2020人教版八年级下册数学《期末考试题》含答案
2020年八年级数学下期末试卷(含答案)

2020年八年级数学下期末试卷(含答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =0 4.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C5.计算12(75+313﹣48)的结果是( ) A .6 B .43C .23+6D .12 6.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C.D.7.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)8.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大9.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.410.若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或11.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD12.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFD的周长为18,ECF的周长为6,四边形纸片ABCD的周长为()A.20B.24C.32D.48二、填空题13.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.已知一次函数y =kx +b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.15.已知20n 是整数,则正整数n 的最小值为___16.已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______.17.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.18.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 19.若二次根式2019x -在实数范围内有意义,则x 的取值范围是_____.20.若一个多边形的内角和是900º,则这个多边形是 边形.三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.计算:(.23.已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是BC 上的点,过点H 作EH⊥BC,交线段OB 于点E,连结DH 交CE 于点F,交OC 于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1 时,求HC 的长.24.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x 轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.25.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF求证:四边形BECF是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察函数图象结合点P的坐标,即可得出不等式的解集.解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.2.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A 、B 是否是直角三角形;根据三角形内角和定理可得C 、D 是否是直角三角形.【详解】A 、∵b 2-c 2=a 2,∴b 2=c 2+a 2,故△ABC 为直角三角形;B 、∵32+42=52,∴△ABC 为直角三角形;C 、∵∠A :∠B :∠C=9:12:15,151807591215C ︒︒∠=⨯=++,故不能判定△ABC 是直角三角形;D 、∵∠C=∠A-∠B ,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选C .【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断. 3.C解析:C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数,∴m ﹣2≠0,n ﹣1=1,∴m≠2,n=2,故选C .【点睛】本题考查了一次函数,y=kx+b ,k 、b 是常数,k≠0,x 的次数等于1是解题关键.4.C解析:C【解析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.5.D解析:D【解析】【分析】【详解】===.12故选:D.6.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 9.C解析:C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB=22AC BC-=22108-=6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.11.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK 的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.14.三【解析】设y=kx+b得方程组-1=2k+b4=-3k+b解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三【解析】设y=kx+b ,得方程组 解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限.故答案:三.15.5【解析】【分析】因为是整数且则5n 是完全平方数满足条件的最小正整数n 为5【详解】∵且是整数∴是整数即5n 是完全平方数;∴n 的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘解析:5【解析】【分析】 20n 20=25n n ,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】 20=25n n 20n ∴5n 5n 是完全平方数;∴n 的最小正整数值为5.故答案为:5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.16.