东南大学数学建模试卷10-11-2A做
东南大学考试卷(A)2009-2010学年高等数学期末试卷(后附答案)

东南大学考试卷(A卷)课程名称高等数学B期末考试学期09-10-3 得分适用专业选修高数B的各专业考试形式闭卷考试时间长度150分钟09.6.8一.填空题(本题共9小题,每小题4分,满分36分)1. 曲面2cos()e4xzx x y yzπ-++=在点(0,1,2)处的法线方程是;2.设u=,则梯度;3.已知{}{}2,1,2,1,3,2=--=-A B,则A在B方向的投影;4.设闭曲线:1C x y+=,取逆时针方向,则曲线积分2d dCy x x y-⎰的值是;5.设函数(,)F x y具有一阶连续偏导数,则曲线积分与路径无关的充分必要条件是;6.二重积分()2221e cos d dxx yy xy x y+≤+⎰⎰的值是;7. 设S为球面:2222x y z R++=,则曲面积分()222dSx y z S++⎰⎰的值是;8.设C是折线11(02)y x x=--≤≤,则曲线积分dCy s⎰的值是;9.取(注:答案不唯一),可使得级数2nna∞=∑收敛,且级数2lnnna n∞=∑发散.二. 计算下列各题(本题共4小题,满分30分)10.(本小题满分7分)设((),)z f x y x yϕ=-,其中f具有连续的二阶偏导数,ϕ具有连续导数,计算2,z zx x y∂∂∂∂∂.解11.(本小题满分7分)计算2(1)d d Dx xy x y ++⎰⎰,其中{}22(,)1,0D x y x y x =+≤≥. 解12.(本小题满分8分)计算二次积分1121321d e d xxyx y y -⎰⎰. 解,13. (本小题满分8分)求密度均匀分布的立体{222(,,)2,x y z z x y z z z Ω=≥++≤≥的质心坐标. 解三(14).(本题满分7分)试求过点(3,1,2)A -且与z 轴相交,又与直线1:23L x y z ==垂直的直线方程. 解四(15)。
(本题满分7分)计算d Sx S z⎰⎰,其中S 是柱面222(0)x y ay a +=>被锥面z 和平面2z a =所截下的部分.解五(16). (本题满分7分)计算 ()e cos d 5e sin d x x CI y x xy y y =+-⎰,其中C 为曲线x =y 增大的方向.解 六(17)(本题满分7分)计算()()222d d d d ()d d SI y xz y z z y z x x z x y =+∧++∧+-∧⎰⎰,其中S为2z =0z =所截部分,取上侧.解七(18)(本题满分6分)证明不等式1(1)eyyx x-<,01x<<,0y<<+∞.证08-09-3高数B 期末试卷(A )参考答案09.6.8一.填空题(本题共9小题,每小题4分,满分36分)1. 曲面2cos()e 4xzx x y yz π-++=在点(0,1,2)处的法线方程是1222x y z -==-; 2.设u =(1,2,0)14,,033u⎧⎫=⎨⎬⎩⎭grad ; 3. 已知{}{}2,1,2,1,3,2=--=-A B ,则A 在B方向的投影()=B A 4. 设闭曲线:1C x y +=,取逆时针方向,则曲线积分2d d Cy x x y -⎰的值是2-; 5. 设函数(,)F x y 具有一阶连续偏导数,则曲线积分(,)(d d )ABF x y y x x y +⎰与路径无关的充分必要条件是x y xF yF =; 6. 二重积分()2221ecos d d xx y y xy x y +≤+⎰⎰的值是0;7. 设S 为球面:2222x y z R ++=,则曲面积分()222d Sxy z S ++⎰⎰的值是44R π; 8. 设C 是折线11(02)y x x =--≤≤,则曲线积分d Cy s ⎰9.取21ln n a n n =(注:答案不唯一),可使得级数2n n a ∞=∑收敛,且级数2ln n n a n ∞=∑发散.二. 计算下列各题(本题共4小题,满分30分)10.(本小题满分7分)设((),)z f x y x y ϕ=-,其中f 具有连续的二阶偏导数,ϕ具有连续导数,计算2,z zx x y∂∂∂∂∂. 解12zf f xϕ∂=+∂, 21111222()z f x f x f f x y ϕϕϕϕϕ∂'''=++--∂∂ 11.(本小题满分7分)计算2(1)d d Dxxy x y ++⎰⎰,其中{}22(,)1,0D x y x y x =+≤≥.解21230013(1)d d 0d d 224Dx xy x y ππϕρρπ++=++=⎰⎰⎰⎰12.(本小题满分8分)计算二次积分11213021d e d xxyx y y-⎰⎰. 解,1111111211133200222111d e d d e d e 1d e 2x x xy y y yx y y x y y y y ---⎛⎫==-=- ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰ 13. (本小题满分8分)求密度均匀分布的立体{222(,,)2,x y z z x y z z z Ω=≥++≤≥的质心坐标.解 0x y ==(1分))22cos 340122cos 240125d sin cos d d 2518d sin d d 3r rz r rππθππθπϕθθθϕθθ===⎰⎰⎰⎰⎰⎰三(14).(本题满分7分)试求过点(3,1,2)A -且与z 轴相交,又与直线1:23L x y z==垂直的直线方程. 解 设312x y z l m n-+-==为所求直线L 的方程,(1分)由于直线L 与z 轴相交,所以三个向量{},,l m n =s ,OA 及k 共面,从而312001l m n -=,即30l m --= (1),又由于L 与1L 互相垂直,得11023l m n ++=,即6320l m n ++= (2)联立(1),(2)解得3l m =-,152n m =,所求直线L 的方程为3126215x y z -+-==-- 四(15)。
初中数学建模大赛试卷

一、选择题(每题5分,共20分)1. 下列哪项不是数学建模的基本步骤?A. 提出问题B. 收集数据C. 分析问题D. 解决问题2. 下列哪个公式是求解一元二次方程的公式?A. \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)B. \( y = mx + b \)C. \( z = \frac{a}{b} \)D. \( \sin(\theta) = \frac{opposite}{hypotenuse} \)3. 在下列函数中,哪个函数的图像是一条直线?A. \( f(x) = x^2 + 2x + 1 \)B. \( f(x) = 2x + 3 \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = \log_2(x) \)4. 下列哪个单位是测量长度的国际单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 安培(A)5. 在下列几何图形中,哪个图形是轴对称的?A. 正方形B. 长方形C. 三角形D. 圆形二、填空题(每题5分,共20分)6. 若一个长方体的长、宽、高分别为a、b、c,则其体积V可以表示为______。
