导体导带或者被部分填充,或者与价带重叠。

很容易产⽣电流3.Ge, Si,GaAs能带结构⽰意图及主要特点。

1)直接、间接禁带半导体,导带底,价带顶所对应的k是否在⼀条竖直线上2)导带底电⼦有效质量为正,带顶有效质量为负3)有效质量与能带的曲率成反⽐,导带的曲率⼤于价带,因此电⼦的有效质量⼤;轻空⽳带的曲率⼤,对应的有效质量⼩4.本征半导体的载流⼦浓度,本征费⽶能级。

5.⾮本征半导体载流⼦浓度和费⽶能级。

<100K 载流⼦主要由杂质电离提供杂质部分电离区(凝固区) 。

100~500K,杂质渐渐全部电离,在很⼤温度范围内本征激发的载流⼦数⽬⼩于杂质浓度,载流⼦主要由掺杂浓度决定。

饱和电离区。

>500K,本征激发的载流⼦浓度⼤于掺杂浓度,载流⼦主要由本征激发决定。

本征区。

6.Hall效应,Hall迁移率。

半导体器件物理与工艺期末考试题

半导体器件物理与工艺期末考试题

半导体器件物理与工艺期末考试题一、简答题1.什么是半导体器件?半导体器件是利用半导体材料的电子特性来实现电流的控制与放大的电子元件。

常见的半导体器件包括二极管、晶体管、场效应管等。

2.请简述PN结的工作原理。

PN结是由P型半导体和N型半导体连接而成的结构。

当外加正向偏置时,P端为正极,N端为负极,电子从N端向P端扩散,空穴从P 端向N端扩散,形成扩散电流;当外加反向偏置时,P端为负极,N端为正极,由于能带反向弯曲,形成电势垒,电子与空穴受到电势垒的阻拦,电流几乎为零。

3.简述晶体管的工作原理。

晶体管是一种三极管,由一块绝缘体将N型和P型半导体连接而成。

晶体管分为三个区域:基区、发射区和集电区。

在正常工作状态下,当基极与发射极之间施加一定电压时,发射极注入的电子会受到基区电流的控制,通过基区电流的调节,可以控制从集电区流出的电流,实现电流的放大作用。

4.请简述场效应管的工作原理。

场效应管是利用电场的作用来控制电流的一种半导体器件。

根据电场的不同作用方式,场效应管分为增强型和耗尽型两种。

在增强型场效应管中,通过控制栅极电压,可以调节漏极与源极之间的通导能力,实现电流的控制与放大。

5.简述MOSFET的结构和工作原理。

MOSFET(金属-氧化物-半导体场效应管)是一种常用的场效应管。

它由金属栅极、氧化物层和P型或N型半导体构成。

MOSFET的工作原理是通过改变栅极电势来控制氧化物层下方的沟道区域的电阻,从而控制漏极与源极之间的电流。

6.什么是集电极电流放大系数?集电极电流放大系数(β)是指集电区电流(Ic)与发射区电流(Ie)之间的比值。

在晶体管中,β值越大,表示电流放大效果越好。

7.简述三极管的放大作用。

三极管作为一种电子元件,具有电流放大的功能。

通过控制基区电流,可以影响发射极与集电极之间的电流,从而实现电流的放大作用。

二、计算题1.已知一个PN结的硅材料的势垒高度为0.7V,求该PN结的电势垒宽度。

半导体器件物理(课堂)

半导体器件物理(课堂)

掺杂技术
掺杂技术是指在半导体材料中引入杂质元素,以改变其 导电性能的过程。
掺杂技术有多种方法,如扩散法、离子注入法、激光掺 杂法等。
掺杂技术是制造半导体器件的关键步骤,通过控制杂质 种类、浓度和分布,可以控制半导体器件的性能。
掺杂技术广泛应用于制造晶体管、二极管、集成电路等 高性能半导体器件。
光刻与刻蚀技术
半导体器件是现代电子设备中的核心元件,微处理器和中央处理 器作为计算机的“大脑”,由半导体器件构成。
存储器
半导体存储器如DRAM和NAND闪存在电子设备中用于存储数据, 具有高密度、高速读写等优点。
传感器
半导体传感器在电子设备中用于检测各种物理量,如光、温度、压 力等,广泛应用于消费电子产品和工业自动化领域。
类型
硅太阳能电池、薄膜太阳能电池、染料敏化太阳 能电池等。
应用
3
光伏发电、太空探测等。
04 半导体器件性能参数
电学性能参数
电阻率(ρ)
衡量材料导电能力的参数,单位为Ω·m。
电导率(σ)
与电阻率互为倒数,表示材料导电能力的参数,单位为S/m。
迁移率(μ)
载流子在单位电场下的平均漂移速度,衡量载流子导电能力的参数,单位为m^2/(V·s)。
VS
风力发电
在风力发电系统中,半导体器件用于控制 和优化发电机的运行状态,提高发电效率 。
未来发展趋势与挑战
技术创新
随着新材料、新工艺的发展,半 导体器件的性能将不断提升,未 来将有更多创新型半导体器件涌
现。
集成化与智能化
随着物联网、人工智能等技术的发 展,半导体器件将更加集成化、智 能化,以满足不断增长的计算和通 信需求。
03 半导体器件类型与工作原 理