【解析】【分析】作点A 关于y 轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P 的坐标【详解】如图作点A 关于y 轴对称的对称点∵点A 关于y 轴对称的对称点∴设直线的解析式为将点和点 解析:()0,5【解析】【分析】作点A 关于y 轴对称的对称点A ',求出点A '的坐标,再求出直线BA '的解析式,将0x =代入直线解析式中,即可求出点P 的坐标.【详解】如图,作点A 关于y 轴对称的对称点A '∵()1,3A ,点A 关于y 轴对称的对称点A '∴()1,3A '-设直线BA '的解析式为y kx b =+将点()1,3A '-和点()2,1B -代入直线解析式中312k b k b =-+⎧⎨=-+⎩解得2,5k b ==∴直线BA '的解析式为25y x =+将0x =代入25y x =+中解得5y =∴()0,5P故答案为:()0,5.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.17.(324800)【解析】【分析】根据题意可以得到关于t 的方程从而可以求得点P 的坐标本题得以解决【详解】由题意可得150t =240(t ﹣12)解得t =32则150t =150×32=4800∴点P 的坐标解析:(32,4800)【解析】【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决.【详解】由题意可得,150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t =240(t ﹣12)是解决问题的关键. 18.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.19.x >2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x 的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x >2019【解析】【分析】根据二次根式的定义进行解答.【详解】2019x -x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.20.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF=BC,∴BE平分∠CBF,∴∠ABE=12∠FBC=12×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.22.7-2【解析】【分析】利用平方差公式和完全平方公式计算即可.【详解】原式==7﹣2.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.(1)证明见解析;(2)①证明见解析;②5-1 2.【解析】【分析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得EH HCHC CD,即HC2=EH•CD,由此构建方程即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴EH HCHC CD=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=512-或512--(舍弃),∴HC=512-.24.(1) y=43x+53;(2)52.【解析】【分析】(1)求经过已知两点坐标的直线解析式,一般是按待定系数法步骤求得;(2)△AOB的面积=S△AOD+S△BOD,因为点D 是在y轴上,据其坐标特点可求出DO的长,又因为已知A、B点的坐标则可分别求三角形S△AOD与S△BOD的面积.【详解】解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得213k bk b-+=-⎧⎨+=⎩,解得4353kb⎧=⎪⎪⎨⎪=⎪⎩.所以一次函数解析式为y=43x+53;(2)把x=0代入y=43x+53得y=53,所以D点坐标为(0,53),所以△AOB的面积=S△AOD+S△BOD=12×y=43x+53;×2+12×y=43x+53×1=52.【点睛】本题考查了待定系数法求一次函数解析式.用待定系数法求一次函数的步骤:(1)设出函数关系式;(2)把已知条件(自变量与函数的对应值)代入函数关系式中,得到关于待定系数的方程(组).25.证明见解析.【解析】【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.。
2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。
初二数学期末考试题,2020年八年级下学期数学下册期末试卷及答案(人教版)

人教版数学八年级下学期《期末考试卷》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟,一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+12.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.在下列各式中,化简正确的是()A.√53=3√15B.√12=±12√2C.√a4b=a2√b D.√x3−x2=−x√x−15.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表:周作业时量/小时 4 6 8 10 12 人数 2 23 21 3 1 则这次调查中的众数、中位数是()A.6,8 B.6,7 C.8,7 D.8,86.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.1009.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥211.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.1212.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为cm.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8016.观察计算结果:①3=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103=17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.知识竞赛演讲比赛版面创作项目班次甲85 91 8887乙90 8422.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长23.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.24.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米/时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.25.