7. 若一个圆的半径为r,则其周长C可以表示为______。
8. 若一个等差数列的首项为a1,公差为d,第n项为an,则an可以表示为______。
9. 若一个等比数列的首项为a1,公比为q,第n项为an,则an可以表示为______。
10. 若一个直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,c 可以表示为______。
三、解答题(每题15分,共45分)11. (15分)某学校计划组织一次校园运动会,共有50名学生报名参加。
已知参加100米短跑的学生有20人,参加200米中长跑的学生有15人,参加跳远的学生有10人。
请根据这些信息,建立一个数学模型来分析参加不同运动项目的学生人数之间的关系。
12. (15分)某商店销售一种新产品,已知每件产品的成本为100元,售价为150元。
东南大学高数试卷及答案-09-10-2高数期末(有答)-1

共 4 页 第 1 页09-10-2高 数 试 卷一.填空题(本题共9小题,每小题4分,满分36分) 1.函数1()[]f x x x =-的定义域是 \R Z ,值域是 ()1,+∞ 。
2.设ln ,0,1(), 1, 11xx x f x a x a x ⎧>≠⎪==-⎩-⎨⎪=当时,()1f x x =在连续。
3.曲线22(1)x y x =+的斜渐近线的方程是 1122y x =- 。
4.(211d x x -=⎰2 ;5.函数22(1)x t y t e dt =-⎰的极大值点是 0 x =;6.a rcs n(21i )C x C +=-⎰或 ;7.设21()0x yt y y x x e dt +-=-=⎰是由所确定的函数,则1 x e dy dx=-=;8.曲线族1212(,)x xxy C e C e C C -=+是常数所确定的微分方程是 20xy y xy '''+-= ;9.11lim sin 2n n k k n n ππ→∞==∑。
二.按要求计算下列各题(本题共5小题,每小题6分,满分30分) 10.2ln sin sin xdx x ⎰ cot lnsin cot x x x x C =---+11.23π+∞=⎰12.20cossin cos lim(1cos )x x x x x →-- 13=共 4 页 第 2 页13.2cos 2dxx π+⎰=14。
设2()arcsin(1),(0)0f x x f '=-=,计算1()f x dx ⎰142π=- 三(15).(本题满分8分)求微分方程22xy y x e '''-=+满足初始条件01x y ==,54x y ='=的特解. 2221222211()421111()2242x xx xy C C e x x xe y e x x xe =+-++=+-++特解四(16).(本题满分7分)设函数()y f x =在区间[0,1]上可导,在(0,1)内恒取正值,且满足2()()3xf x f x x '=+,又由曲线()y f x =与直线1,0x y ==所围图形S 的面积为2,求()f x 的表达式,并计算图形S 绕y 轴旋转一周所得旋转体的体积。
东南大学大二公共课高等数学竞赛试卷及答案 (4)

东南大学2021年高等数学竞赛暨江苏省普通高等学校非理科专业第九届高等数学竞赛选拔赛试卷 课程名称 高等数学 考试日期 得分 适用专业 考试形式 闭卷 考试时间长度 180分钟一.填空题(此题共5小题,每题5分,此题总分值25分) 1.当0x →时,34sin sin cos x x x x -+与n x 为同阶无穷小,则n = ; 2.设()d ()1,,d n n m n P x x m n x =-为正整数,则(1)P = ; 3.2sin cos d (cos sin )x x x x x x x +=-⎰ ; 4.1220arctan d (1)x x x =+⎰ ; 5.设sin ,02(),()0,2x x f x x g x x ππ⎧≤≤⎪⎪==⎨⎪>⎪⎩,则0()()d x f t g x t t -=⎰ . 二.〔此题总分值8分〕设()f x连续,()f x 在0x =处可导,(0)0,(0)0f f '=≠,计算 20020()d lim ()d x x x f t t x f t t →⎰⎰. 自觉遵五.〔此题总分值11分〕证明不等式:20d x x >⎰. 三.〔此题总分值8分〕设()200765432()314231113f x x x x x x =++++-,求12f ⎛⎫ ⎪ ⎪⎝⎭的值.四.〔此题总分值12分〕设()f x '在[,]a b 上连续,()f x 在(,)a b 内二阶可导, ()()0f a f b ==,()d 0ba f x x =⎰,证明:在(,)ab 内至少存在一点ξ,使得()()f f ξξ''=.六.〔此题总分值12分〕设有界函数()f x 在(,)-∞+∞上具有连续导数,()()1f x f x '-≤,求证: ()1,(,)f x x ≤∈-∞+∞.七.〔此题总分值12分〕设函数[,]f C a b ∈,不恒为零,满足0()f x M ≤≤,则()()()24222()()d ()sin d ()cos d 12b b b a a a M b a f x x f x x x f x x x -≤++⎰⎰⎰.八.〔此题总分值12分〕设函数[,]f C a b ∈,且1100()d 0,()d 0f x x xf x x ==⎰⎰,,110()d 0n x f x x -=⎰,10()d 0n x f x x c =>⎰,证明:至少存在一点[,]a b ξ∈,使得 12(1)()()n n n c f b a ξ++≥-.。
东南大学线性代数试题及答案