半导体物理与器件物理

半导体物理与器件物理
微电子学研究领域
半导体物理、材料、工艺 半导体器件物理 集成电路工艺 集成电路设计和测试 微系统,系统
微电子学发展的特点
向高集成度、高性能、低功耗、高可靠性电路方向发展 与其它学科互相渗透,形成新的学科领域: 光电集成、MEMS、生物芯片
半导体概要
固体材料:绝缘体、半导体、导体 (其它:半金属,超导体)
MEM
Math
Bus
Controller
IO
Graphics
PCB集成 工艺无关
系统
亚微米级工艺 依赖工艺 基于标准单元互连 主流CAD:门阵列 标准单元
集成电路芯片
世纪之交的系统设计
SYSTEM-ON-A-CHIP
深亚微米、超深亚 微米级工艺 基于IP复用 主流CAD:软硬件协 同设计
1970
1980
1990
2000
2010
存储器容量 60%/年 每三年,翻两番

1965,Gordon Moore 预测 半导体芯片上的晶体管数目每两年翻两番
1.E+9 1.E+8 1.E+7 1.E+6 1.E +5 1.E+4 1.E+3
’70 ’74 ’78 ’82 ’86 ’90 ’94 ’98 ’2002
Pentium II: 7,500,000
微处理器的性能
100 G 10 G Giga 100 M 10 M Mega Kilo
1970 1980 1990 2000 2010
Peak Advertised Performance (PAP)
Moore’s Law
Real Applied Performance (RAP) 41% Growth

半导体器件物理与工艺笔记

半导体器件物理与工艺笔记

半导体器件物理与工艺笔记半导体器件物理与工艺是一个关于半导体器件的科学领域,主要研究半导体材料的性质、器件的物理原理以及制造工艺等方面的知识。

以下是一些关于半导体器件物理与工艺的笔记:1. 半导体基本概念:- 半导体是指在温度较高时表现出导电性的材料,但在室温下又是非导体的材料。

- 半导体材料有两种类型:N型半导体和P型半导体。

N型半导体是掺杂了电子供体(如磷或砷)的半导体,P型半导体是掺杂了空穴供体(如硼或铝)的半导体。

2. PN结:- PN结是由N型半导体和P型半导体通过扩散而形成的结构。

- 在PN结中,N区的自由电子从N区向P区扩散,而P区的空穴从P区向N区扩散,产生了电子-空穴对的复合,形成正负离子层。

- 在PN结的平衡态下,电子从N区向P区扩散的电流等于空穴从P区向N区扩散的电流,从而形成零电流区域。

3. PN结的运行状态:- 正向偏置:将P区连接到正电压,N区连接到负电压,使PN结变突。

此时,电子从N区向P区流动,空穴从P区向N区流动,形成正向电流。

- 反向偏置:将P区连接到负电压,N区连接到正电压。

此时,电子从P区向N区流动,空穴从N区向P区流动,形成反向电流。

- 断电区:当反向电压超过一定电压(称为击穿电压)时,PN结会进入断电区,电流急剧增加。

4. 半导体器件制造工艺:- 掺杂:在制造半导体器件时,需要将掺杂剂(如磷、硼等)加入到半导体材料中,改变半导体的电子结构,使其成为N型或P型半导体。

- 光刻:通过光刻技术,在半导体材料表面上制作出微小的图案,用于制造电路中的导线和晶体管等元件。

- 氧化:将半导体材料置于高温下与氧气反应,形成一层硅氧化物薄膜,用于对半导体器件进行绝缘和隔离。

- 金属沉积:将金属材料沉积在半导体材料上,用于制造电子元件中的金属电极。

- 焊接:将多个半导体器件通过焊接技术连接在一起,形成电子电路。

这些只是半导体器件物理与工艺的一部分内容,该领域还涉及到更深入的知识和技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•平时成绩30% + 考试成绩70%
•名词解释(2x5=10)+ 简答与画图(8x10=80)+ 计算(1x10=10)
名词解释
p型和n型半导体
漂移和扩散
简并半导体
异质结
量子隧穿
耗尽区
阈值电压
CMOS
欧姆接触
肖特基势垒接触
简答与画图
1.从能带的角度分析金属、半导体和绝缘体之间的区别。