如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD 与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点F,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.26.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+1【分析】根据二次根式中的被开方数是非负数进行分析即可.【解析】A、当x=1时,√x2−5无意义,故此选项错误;B、当x=1时,√−x−5无意义,故此选项错误;C、当x<0时,√x无意义,故此选项错误;D、无论x取什么值,√x2+1都有意义,故此选项正确;故选:D.2.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象不经过哪个象限.【解析】∵一次函数y=7x﹣6,k=7,b=﹣6,∴该函数经过第一、三、四象限,不经过第二象限,故选:B.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解析】∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=12∠DAB=25°.4.在下列各式中,化简正确的是( ) A .√53=3√15 B .√12=±12√2C .√a 4b =a 2√bD .√x 3−x 2=−x √x −1【分析】根据二次根式的性质求出每个式子的值,再根据求出的结果进行判断即可. 【解析】A 、结果是13√15,故本选项错误;B 、结果是12√2,故本选项错误;C 、√a 4b =a 2√b ,故本选项正确;D 、当x ≥1时,√x 3−x 2=√x 2(x −1)=|x |√x −1=x √x −1,故本选项错误; 故选:C .5.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表: 周作业时量/小时4 6 8 10 12 人数2232131则这次调查中的众数、中位数是( ) A .6,8B .6,7C .8,7D .8,8【分析】根据众数、中位数的定义求解即可.【解析】由统计表可知,学生平均每周课后作业时量为6小时的有23人,人数最多,故众数是6; 因表格中数据是按从小到大的顺序排列的,一共50个人,中位数为第25位和第26位的平均数,它们分别是6,8,故中位数是6+82=7.故选:B .6.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁【分析】平均数相同,比较方差,谁的方差最小,谁发挥的就最稳定. 【解析】∵四个人的平均成绩都是10.3秒,而0.019<0.020<0.021<0.022, ∴乙发挥最稳定,7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【分析】根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【解析】A、一组对边平行且相等的四边形是平行四边形,说法正确;B、四条边都相等的四边形是菱形,说法正确;C、对角线互相垂直的平行四边形是正方形,说法错误;D、四个角都相等的四边形是矩形,说法正确;故选:C.8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.100【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解析】∵在Rt△ABC中,AC2+AB2=BC2,又由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∴S3=S1+S2=36+64=100.故选:D.9.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC【分析】根据同角的余角相等判断A;根据题意判断B;根据等腰三角形的性质判断C;根据三角形的外角性质判断D.【解析】∵∠C=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵AD=CD,∴∠A=∠ACD,∴∠B=∠BCD,A选项结论正确,不符合题意;BC与BD不一定相等,B选项结论错误,符合题意;∵∠B=∠BCD,∴BD=CD,∵AD=CD,∴AD=BD,C选项结论正确,不符合题意;∵∠A=∠ACD,∴∠BDC=∠A+∠ACD=2∠ACD,∴∠ACD=12∠BDC,D选项结论正确,不符合题意;故选:B.10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥2【分析】关于x的不等式kx+b≤−12x+52的解集,直线y=kx+b的图象在y=−12x+52的图象的下边的部分,对应的自变量x的取值范围.【解析】把A(m,2)代入y=−12x+52,得2=−12m+52.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b≤−12x+52的解集是x≤1.故选:C.11.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解析】如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B.12.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S △DOP求得答案.【解析】连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC=√AB2+BC2=10,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式y =﹣x+2(答案不唯一).【分析】设该一次函数的解析式为y=kx+b(k<0),再把(﹣1,3)代入即可得出k+b的值,写出符合条件的函数解析式即可.【解析】该一次函数的解析式为y=kx+b(k<0),∵一次函数的图象经过点(﹣1,3),∴﹣k+b=3,∴当k=﹣1时,b=2,∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为(2+2√2)cm.【分析】由等腰直角三角形的性质求出斜边长和直角边长,即可得出答案.【解析】∵等腰直角三角形斜边上的高为1cm,也是斜边上的中线,∴等腰直角三角形的斜边长=2cm,∴等腰直角三角形的直角边长=√22×2=√2(cm),∴这个等腰直角三角形的周长为2+2√2(cm),故答案为:(2+2√2).15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么李老师 (填“李老师”或“王老师”)将被录用.