03-04学年第二学期《空间解析几何与线性代数》期终试题解答一 (24%) 填空题:1. 若向量k j a i -+=α, k j i b ++=β,k =γ共面, 则参数a , b 满足ab = 1.2. 过点P (1, 2, 1)且包含x 轴的平面方程为y - 2z = 0.3. 已知矩阵A 满足A 2 + 2A - 3I = O , 其中I 表示单位矩阵, 则A 的逆矩阵A -1 = )2(31I A +. 4. 设矩阵A =⎥⎥⎦⎤⎢⎢⎣⎡031130021, B =⎥⎥⎦⎤⎢⎢⎣⎡700650432, 则行列式|A 2B -1| = 1/70 . 5. 设向量组α1 = ⎥⎥⎦⎤⎢⎢⎣⎡321, α2 = ⎥⎥⎦⎤⎢⎢⎣⎡123, α3 = ⎥⎥⎦⎤⎢⎢⎣⎡-11k , 则当参数k =0时, α1, α2, α3线性相关. 6. 向量空间R 2中向量η = (2, 3)在R 2的基,与α = (1, 1) β = (0, 1)下的坐标为(2, 1).7. 满足下述三个条件的一个向量组为(-2, 1, 0), (1, 0, -1), 这三个条件是: ①它们是线性无关的; ②其中的每个向量均与α = (1, 2, 1)正交; ③凡与α正交的向量均可由它们线性表示.8. 已知2×2矩阵A = ⎥⎦⎤⎢⎣⎡d c b a , 若对任意的2维列向量η有ηT A η = 0, 则abcd 满足条件 a = d = 0, b = -c .二 (12%) 假设矩阵A , B 满足A - B = AB , 其中A =⎥⎥⎦⎤⎢⎢⎣⎡---021021020, 求B . 解: (法一) 由A - B = AB 得 (A +I )B = A , 其中I 表示单位矩阵. A +I = ⎥⎥⎦⎤⎢⎢⎣⎡---121011021. A +I 的行列式|A +I | = 1, 伴随矩阵(A +I )* = ⎥⎥⎦⎤⎢⎢⎣⎡--101011021. 因而(A +I )-1 = ⎥⎥⎦⎤⎢⎢⎣⎡--101011021. 于是B = (A +I ) -1A = ⎥⎥⎦⎤⎢⎢⎣⎡--101011021⎥⎥⎦⎤⎢⎢⎣⎡---021021020 = ⎥⎥⎦⎤⎢⎢⎣⎡--001001022. (注意B 未必等于A (A +I ) -1 !)(法二) 由A - B = AB 得 (A +I )B = A , 其中I 表示单位矩阵. A +I = ⎥⎥⎦⎤⎢⎢⎣⎡---121011021. [A +I , A ] =⎥⎥⎦⎤⎢⎢⎣⎡------021021020 121011021 ⎥⎥⎦⎤⎢⎢⎣⎡--001001022 100010001= [I , (A +I ) -1A ] 初等行变换于是B = (A +I ) -1A = ⎥⎥⎦⎤⎢⎢⎣⎡--001001022. 三 (15%) 设向量α1 = (a , 2, 10)T , α2 = (-2, 1, 5)T , α3 = (-1, 2, 4)T , β = (2, b , c )T , 问当参数a , b ,c 满足什么条件时1. β能用α1, α2, α3唯一线性表示?2. β不能用α1, α2, α3线性表示?3. β能用α1, α2, α3线性表示, 但表示方法不唯一? 求这时β用α1, α2, α3线性表示的一般表达式.解: 令A = [α3, α2, α1] = ⎥⎥⎦⎤⎢⎢⎣⎡--105421221a , (注: 这里把α3放在第一列纯粹是为了方便) [A , β] = ⎥⎥⎦⎤⎢⎢⎣⎡--c b a 2 105421221 ⎥⎥⎦⎤⎢⎢⎣⎡+-+-++--442 2800223021b c b a a a = ]~ ,~[βA 1. 当参数a ≠ -4时, 秩(A ) = 3, 此时β能用α1, α2, α3唯一线性表示.2. 当参数a = -4, 而b - c ≠ 4时, 秩(A ) =2, 秩(A , β) = 3, 此时β不能用α1, α2, α3线性表示.3. 当参数a = -4, 且b - c = 4时, 秩(A ) = 秩(A , β) = 2, 此时β能用α1, α2, α3线性表示, 但表示方法不唯一.这时]~ ,~[βA = ⎥⎥⎦⎤⎢⎢⎣⎡+---042 000630421b ⎥⎥⎦⎤⎢⎢⎣⎡+-03/)1(22 000210001b 由此可得Ax = β的通解⎪⎩⎪⎨⎧=++-=-=333213/)1(222x x b x x x , 其中x 3为自由未知量.因而β用α1, α2, α3线性表示的一般表达式为β = t α1 + [-2t + 2(b +1)/3]α2 -2α3其中t 为任意数.四 (8%) 设实二次型f (x , y , z ) = x 2 + y 2 + z 2 + 2axy + 2ayz . 问: 实数a 满足什么条件时, 方程f (x , y , z ) = 1表示直角坐标系中的椭球面?解: 实二次型f (x , y , z ) = x 2 + y 2 + z 2 + 2axy + 2ayz 的矩阵A = ⎥⎥⎦⎤⎢⎢⎣⎡10101a a a a . A 的顺序主子式a 11 = 1 > 0; 22211211a a a a = 1 - a 2; |A | = 1 - 2a 2. f (x , y , z ) = 1表示直角坐标系中的椭球面当且仅当A 正定, 当且仅当A 的顺序主子式全为正数, 即a 2 < 1/2.五 (12%) 设3阶方阵A 的特征值为2, -2, 1, 矩阵B = aA 3 - 4aA + I .1. 求参数a 的值, 使得矩阵B 不可逆.2. 问矩阵B 是否相似于对角阵? 请说明你的理由.解: 1. 因为3阶方阵A 有3个不同的特征值2, -2, 1, 所以存在可逆矩阵P , 使得P -1AP = ⎥⎥⎦⎤⎢⎢⎣⎡-100020002. 初等行变换 初等行变换于是P -1BP = P -1(aA 3 - 4aA + I )P = a (P -1AP )3 - 4a (P -1AP ) + I = ⎥⎥⎦⎤⎢⎢⎣⎡-a 3100010001. 因而矩阵B 不可逆当且仅当|B | = 0, 而|B | = |P -1BP | = 1 -3a .所以当a = 1/3时, 矩阵B 不可逆.2. 由1可知矩阵B 相似于对角阵. 六 (12%) 已知二次曲面S 1的方程为z = 3x 2 + y 2, S 2的方程为z = 1 - x 2.1. 问: S 1与S 2分别属于哪一类二次曲面?2. 求S 1与S 2的交线在xOy 平面上的投影曲线方程;3. 画出由S 1与S 2所围成的立体的草图.解: 1. S 1与S 2分别属于椭圆抛物面和抛物柱面.2. 由z = 3x 2 + y 2和z = 1 - x 2消去z 得S 1与S 2的交线在xOy 平面上的投影曲线方程:⎩⎨⎧==+01422z y x 3. 由S 1与S 2所围成的立体的草图如右图所示: 七 (10%) 设3×3实对称矩阵A 的秩为2, 并且AB = C , 其中B = ⎥⎥⎦⎤⎢⎢⎣⎡-110011与C =⎥⎥⎦⎤⎢⎢⎣⎡-110011. 求A 的所有特征值及相应的特征向量; 并求矩阵A 及A 9999.解: 因为A 是3阶矩阵, 且秩为2, 所以|A | = 0, 因而有一个特征值为0.又因为AB = C , 其中B = ⎥⎥⎦⎤⎢⎢⎣⎡-110011与C =⎥⎥⎦⎤⎢⎢⎣⎡-110011, 令p 1 = ⎥⎥⎦⎤⎢⎢⎣⎡-101, p 2 = ⎥⎥⎦⎤⎢⎢⎣⎡101, 则Ap 1 = -p 1, Ap 2 = p 2, 可见p 1, p 2分别是A 的对应于λ = -1和λ = 1的特征向量. 