2.分析pn结电流及耗尽区宽度与偏压的关系。

3.什么是pn结的整流(单向导电)特性?画出理想pn结电流-电压曲线示意图。

4.BJT各区的结构有何特点?为什么?
5.BJT有哪几种工作模式,各模式的偏置情况怎样?
6.画出p-n-p BJT工作在放大模式下的空穴电流分布。

7.MOS二极管的金属偏压对半导体的影响有哪些?
8.MOSFET中的沟道是多子积累、弱反型还是强反型?强反型的判据是什么?
9.当VG大于VT且保持不变时,画出MOSFET的I-V曲线,并画出在线性区、非线
性区和饱和区时的沟道形状。

10.MOSFET的阈值电压与哪些因素有关?
11.半导体存储器的详细分类是怎样的?日常使用的U盘属于哪种类型的存储器,画出
其基本单元的结构示意图,并简要说明其工作原理。

12.画出不同偏压下,金属与n型半导体接触的能带图。

13.金属与半导体可以形成哪两种类型的接触?MESFET中的三个金属-半导体接触分
别是哪种类型?
14.对于一耗尽型MESFET,画出VG=0, -0.5, -1V(均大于阈值电压)时的I-V曲线示
意图。

15.画出隧道二极管的I-V曲线,并画出电流为谷值时对应的能带图。

16.两能级间的基本跃迁过程有哪些,发光二极管及激光器的主要跃迁机制分别是哪
种?
计算
Pn结的内建电势及耗尽区宽度
T=300K
Si: ,
GaAs: ,
, ,
Si: GaAs:
,
1.计算一砷化镓p-n结在300K时的内建电势及耗尽区宽度,其
N A=1018cm-3和N D=1016cm-3.
=1.29V
=0.596μm
2.一砷化镓单边突变结,其N A=1019cm-3,N D=1015cm-3,计
算在反向偏压20V时的最大内建电场(T=300K).
=5.238μm
=7.64×104V/cm
3.对一砷化镓突变结,其中N A=2×1019cm-3,N D=
8×1015cm-3,计算零偏压和反向偏压4V时的结电容(T=
300K).
=1.34V
=0.48μm(0V), 0.96μm(-4V)
=2.29×10-8F/cm2(0V), 1.14×10-8F/cm2(-4V)
4.对于硅p+-n单边突变结,其N D=5×1017cm-3,计算其击穿
电压。

设其临界电场为6.2×105 V/cm.
=2.53V
5.已知在一理想晶体管中,各电流成分为:I Ep=4mA、
I En=0.02mA、I Cp=3.95mA、I Cn=0.002mA。

求共射电流
增益β0及I CEO的值。

=0.983
è I CBO=0.34μA
=57.8
=20μA
6.一p-n-p硅晶体管其射、基、集电极掺杂浓度分别为
5×1018cm-3、2×1017cm-3和1016cm-3。

器件截面积为
0.2mm2,基区宽度为1.0μm,射基结正向偏压为0.5V。


射、基、集电极中少数载流子的扩散系数分别为52cm2/s、
40cm2/s和115cm2/s,而寿命分别为10-8s、10-7s和10-6s。

求晶体管的共基电流增益。

=4.66×102cm-3
=7.2×10-4cm
=18.6 cm-3
=0.143×10-4A
=1.03×10-7A
=0.993
1.试画出V G=V T时,n衬底的理想MOS二极管的能带图。

2.一N A=5×1016cm-3的金属-SiO2-Si电容器,请计算表面耗尽
区的最大宽度。

3.假设氧化层中的氧化层陷阱电荷呈三角形分布,
ρot(y)=q×5×1023×y(C/cm3),氧化层的厚度为10nm。

试计算因Q ot所导致的平带电压变化。

4.一n沟道的n+多晶硅-SiO2-Si MOSFET,其N A=1017cm-3,
Qf/q=5×1010cm-2,d=10nm,试计算其阈值电压。

5.针对上题中的器件,硼离子注入使阈值电压增加至+0.7V,假
设注入的离子在Si-SiO2的界面处形成一薄片负电荷,请计算注入的剂量。

6.将铜淀积于n型硅衬底上,形成一理想的肖特基二极管,若
øm=4.65eV,电子亲和力为4.01eV,N D=3×1016cm-3,而T=300K。

计算出零偏压时的势垒高度、内建电势、耗尽区宽度以及最大电场。

7.若一n沟道砷化镓MESFET的势垒高度øBn=0.9eV,
N D=1017cm-3,a=0.2um,L=1um,且Z=10um。

此器件为增强还是耗尽模式器件?
8.一n沟道砷化镓MESFET的沟道掺杂浓度N D=2×1015cm-3,
又øBn=0.8eV,a=0.5um,L=1um,μn=4500cm2/(Vs),
且Z=50um。

求出当V G=0时夹断电压、阈值电压以及饱和电流。

相关文档
最新文档