测试项目测试成绩 李老师王老师 笔试90 95 面试 85 80【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解析】李老师总成绩为:90×25+85×35=87,王老师的成绩为:95×25+80×35=86, ∵87>86,∴李老师成绩较好,故答案为:李老师.16.观察计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103= 55【分析】根据前四个式子得到规律,根据规律计算得到答案.【解析】√13=1;√13+23=3=1+2;√13+23+33=6=1+2+3;√13+23+33+43=10=1+2+3+4;则√13+23+33+⋯+103=1+2+3+4+5+6+7+8+9+10=55,故答案为:55.17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 1或73 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【分析】由已知以点P ,Q ,E ,D 为顶点的四边形是平行四边形有两种情况,(1)当Q 运动到E 和B 之间,(2)当Q 运动到E 和C 之间,根据平行四边形的判定,由AD ∥BC ,所以当PD =QE 时为平行四边形.根据此设运动时间为t ,列出关于t 的方程求解.【解析】由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:2t −82=3﹣t ,解得:t =73,当Q 运动到E 和C 之间,设运动时间为t ,则得:82−2t =3﹣t , 解得:t =1,故当运动时间t 为1或73秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为:1或73. 18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 (√2)n .【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n 个等腰直角三角形的斜边长.【解析】第一个斜边AB =√2,第二个斜边A 1B 1=(√2)2,所以第n 个等腰直角三角形的斜边长为:(√2)n ,故答案为:(√2)n .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.【分析】(1)根据算术平方根、零指数幂、负整数指数幂和绝对值可以解答本题;(2)根据二次根式的乘法和完全平方公式可以解答本题.【解析】(1)√12−(π+√2)0+(12)﹣1+|1−√3| =2√3−1+2+√3−1=3√3;(2)8√12−√6×2√3+(√2+1)2 =4√2−6√2+2+2√2+1=3.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?【分析】连接AC ,在Rt △ACD 中利用勾股定理计算出AC 长,再利用勾股定理逆定理证明∠ACB =90°,再利用S △ACD ﹣S △ABC 可得空地面积,然后再计算花费即可.【解析】连接AC ,在Rt △ABC 中,AB =3米,BC =4米,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,∵AC 2+AD 2=52+122=169,CD 2=132=169,∴AC 2+AD 2=CD 2,∴∠DAC =90°,该区域面积=S △ACD ﹣S △ABC =30﹣6=24(平方米),铺满这块空地共需花费=24×500=12000(元).答:用该盆景铺满这块空地共需花费12000元.21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛 演讲比赛 版面创作甲85 91 88 乙 90 84 87【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解析】(1)甲班的平均成绩是:13(85+91+88)=88(分), 乙班的平均成绩是:13(90+84+87)=87(分), ∵87<88,∴甲班将获胜.(2)甲班的平均成绩是85×5+91×3+88×25+3+2=87.4(分), 乙班的平均成绩是90×5+84×3+87×25+3+2=87.6(分),∵87.6>87.4,∴乙班将获胜.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理解答即可.【解答】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;解:(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠EBD=30°.由(1)知,平行四边形BFDE是菱形,则EF⊥BD,BO=OD=6.∴EO=12BE.由勾股定理得到:BE 2=62+EO 2,即4EO 2=62+EO 2.解得:EO =2√3.所以EF =4√3.23.如图,在平面直角坐标系中,过点B (4,0)的直线AB 与直线OA 相交于点A (3,1),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式;(2)直线AB 交y 轴于点C ,求△OAC 的面积;(3)当△OAC 的面积是△OMC 面积的3倍时,求出这时点M 的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OAC 的面积是△OMC 面积的3倍时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解析】(1)设直线AB 的解析式是y =kx +b ,根据题意得:{4k +b =03k +b =1, 解得:{k =−1b =4, 则直线的解析式是:y =﹣x +4;(2)在y =﹣x +4中,令x =0,解得:y =4,S △OAC =12×4×3=6;(3)当M 在线段OA 时,设OA 的解析式是y =mx ,把A (3,1)代入得:3m =1,解得:m =13,则直线的解析式是:y =13x ,∵△OAC 的面积是△OMC 面积的3倍时, ∴当M 的横坐标是13×3=1,在y =13x 中,当x =1时,y =13, 则M 的坐标是(1,13);当M 在射线AC 上时, 在y =﹣x +4中,x =1时, 则y =3,则M 的坐标是(1,3); 当M 的横坐标是﹣1时,在y =﹣x +4中,当x =﹣1时,y =5, 则M 的坐标是(﹣1,5);综上所述:M 的坐标是:M 1(1,13)或M 2(1,3)或M 3(﹣1,5).24.在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题: (1)甲车行驶速度是 60 千米/时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【分析】(1)根据F 点坐标可求出甲车速度,根据M 纵坐标可得B ,C 两地之间距离;(2)根据甲车比乙车晚1.5小时到达C 地得出点E 坐标,再求出点N 坐标,利用待定系数法求解即可; (3)根据运动过程,分3种情况讨论,由路程=速度×时间,可求解. 