由于A 是3×3的实对称矩阵, 所以对应于特征值0的特征向量与p 1, p 2正交,由此可得对应于特征值0的一个特征向量p 3 = ⎥⎥⎦⎤⎢⎢⎣⎡010. 令P = [p 1, p 2, p 3], 则P -1AP = Λ = ⎥⎥⎦⎤⎢⎢⎣⎡-000010001. 故A = P ΛP -1 = ⎥⎥⎦⎤⎢⎢⎣⎡-011100011⎥⎥⎦⎤⎢⎢⎣⎡-000010001⎥⎥⎦⎤⎢⎢⎣⎡-0102/102/12/102/1= ⎥⎥⎦⎤⎢⎢⎣⎡001000100. A 9999 = (P ΛP -1)9999 = P Λ9999P -1 = P ΛP -1 = A = ⎥⎥⎦⎤⎢⎢⎣⎡001000100. 八 (7%) 证明题:1. 设η1, η2, …, ηt 是齐次线性方程组Ax = θ的线性无关的解向量, β不是其解向量. 证明: β, β+η1, β+η2, …, β+ηt 也线性无关.证明: 因为η1, η2, …, ηt 是齐次线性方程组Ax = θ的线性无关的解向量, β不是其解向量.所以β, η1, η2, …, ηt 线性无关, 否则β能由η1, η2, …, ηt 线性表示, 从而是线性方程组Ax = θ的解, 矛盾!假若k 1β + k 2(β+η1) + k 3(β+η2) + … + k t +1(β+ηt )= θ,则(k 1 + k 2 + k 3 + … + k t +1)β + k 2η1 + k 3η2 + … + k t +1ηt = θ. 于是(k 1 + k 2 + k 3 + … + k t +1) = k 2 = k 3 = … = k t +1 = 0,即k 1 = k 2 = k 3 = … = k t +1 = 0.所以β, β+η1, β+η2, …, β+ηt 线性无关.2. 设A 是n 阶正定矩阵, 证明: |I +A | > 1, 其中I 是n 阶单位矩阵. 证明: 因为A 是n 阶正定矩阵, 所以A 的特征值λ1, λ2, …, λn 都是正数.于是存在可逆矩阵P , 使得P -1AP = Λ = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n λλλ 00000021. 因而|I +A | = |P -1||I +A ||P | = |P -1(I +A )P | = |I + P -1AP | = nλλλ+++1000100121 = (1+λ1)(1+λ2)…(1+λn ) > 1.生活的辩证法就是这样:当苦难压来时,只有具备善良的愿望,坚定信念的人;只有不计回报,只求奉献的人;只有坚强不屈,不折不挠的人,才有希望趟过苦难,收获甘甜。
2010全国大学生数学建模竞赛获奖名单(本科组初稿)

2010全国大学生数学建模竞赛获奖名单(本科组初稿)本科组一等奖(210名,按赛区序号排列,赛区内按学校笔画排列)序号赛区学校参赛队员指导教师1 北京中央财经大学陈博武玉婷孙砚培2 北京中国人民大学卜文凯时昱旻杨亚旭韩丽涛3 北京中国人民大学陈柯兴开楠祝晨琪韩丽涛4 北京中国地质大学(北京)刘洋廷刘鑫磊郑梦天郑勋烨5 北京北京大学田成喆于晨露范爱琳指导小组6 北京北京大学程诚黄辰刘瑞恺指导小组7 北京北京大学匡宇明吕桐龚任飞指导小组8 北京北京大学杨颖程锴周瑾指导小组9 北京北京工业大学鹿思珩刘昊淼史海波数模指导组10 北京北京师范大学陶雨萌林梦西肖牧指导小组11 北京北京师范大学朱茵仪鲁珵王情指导小组12 北京北京邮电大学任峰陈雯张国波贺祖国13 北京北京邮电大学赵丽红尚秋里王占孔贺祖国14 北京北京邮电大学赵若君薛潇剑王璟尧袁健华15 北京北京邮电大学徐佳祥张引黄海龙贺祖国16 北京北京航空航天大学刘文佳覃贝贝于楠彭临平17 北京北京航空航天大学叶峰周润楠邹贤青彭临平18 北京北京航空航天大学牛宝龙康志新全拥孙海燕19 北京北京航空航天大学佘昌洋齐毅叶子豪孙海燕20 北京北京航空航天大学姜亚中淡志强吕晓帆冯伟21 北京北京理工大学于腾飞陈勇波高原徐厚宝22 北京北京理工大学朱俊杰王斌斌李毅彬房永飞23 北京对外经济贸易大学于淼吴羽乔周霁颖指导小组24 北京对外经济贸易大学吴卓宴邱珍琦朱箫笛指导小组25 北京首都医科大学邵毅刘冬鑫欧阳涣堃指导小组26 北京清华大学韩科航周伟国王小雪指导小组27 北京清华大学孙立君汪利徐悟指导小组28 北京装甲兵工程学院王磊刘厚璋傅文君齐紫微29 天津天津农学院李建忠田金歌王姣姣穆志民30 天津军事交通学院陈虹睿伍恒王立思鞠涛31 河北东北大学秦皇岛分校郑晓云李春侯鹏庆指导教师组32 河北华北电力大学周振甄钊王彬彬33 河北防灾科技学院贺子龙余坤曹京津何珊珊34 山西山西大学张骁张连敏李明宇李顺勇35 山西山西大学刘俊伶薛波王译梧刘桂荣36 山西太原理工大学陈涛程景冷冬王彩贤37 山西太原理工大学范岳樊留根姚金磊安润玲38 内蒙古内蒙古大学王恩奇邓会敏杜增义马壮39 辽宁大连海事大学毋岩斌赵宝强王嘉宁张运杰40 辽宁东北大学田涧任龙元河清何雪浤41 辽宁东北大学黄小雨周小琨陈美希王琪42 吉林长春师范学院吴斯胡晓倩敖晶吴登峰43 吉林长春理工大学王天也刘文民朱宝金成丽波44 吉林长春理工大学王昕妍舒文敏蒲睿李卫明45 吉林长春理工大学彭京蒙刘健王慧超李卫明46 吉林长春理工大学周宇艇郝贺梁帅蔡志丹47 吉林吉林大学姜富春苏丽娟侍骏超吕显瑞48 吉林吉林大学冯海兵江浩亮师宪伟史少云49 吉林吉林大学周天伟孟晨王晨吕显瑞50 吉林吉林医药学院刘海涛冯俊惠张苗苗齐德全51 黑龙江哈尔滨工业大学周鑫张叶红解奉龙李道华52 黑龙江哈尔滨工业大学金平徐妍妍陈浩辰尚寿亭53 上海上海交通大学车宇航王泽宇闫程远54 上海同济大学张森叶子熊彼德郝朝洋55 上海复旦大学陆俊巍厉传斌赵晟曹沅56 上海复旦大学艾里•热孜克李可嘉王晨阳曹沅57 上海复旦大学李天原朱涵彭镇曹沅58 上海复旦大学徐仚刘苒孙宁曹沅59 上海复旦大学曹原范敏杰方乐恒曹沅60 江苏东南大学黄菲宋爽卜昕阳数模教练组61 江苏东南大学羌波董荻莎袁颖数模教练组62 江苏江苏大学冯亦倬任文婷万根顺教练组63 江苏江南大学李磊苏欢欢王猛数模教练组64 江苏河海大学徐晓军金罗斌朱鹏张学莹65 江苏河海大学唐少将狄克罗斌丁根宏66 江苏南京大学言浩马骏王宁欣教练组67 江苏南京大学钱行强闰伟钱煜教练组68 江苏南京大学杨霄蔺璐媛付怀龙教练组69 江苏南京大学彭宇王晓亮姚秋爽教练组70 江苏南京大学陈秦波成松豪杜变教练组71 江苏南京师范大学张艳汤晓萌谢起予72 江苏南京财经大学马健杜泽宇施庭肖丽华73 江苏南京邮电大学李宁騛邱煜淳李建蕊孔告化74 江苏南京邮电大学王睿洪翠云王春路许立炜75 江苏南京邮电大学张伟张玮王富广闫庆伦76 江苏南京信息工程大学舒宏武陈凤娇傅洋77 江苏南京理工大学刘迎刘文慧张利强肖伟78 江苏常熟理工学院曹进鞠美凤宗耀东数模教练组79 江苏解放军理工大学许晓明高枫越张驭龙80 浙江中国计量学院戚立才洪露陈小军数模组81 浙江中国计量学院余舒婷章苹文一章数模组82 浙江中国计量学院王彬清张权耀刘雨数模组83 浙江杭州电子科技大学罗云岗林潮阳杨雅萌数模组84 浙江浙江大学马宇斌莫璐怡杨琦数模组85 浙江浙江大学陈鑫磊丁玫李子健数模组86 浙江浙江大学曹臻罗丁胡晨玥数模组87 浙江浙江大学刘胡世阳杨家程程功数模组88 浙江浙江工业大学何伟王绍楠陈聪数模组89 浙江浙江工业大学金超方佳盈胡晓馨数模组90 浙江浙江工业大学丁洁女温彩哨钟雷数模组91 浙江浙江师范大学孟佶贤谢杰高艳东数模组92 浙江浙江师范大学张旭丹陈余康陈聪数模组93 浙江温州大学瓯江学院金莹陈伟敏许明明徐徐94 安徽中国科学技术大学冯荻兰菲李天骄张峰95 安徽安徽大学阮骥范文萍罗小兵章飞96 安徽安徽师范大学魏子翔胡益清韩熙轩张琼97 安徽安徽建筑工业学院李淼吴红奎章龙教练组98 安徽蚌埠学院吴文健陶璇赵红敏张迎秋99 安徽解放军炮兵学院彭浩宇肖鑫冯宝龙王伦夫100 福建泉州师范学院黄伟菁杨玲玲陈世军杨昔阳101 福建厦门大学林奕徐梦露沈忱谭忠102 福建厦门理工学院宁亦杼林明阳梅玉陈玉成103 江西江西师范大学刘维张丽阳春燕教练组104 江西江西理工大学项淋飞万芸李一帆教练组105 江西南昌大学郭慧君江长云周慧教练组106 江西南昌大学科学技术学院杨献祥陈臣许梦婷教练组107 山东山东大学崔金杰王军肖佃艳数模组108 山东山东大学刘浩东苏绍清滕斌数模组109 山东山东大学许荣华秦彦齐孙开元数模组110 山东山东大学威海分校戚睿骅张静源董方丽曹祝楼111 山东山东大学威海分校郭翰橙朱文涛何勇杨兵112 山东山东科技大学王宗炎虞鑫栋宋婉莹张玉林113 山东山东科技大学邱健李丽荣刘培龙王新赠114 山东中国石油大学(华东) 尚林源吴立金李琦周生田115 山东中国海洋大学孟繁龙马瑞松王成亮数模组116 山东中国海洋大学高源靳光震王博数模组117 山东青岛理工大学王维曹帅张文亮数模组118 山东青岛理工大学刘雷雷王一凡孟令娜数模组119 山东青岛理工大学王欢高合盟贾言安数模组120 山东青岛理工大学张雪辛金龙李清杰数模组121 山东海军航空工程学院青岛分院胡光潮赵大玮郑良波曹华林122 河南河南师范大学梁广颖潘逸飞杨云飞指导教师组123 河南河南科技大学袁志凯许雪敏胡磊李培峦124 河南解放军信息工程大学马蓁薛峰杨京指导教师组125 河南解放军信息工程大学杨绪魁秦记东魏星指导教师组126 河南解放军信息工程大学徐一夫韩洁张驰指导教师组127 河南解放军信息工程大学张辉杨帆卫彦伉指导教师组128 湖北三峡大学陈杨焦晓晖胡昌志指导教师组129 湖北三峡大学刘乐军陈晓东敖行指导教师组130 湖北三峡大学付志龙辜继明李美莹指导教师组131 湖北三峡大学叶润森陈腾飞齐紫航指导教师组132 湖北华中农业大学李阳杜佩陈宁陆教练组133 湖北华中农业大学佟昊高文辉刘乾教练组134 湖北华中科技大学黄天骁汪光亮印家星梅正阳135 湖北华中科技大学闻铭肖成志朱云帆梅正阳136 湖北武汉大学周朝胡凡孙健兴数模指导组137 湖北武汉大学倪超杨盼盼李枫数模指导组138 湖北武汉大学韩旭李海波国玉静数模指导组139 湖北武汉大学陈鹏郭双全田钰数模指导组140 湖北武汉工程大学黄浩张晓迪杨俊威杨向辉141 湖北武汉理工大学王人福方越栋李欣黄小为142 湖北武汉理工大学陈骁郑杰张景源何朗143 湖北解放军空军雷达学院黄龙权魏煜左家骏数模指导组144 湖北解放军海军工程大学黄振华周群郝红芳数模组145 湖南中南大学唐高朋田家凯余道顺张佃中146 湖南中南大学孙贝李洋岳梦楚张鸿雁147 湖南中南大学呙邵明陈小龙肖成郑洲顺148 湖南长沙理工大学戈先武罗海星彭珊姗戴志锋149 湖南长沙理工大学汤凌谭敏李晓恩戴志锋150 湖南国防科技大学马肖肖张若冰周应秋151 湖南国防科技大学李靖朱新新尹晓晴152 湖南国防科技大学杜睿徐海洋房晓婷153 湖南湖南人文科技学院黄准于俊唐晓琼陈国华154 湖南湖南农业大学王志勇雷达万志鸿刘跃武155 湖南湖南商学院肖蔚付雅婷刘霞谢小良156 广东北京师范大学-香港浸会大学联合国际学院于其位朱栋明越付嵩峰157 广东华南理工大学刘鹏陈晓强曾浩健数模组158 广东暨南大学珠海校区潘亦铭张樟詹雯婷张元标159 广西广西师范大学林明进邵严民容蓉数模组160 广西桂林理工大学利仕坤佘华煜周毅刘筱萍161 广西桂林理工大学沈孝文叶彩园张震梁鹏162 海南海南大学高峰葛同广邝翼飞教练组163 海南琼州学院吴政婉苏致远石震林教练组164 重庆重庆大学王建丁超王昌赢龚劬165 重庆重庆大学郭攀徐亦达罗云琳龚劬166 重庆重庆大学刘洋毅梁健斌郭宗林龚劬167 重庆重庆工商大学王文姣白洋吴静袁德美168 重庆重庆交通大学王振凯胡沛张星星张聪169 重庆重庆邮电大学袁震陶树人王位哲鲜思东170 重庆重庆邮电大学曹世伟胡晨李楠郑继明171 重庆重庆邮电大学封炳荣罗剑董亚苹陈六新172 重庆解放军后勤工程学院项俊陈佳刘晋铭杨廷鸿173 重庆解放军后勤工程学院方海洋宗福兴汪辉方玲174 重庆解放军第三军医大学段傲文王健白建越马翠175 四川乐山师范学院陈强张小欢余慷指导教师组176 四川四川大学谈承翌李杰李崔堂黄丽177 四川四川大学赵威孙侃蔺海明邹述超178 四川四川大学朱名发刘娜杨博何腊梅179 四川四川大学陈贞贞周凡朱洋民钮海180 四川电子科技大学陈阳杨卓凯王嵘高晴181 四川电子科技大学宁超吕建宏董荟覃思义182 四川电子科技大学樊波周慧玲邸鼎荣杜鸿飞183 四川西华师范大学潘理刘荣燕曾柯方潘大志184 四川西南石油大学余奇徽余婷吴清霞李玲娜185 四川西南交通大学喻程曹先腾张凌雪何平186 四川西南交通大学申伟涂年杰毛亚强梁涛187 四川西南交通大学王渊闻梁霁宁陈一新王璐188 四川西南财经大学王皓黄颖师龙李绍文189 贵州贵州大学田玲珲鲍鑫刘宗权教练组190 贵州贵阳学院杨国春王小惠俞志斌教练组191 云南云南大学周凌霄张健崔俊辉李海燕192 云南云南师范大学赵勇波朱琼芳黄希芳张洪波193 陕西长安大学丁明畅任君平强耀锋阮苗194 陕西西北工业大学王宁王有江徐引擎王力工195 陕西西北工业大学王迅杨钫韬顾文婷袁占斌196 陕西西安电子科技大学董川马建鹏江小雅教练组197 陕西西安电子科技大学金力栗涛郝磊教练组198 陕西西安交通大学刘帅王同磊王晓冰王立周199 陕西西安交通大学李辛昭薛景安李硕高静200 陕西西安邮电学院白雪吕晓辉李子蹊教练组201 陕西西安理工大学丁延鹏孙靖萱卢欣赵凤群202 陕西空军工程大学姜久龙王旭峰黄河教师组203 陕西空军工程大学孙昱张亦驰陈知超教练组204 陕西陕西师范大学麻敏洁田燕马俊指导组205 陕西陕西师范大学朱欣杨茂珍邱运先指导组206 陕西陕西科技大学任兆勇康钦谋金丽教练组207 陕西陕西科技大学杨少飞牟宗轩贺静教练组208 甘肃兰州大学邱亮亮王东晖毛光才赵晨霞209 甘肃兰州交通大学兰金福王贞刘波常胜等210 