【解析】(1)由题意可得: F (10,600),∴甲车的行驶速度是:600÷10=60千米/时, M 的纵坐标为360,∴B ,C 两地之间的距离为360千米, 故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地, ∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时, 则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入, {0=8.5k +b 360=4.5k +b ,解得:{k =−90b =765, ∴y (千米)与x (小时)之间的函数关系式为:y =﹣90x +765; (3)设出发x 小时,行驶中的两车之间的路程是15千米, ①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15, 解得:x =3910,②当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时; ③当乙车追上甲车并超过15km 时, (30+15)÷(90﹣60)+4.5=6小时;④乙到达B 地停留时,15÷60+4=174(小时)(不符合题意行驶中舍弃,) ⑤乙到达C 地时,(600﹣15)÷60=394小时(不符合题意行驶中舍弃) 综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或5小时或6小时.25.如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA =8,AB =4 (1)求证:△OBE 是等腰三角形; (2)求E 点的坐标;(3)坐标平面内是否存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.【分析】(1)由矩形的性质得出OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC ,得出B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8,得出∠OBC =∠DOB ,证出OE =BE 即可; (2)设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可; (3)作DF ⊥y 轴于F ,则DF ∥BC ,由平行线得出△ODF ∽△OEC ,得出DF CE=OF OC=ODOE,求出DF =245,OF =325,得出D (245,325);分三种情况,由平行四边形的性质即可得出结果. 【解答】(1)证明:∵四边形OABC 是矩形, ∴OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC , ∴B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8, ∴∠OBC =∠DOB ,∴OE =BE ,∴△OBE 是等腰三角形;(2)解:设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得:42+(8﹣x )2=x 2, 解得:x =5,∴OE =5,CE =8﹣x =3, ∵OC =4,∴E 点的坐标为(3,4);(3)解:坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形;理由如下: 作DF ⊥y 轴于F ,如图所示: 则DF ∥BC , ∴△ODF ∽△OEC , ∴DF CE=OF OC=OD OE,即DF 3=OF 4=85,解得:DF =245,OF =325, ∴D (245,325);当BE 为平行四边形的对角线时,点P 的坐标为(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(495,325);当DE 为平行四边形的对角线时,点P 的坐标为(−15,325);综上所述,坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(−15,325).26.如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答. 【解析】(1)EF 2=AF 2+BF 2. 理由:如图1,∵四边形ABCD 是正方形, ∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD , ∴∠EOF =∠AOB =90°, ∴∠EOA =∠FOB , 在△EOA 和△FOB 中, {∠EOA =∠FOBOA =OB ∠OAE =∠OBF, ∴△EOA ≌△FOB (ASA ), ∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2; (2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°, 在△OAE 和△OBH 中,{OA =OB∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH , ∵∠EOF =45°, ∴∠AOE +∠BOF =45°, ∴∠BOF +∠BOH =45°, ∴∠FOE =∠FOH =45°, 在△FOE 和△FOH 中•, {OF =OF∠FOE =∠FOH OE =OH, ∴△FOE ≌△FOH (SAS ), ∴EF =FH , ∵∠FBH =90°, ∴FH 2=BF 2+BH 2, ∴EF 2=BF 2+AE 2,。
最新2020人教版八年级数学下册期末试卷

八年级数学下学期期末综合检测卷一、单选题(18分)1.(3分)下列图形中既是中心对称又是轴对称的图形的是()A.B.C. D.2.(3分)在四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种3.(3分)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形4.(3分)若点M(-7,m)、N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>nB.m<nC.m=nD.不能确定5.(3分)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为06.(3分)如图,在矩形ABCD中,AB=6,BC=8,M是AD上任意一点,且ME⊥AC于E,MF⊥BD于F,则ME+MF为()A. B. C. D.不能确定二、填空题(18分)7.(3分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式.8.(3分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.9.