新疆石河子大学热比古丽彭海城王骞数模组本科组二等奖(907名,按赛区序号排列,赛区内按学校笔画排列)序号赛区学校参赛队员指导教师1 北京中央财经大学冯天洋程坦宋晓天2 北京中央财经大学邢梦醒王晓璐佘巍巍3 北京中央财经大学马默宁张智超赵然4 北京中央财经大学邬隽骁李妍骆圣婷5 北京中国石油大学(北京)王晶曾玮张欣雨指导组6 北京中国石油大学(北京)王丙钢宋泽章诸葛海锦指导组7 北京中国地质大学(北京)刘龙冰陈源吴南黄光东8 北京中国地质大学(北京)曾云川许茹斐石仁烽郑勋烨9 北京北京大学赵靖康李骋颜聪指导小组10 北京北京大学陈浩徐东昊苗旺指导小组11 北京北京大学张瑞祥孙文博王骜指导小组12 北京北京大学苏炜杰冯玮炜指导小组13 北京北京大学马郓陈昕马陶然指导小组14 北京北京工业大学刘峥代维佳高博伦数模指导组15 北京北京化工大学黄森洋盛世杰伍惠敏指导小组16 北京北京化工大学张奔韬宋雪超王欣波指导小组17 北京北京交通大学张剑南李硕孙靳睿王兵团18 北京北京交通大学张奇张梦雨洪运魏永生19 北京北京交通大学蒋则明黄延霞钱学成刘迎东20 北京北京师范大学李昕彤李心怡邢星星指导小组21 北京北京邮电大学陈跃潭于海王宏宇帅天平22 北京北京邮电大学王萌洪亚腾陆恂贺祖国23 北京北京邮电大学刘自强罗晓晖陈俊龙贺祖国24 北京北京邮电大学陈昊倪郑威叶逢铸贺祖国25 北京北京邮电大学张龙艾陈胤李俊周清26 北京北京邮电大学马晓曾静宜郑岱旭贺祖国27 北京北京物资学院王明正初成曦冼宏宇常双领28 北京北京信息科技大学于云刘茜谢维指导小组29 北京北京信息科技大学冯沁苏晓韩磊指导小组30 北京北京科技大学苏晓丽闫冰倩徐昕钰朱婧31 北京北京科技大学巩萌赵宝实赵自谦朱婧32 北京北京语言大学张贞艳丁伟峰李逸杰指导小组33 北京北京语言大学夏知寒韩静也马男指导小组34 北京北京航空航天大学陈嘉晖徐泽祥王存彭临平35 北京北京航空航天大学郭若峰冯铁山付子豪彭临平36 北京北京航空航天大学郭嘉昊沈梃高鹏宇冯伟37 北京北京航空航天大学陈致霖陈成昊李卫华彭临平38 北京北京理工大学陈凤娇李禹肖陈婉芳李炳照39 北京北京理工大学高瑜隆程思源宋扬曹鹏40 北京北京理工大学范国超任璐郭常超王宏洲41 北京北京理工大学谢登元朱治柳钱秀兰蔡亮42 北京对外经济贸易大学张孟飞杨晗陈骐指导小组43 北京对外经济贸易大学黎立娴杨钟韵刘丹指导小组44 北京对外经济贸易大学韦巍苏觅欧昌群指导小组45 北京华北电力大学常思远张阳于亚薇46 北京华北电力大学杨煦金挺超杨婷婷47 北京华北电力大学王海东史龙朱逸超48 北京陆军航空兵学院程东张海涛杨博王品49 北京首都经济贸易大学韩端董慧君吴雪霏50 北京清华大学俞华程马腾宇陈丹琦指导小组51 北京清华大学邵天兰刘冰李荣莎指导小组52 北京清华大学王譞钟贵廷楼阳指导小组53 北京清华大学陈润泽李凡崔盛辉指导小组54 北京装甲兵工程学院张毅华程大舜田其龙许传青55 天津中国民航大学刘宁郭淳李泱赵玉环56 天津中国民航大学宋晨辰杨宽义王高云付宇57 天津中国民航大学毛利民张钊查荣轩张春晓58 天津天津大学仁爱学院何文东张政旭郭燕红赵凯芳59 天津天津外国语大学郭艳楠王子麟彭黄莉李胜朋60 天津天津外国语学院滨海外事学院吴春晓郎瑜陈四兴唐占锋61 天津天津农学院刘亭亭武志华张晓徐利艳62 天津天津农学院徐玲查海燕曹海鹏房宏63 天津天津师范大学刘冬陶君李媛媛周立群64 天津天津师范大学津沽学院吴婷李瑞周国庆李光辉65 天津天津科技大学邓小毛李文凯朱锋66 天津天津科技大学陶文翠王超杰曹小柳67 天津天津科技大学高举洪刚张弘阳68 天津天津商业大学许琳康若颖李青伟李景焕69 天津天津理工大学贾东旭纪文开李镔陈相东70 天津天津职业技术师范大学杨鹏宇郭鑫刘明许茵71 天津天津职业技术师范大学李小亮钟旭卢聪宾王明春72 天津河北工业大学雷阳王祥宇王增喜孙丞73 天津河北工业大学赵欢沈亚楠张会焱穆国旺74 天津南开大学胡奕柏林黄玮虹75 河北中国人民武装警察部队学院欧枫黄喜龙唐运指导教师组76 河北东北大学秦皇岛分校齐鹏鹤犹和敏叶永建指导教师组77 河北北华航天工业学院李阳佟冰王佳庆张文治78 河北石家庄经济学院王娣付艳璐钟洋康娜79 河北石家庄经济学院侯亮陈静郭自晓康娜80 河北军械工程学院尹世庄张显德李小东王志平81 河北军械工程学院张普阳王仕国芦向东胡皓82 河北华北电力大学尹瑞古向楠隆茂83 河北华北电力大学科技学院孙强李昊宁飞84 河北华北电力大学科技学院吴彬彬赵佩闫琦元85 河北华北电力大学科技学院彭帅陈昕任剑峰86 河北邢台学院潘自康周晴雯俞成锦王明礼等87 河北河北大学王禄恒武瑞乾石宁指导教师组88 河北河北大学张磊宋华何利斌指导教师组89 河北河北大学翟梦尧李同王桥指导教师组90 河北河北工业大学盖晓龙刘硕袁钊邵泽玲91 河北河北工业大学何春雷刘冰月张梁睢百龙92 河北河北工业大学李艳丽张孜毅周旭李小朋93 河北河北北方学院焦艳杰牛蓝英李科郑秀亮94 河北河北师范大学申达志皮彬睿陈鑫皓张朝晖95 河北河北金融学院崔伟张洁史晓爽指导教师组96 河北河北科技大学陆飞杨波陈文超指导教师组97 河北河北科技大学周大力马楠孔龙涛指导教师组98 河北河北理工大学轻工学院刘雪琴王欣于涛涛指导教师组99 河北河北理工大学轻工学院郑建平黄亚磊李亚南指导教师组100 河北河北理工大学轻工学院张晶晶陈艺丹郭轶玮指导教师组101 河北燕山大学姜宏丽霍亚军张文辉赵晓知102 河北燕山大学刘津陈争朝朱明增宋向东103 河北燕山大学潘志勇闫宏航郭亚雪李建东104 河北燕山大学李子卓刘强齐景好宋向东105 河北燕山大学里仁学院李凤娇王月宏李海苓指导教师组106 河北燕山大学里仁学院李婷杨硕刘红玉指导教师组107 山西山西大学常清泉董艺韩德浩杨威108 山西山西大学窦志远崔帆洪炉翟成波109 山西山西大学商务学院刘春园王怡宋钰郑学谦110 山西山西大学商务学院董晓云郭姣李曼曼赵丽霞111 山西山西大学商务学院卢波郭彦辉崔倩李华锋112 山西山西师范大学马丽丽陈海鲜康柯安立坚113 山西山西财经大学靳瑞娟王清刘璐李启亮114 山西山西财经大学郭省钰梁吉斌杨晓臣张善俊115 山西山西财经大学郝晋伟杜磊成仲秀高崇山116 山西中北大学孙宝亮孙彦雷李晓娟胥兰117 山西中北大学王龙刘园魏交统王纪城118 山西中北大学袁亮亮李扬范欣杨明119 山西中北大学刘瑞瑞徐佳佳李海林肖亚峰120 山西中北大学黑东盛郭辰庄万涛梅银珍121 山西太原师范学院张力群张晓闫芬王福胜122 山西太原科技大学史亚娟王清曹树芋谢秀峰123 山西太原理工大学倪玲牛鹏宇刘晓良段周波124 山西太原理工大学黄吉珠邢肖然郭慧王彩贤125 山西长治学院张鸣杰李磊田春丰冯晋军126 山西忻州师范学院成睿睿刘静霞任君曹啸127 内蒙古内蒙古工业大学李国庆史灿威李雪莲李娜128 内蒙古内蒙古科技大学万春尧陈鹏琦李建李江鹏129 内蒙古呼伦贝尔学院高翔李荣强王朋飞石磊130 辽宁大连民族学院郑滨杨云森李爱娜周庆健131 辽宁大连民族学院周济民陈雨琪杨雨教师组132 辽宁大连海事大学赵俊宋圣伟吴非张运杰133 辽宁大连海事大学秦翠朱慧娟朱亚琼张运杰134 辽宁大连理工大学杨文博江磊袁康潘秋惠135 辽宁大连理工大学孙迪姜杉吕华清王震136 辽宁大连理工大学俞思韵宋悦铭王挺潘秋惠137 辽宁大连理工大学安德王恩鹏王延斌潘秋惠138 辽宁大连理工大学安哲成于广瀛刘洋潘秋惠139 辽宁大连理工大学张洋柴东志柴炎王震140 辽宁大连理工大学杨源涵薛旭庆孙冲王震141 辽宁大连理工大学软件学院金程朱雅楠俞闯丁宁142 辽宁大连理工大学软件学院陈振朱骋张家宁丁宁143 辽宁大连理工大学软件学院万萌远邹振宇谢园普丁宁144 辽宁大连理工大学城市学院蔡启煌徐行伟陈龙高旭彬145 辽宁东北大学周仁义封静娴林轩郭阳146 辽宁东北大学吴迪薛凯商博朱和贵147 辽宁东北大学王彪董章淼张路杨云148 辽宁东北大学尹铭显王驰远沙禹威陈东岳149 辽宁东北大学金泓伟黄军斌孙俊勇贾同150 辽宁辽宁石油化工大学顾增伟李欣卢超赵晓颖151 辽宁辽宁师范大学韩采书魏宏亮祖艳娇周德亮152 辽宁辽宁师范大学曹禺姜烁李恩泽崔利宏153 辽宁辽宁科技大学李爽白君怡高荣翔教师组154 辽宁沈阳工业大学李根李胜勇王洪东王博155 辽宁沈阳工业大学曹贺哲姚聪杨耀华王博156 辽宁沈阳工业大学闫帅郑健蔡靖王博157 辽宁沈阳工程学院程时闫海鹏路鲁孙作安158 辽宁沈阳工程学院倪维成刘超礼冬雪尤福财159 辽宁沈阳化工大学刘京王艳超王培培李扬160 辽宁沈阳化工大学王尧刘超林建林李扬161 辽宁沈阳师范大学孙振金叶董钰李丽162 辽宁沈阳建筑大学张聪齐云方陈威克教师组163 辽宁沈阳建筑大学宋延丽江文华杜燕鸿教师组164 辽宁沈阳航空航天大学曹澍刘恒涛马学达王吉波165 辽宁沈阳航空航天大学陈康尹慧灵徐晓龙姜永166 辽宁沈阳航空航天大学韩雷李玲玉唐武吴玉斌167 辽宁沈阳航空航天大学朱衡杨其蛟姚旺殷那168 辽宁沈阳航空航天大学北方科技学院李国博王雨高洪亮李琳169 辽宁沈阳理工大学邹永超韩娇宿翠娇王凯170 辽宁渤海大学梁兴张容玮杨桂红教师组171 辽宁渤海大学胡超樊永朝夏杏教师组172 辽宁鞍山师范学院张宝玲丛连影朱庆尧耿晓龙173 吉林长春工业大学齐彩娟徐美佳孙秀丽闫厉174 吉林长春工业大学佃锐钿党海风张洪宽王纯杰175 吉林长春理工大学张磊高鹏涛周星施三支176 吉林长春理工大学孙哲郑龙邹峰马文联177 吉林长春理工大学肖龙张易周丽玲王崇阳178 吉林长春理工大学郭智慧刘意郑安明王作全179 吉林长春理工大学汪婷柴玉晓张富政蔡志丹180 吉林长春理工大学周明媞任盈之王忠侠王作全。
东南大学数学建模习题

数学建模与数学实验课程练习练习集锦1简述数学建模的一般过程及建模过程中需要注意的问题。
2 简述数学模型及数学建模的特点。
3 简述数学建模的常用分类方法。
4求方程 06/12625.05.04)(=------=xx x x f 的模最大的根的近似值(精确到小数点后两位)。
(3.91)5在抢渡长江模型中,如果水流速度 1.8/v m s =为常数,人的游泳速度1.5/u m s =为常数,江面宽度为1200H m =,终点位置在起点下游1000L m =处的条件,确定游泳者的最佳游泳路径及最短游泳时间。
(T=901.05s)6沿江的某一侧区域将建两个水厂,在江边建一个取水口。
现需要设计最优的管线铺设方案,通过管线从取水口向水厂送水。
水厂与江岸的位置见右图。
如果不用共用管线,城区单位建设费用是郊区的2倍。
(1) 对于最优方案,用α表示,βγ。
(2) 求最优取水口位置(x 取整数)。
(X=4)7在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵31/52a b P c d e f ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)确定矩阵P 的未知元素。
(2)求P 模最大特征值。
(3.004)(3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.6)。
8在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵322P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)将矩阵P 元素补全。
(2)求P 模最大特征值。
(3.73)(3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.6)。
9考虑下表数据(1)用曲改直的思想确定经验公式形式。
(2)用最小二乘法确定经验公式系数。
(x y 6.1*8.0=)10考虑微分方程(0.2)0.0001(0.4)0.00001dxx xy dtdy y xy dtεε⎧=--⎪⎪⎨⎪=-++⎪⎩(1)在像平面上解此微分方程组。
(2)计算0ε=时的周期平均值。
东南大学线性代数期末考试卷

东 南 大 学 考 试 卷 ( A 卷 ) 课程名称 线性代数 考试学期 得分 使用专业 考试形式 闭 卷 考试时间长度 120分钟 题号 一 二 三 四 五 六 七 八 得分 一、(10%)选择题 1. 设3×2矩阵A =(A 1,A 2),B =(B 1,B 2)其中A 1,A 2,B 1,B 2是3维列向量. 若A 1,A 2线性无关, 则B 1,B 2线性无关的充要条件是( ). A.矩阵A 与B 等价 B. A 1,A 2能由B 1,B 2线性表示 C.向量组A 1,A 2与B 1,B 2等价 D. B 1,B 2能由A 1,A 2线性表示 2. 设A 为n 阶矩阵, E 为n 阶单位矩阵, 则下列叙述中, ( )是错误的. A. A 与E 合同的充分必要条件是A 正定 B. A 与E 相似的充分必要条件是A =E C. A 与E 相似的充分必要条件是行列式|A |=1 D. A 与E 等价的充分必要条件是行列式|A |≠0 3. 设A 为2×3矩阵, 交换A 的第一行和第二行得到矩阵B ,则( ). A. A (010100001)=B B. (010100001)A =B C. (0110)A =B D. A (0110)=B 4. 下列关于n 阶方阵A 的叙述中, 除了( )之外, 其余三个是相互等价的. A.齐次线性方程组Ax =0有非零解 B. A 的秩小于n C. A 是可逆矩阵 D.行列式|A |=0 5. 设A,B 都是m ×n 矩阵, 则下列矩阵中, ( )一定是对称矩阵.A. AB T +BA TB. A +BC. AB TD. AB T A二、(30%)判断题[ ] 6. (1234)的伴随矩阵为(4−3−21).[ ] 7. 设A,B 都是m ×n 矩阵, 则A 与B 等价的充分必要条件是它们的秩相等.[ ] 8. 设α1,α2,…,αs 为n 维列向量组, 若其中有一个向量αi 为零向量, 则α1,α2,…,αs 一定线性相关.[ ] 9. 若α,β为向量组α,β,γ的一个极大线性无关组, 而且β,γ也线性无关, 则β,γ也是学号姓名密封线α,β,γ的一个极大线性无关组.[ ] 10. 设A 为n 阶矩阵, 若对于任意的n 维列向量x , 有‖Ax ‖=‖x ‖则A 必为正交矩阵.[ ] 11. 设A 与B 都是n 阶正交矩阵, 则A +B 也是正交矩阵.[ ] 12. 设α与β都是非齐次线性方程组Ax =b 的解, 则α+β也是非齐次线性方程组Ax =b 的解.[ ] 13. 设α是非齐次线性方程组Ax =b 的解, β是齐次线性方程组Ax =0的解, 则α,β线性无关.[ ] 14. 若矩阵A 与B 相似, 则A 2与B 2相似.[ ] 15.矩阵A 与B 相似的充分必要条件是A 2与B 2相似.[ ] 16. 若矩阵A 与B 具有相同的特征多项式, 则A 与B 相似.[ ] 17. 设A 与B 都是n 阶实对称矩阵, 若A 与B 具有相同的特征多项式, 则A 与B 相似.[ ] 18. 二次型f (x 1,x 2)=(x 1,x 2)(1203)(x 1x 2)的矩阵为(1203). [ ] 19. 二次型f (x 1,x 2)=(x 1,x 2)(1203)(x 1x 2)是正定的. [ ] 20. 设多项式f (x )=2x 3−5x +7, A 为三阶方阵, 则f (A )=2A 3−5A +7.三、填空题(10%)21. 设A 为3×2矩阵, B =AA T 则B 的行列式|B |= _______.22. 设向量α=(123)与β=(1−2a)正交, 则 a = _______.23. 设α为非零的3维列向量, A =ααT , 则A 的正惯性指数= ________.24. 设A 为3阶矩阵,E 为3阶单位矩阵. 若A 2=E ,则r (A −E )+r (A +E )= ________.(注: 这里r (A −E )表示A −E 的秩,r (A +E )表示A +E 的秩.)25. 若向量组α,β,γ线性无关, α+β,β−γ,α+kγ线性相关, 则k = ________.四、(10%)设A =(a 11a 11111111a 11a ). 计算行列式|A |, 并针对a 的不同取值, 求A 的秩.五、(10%)设A =(0210),B =(12103410). 求矩阵X , 使得AX =B +X.六、(10%)设A =(20011000a )与B =(100010002) 相似. 求a 以及可逆矩阵P 使得 P −1AP =B .七、(10%)已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为 4 维列向量, α2,α3,α4线性无关, 且α1=α2+α3−2α4.如果b=α1−α2+α3−α4, 求线性方程组Ax=b的通解.八、(10%)设二次型f(x1,x2,x3)=(x1+x2+x3)2.请写出该二次形的矩阵A,并写出该二次型在正交变换下的标准形.(不必写出所用的正交变换)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东 南 大 学 考 试 卷(A 卷)
课程名称 数学建模与数学实验 考试学期 2010-2011-2 得分 适用专业 各专业 考试形式 闭卷 考试时间长度 120分钟 (考试可带计算器) 所有数值结果精度要求为保留小数点后两位 一.填空题:(每题2分,共10分) 1. 用Matlab 做AHP 数学实验,常用的命令有 , 等等。
2. 矩阵A 关于模36可逆的充要条件是: 。
3. 泛函332230()()2()3J x x t t x t t dt ⎡⎤=++⎣⎦⎰&取极值的必要条件为 。
4. 请补充一致矩阵缺失的元素136A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。
5. 请列出本人提交的上机实验内容(标题即可) 。
二.选择题:(每题2分,共10分) 1. 在下列Leslie 矩阵中,能保证主特征值唯一的是 ( ) A. 0230.20000.40⎛⎫ ⎪ ⎪ ⎪⎝⎭; B. 0 1.200.10000.30⎛⎫ ⎪ ⎪ ⎪⎝⎭; C. 0070.30000.10⎛⎫ ⎪ ⎪ ⎪⎝⎭; D.以上都对 2. 下列论述正确的是 ( ) A.判断矩阵一定是一致矩阵 B.正互反矩阵一定是判断矩阵 C.能通过一致性检验的矩阵是一致矩阵 D.一致矩阵一定能通过一致性检验 3. n 阶Leslie 矩阵有 个零元素。
( )
A.不超过2(1)n -;
B.不少于2(1)n -;
C.恰好2(1)n -;
D.恰好21n -
4. Matlab 软件内置命令不可以 ( )
A.求矩阵的主特征值
B. 做曲线拟合;
C. 求解整数线性规划
D. 求样条插值函数
5. 关于等周问题,下面的描述不正确的有 ( )
A.目标泛函可以表示为最简泛函;
B.条件泛函为最简泛函;
C.条件泛函取值为常数;
D. 函数在区间两个端点处可以取任意值
三.判断题(每题2分,共10分)
1. 马氏链模型中,矩阵一定有特征值1。
( )
2. 插值函数不要求通过样本数据点。
( )
3. Matlab 软件内置命令程序可以直接求解0-1整数线性规划问题。
( )
4.Volterra 模型得到的周期解里,当食饵数量最小时,捕食者数量也最小。
( )
5.如果1
(,)a a -称为一对倒数,则模42倒数表中的对数是12。
( )
四.应用题(共70分)
1.(15分)某人决定用10万元投资A 、B 、C 、D 四支股票,已知购买时四支股票股价分别为每股10元,15元,30元,95元,股市交易要求购买的每支股票数量以手为单位,至少为1手(1手=100股),四只股票的预期收益率分别为30%,20%,50%和15%,如果希望持有股票数量不超过80手,为了使得收益达到最大,请为他的投资建立合适的数学模型,并判断该数学模型的类型。
不需要求出具体数值结果。
2(15分)用无量纲化思想化简下面的数学模型(假设所有的参数均为正常数),使得参数个数尽可能减少。
(1112121,,,,r r a a b 为参数) 1111122()()dx x r a x b y dt dy y r a x dt
⎧=--⎪⎪⎨⎪=-⎪⎩
3.(20分)已知在气体中音速v与气压P、气体密度ρ有关,试用量纲分析法求v与P和
ρ之间的关系。
4.(20分)某零件寿命X为服从均匀分布的随机变量,假设零件最大使用寿命为6个月。
零件损坏时更换和预防性更换费用分别为5万元和1万元。
(1)请建立数学模型,讨论是否存在最佳预防性更换策略。
(2)如果存在,求出最佳更换时间和单位时间最小损失(要求算出具体数值结果)。
如果不存在,请说明理由。