(3分)如图,在正方形ABCD和正方形CEFG中,D在CG上,BC=1,CG=3,H是AF的中点,则CH的长是.10.(3分)在平面直角坐标系中,已知平行四边形ABCD的点A(0,-2)、点B(3m,4m+1)(m≠-1),点C(6,2),则对角线BD的最小值是.11.(3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.12.(3分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.三、解答题(84分)13.(6分)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?14.(6分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE 延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形.(2)若四边形ACEF是菱形,求∠B的度数.15.(6分)如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB.(2)如果OC:OB=1:2,CD=,求菱形的面积.16.(6分)如图,直线AB与轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式.(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.17.(6分)阅读下面材料:在数学课上,老师提出如下问题:已知:如图,四边形ABCD是平行四边形;求作:菱形AECF,使点E,F分别在BC,AD上.小凯的作法如下:(1)连接AC;(2)作AC的垂直平分线EF分别交BC,AD于E,F.(3)连接AE,CF,所以四边形AECF是菱形.老师说:“小凯的作法正确”.回答下列问题:根据小凯的做法,小明将题目改编为一道证明题,请你帮助小明完成下列步骤:(1)已知:在平行四边形ABCD中,点E、F分别在边BC、AD上,.(补全已知条件)求证:四边形AECF是菱形.(2)求证:四边形AECF是菱形.(写出证明过程)18.(8分)已知关于x的方程(a-1)x2+2x+a-1=0.(1)若该方程有一根为2,求a的值及方程的另一根.(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.19.(8分)如图,平行四边形ABCD中,AE、DE分别平分∠BAD、∠ADC,E点在BC上.(1)求证:BC=2AB.(2)若AB=3 cm,∠B=60°,一动点F以1 cm/s的速度从A点出发,沿线段AD运动,CF交DE于G,当CF∥AE时:①求点F的运动时间t的值;②求线段AG的长度.20.(8分)如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(-3,0),与y轴交于C.(1)求该抛物线的解析式,并写出抛物线的对称轴.(2)设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标.(3)若P是直线y=x+1上的一点,P点的横坐标为,M是第二象限抛物线上的一点,当∠MPD=∠ADC时,求M点的坐标.21.(9分)如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A 出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.22.(9分)已知在菱形ABCD中,∠ABC=60°,M、N分别是边BC,CD上的两个动点,∠MAN=60°,AM、AN分别交BD于E、F两点.(1)如图1,求证:CM+CN=BC.(2)如图2,过点E作EG∥AN交DC延长线于点G,求证:EG=EA.(3)如图3,若AB=1,∠AED=45°,直接写出EF的长.23.(12分)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?答案1^6:DBBBBA7.y=2x-58.9. 10. 6 11. -1 12. 1513.【答案】(1)解:将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤).(2)解:根据题意得:(4-2-x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.14.【答案】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠BED=∠CED,∵AF=AE,∴∠F=∠AEF,∵∠BED=∠AEF,∴∠CED=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形.(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°-∠CAE=90°-60°=30°.15.【答案】(1)证明:∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD.∴四边形OCEB是矩形,∴OE=CB.(2)解:∵四边形ABCD是菱形,∴BC=CD=,∵AC⊥BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得 BC2=OC2+OB2,∴CO=1,OB=2.∴AC=2,BD=4,∴菱形ABCD的面积=BD·AC=4.16.【答案】(1)解:设直线AB的解析式为.∵直线AB过点A(1,0)、B(0,-2),∴,解得,∴直线AB的解析式为.(2)解:设点C的坐标为.∵S△BOC=2,∴,解得.∵直线AB的解析式为,∴当时,y=2×2-2=2,∴点C的坐标是(2,2).17.【答案】(1)EF垂直平分AC(2)证明:∵EF垂直平分AC,∴EA=EC,FA=FC,AC⊥EF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAC=∠ECA,∵EA=EC,∴∠ECA=∠EAC,∴∠EAC=∠DAC,∴AC平分EF,即AC与EF互相垂直平分,∴四边形AECF是菱形.18.【答案】(1)解:将x=2代入方程(a-1)x2+2x+a-1=0,解得:a=.将a=代入原方程得-x2+2x-=0,解得:x1=,x2=2.∴a=,方程的另一根为.(2)解:①当a=1时,方程为2x=0,解得:x=0;②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上,当a=1或0或2时,方程的根仅有唯一的值.当a=1时,此时方程的根x=0;当a=2时,此时方程的根x1=x2=-1;当a=0时,此时方程的根x1=x2=1.19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠DAE=∠AEB,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理:CE=CD,∴BE=CE=AB,∴BC=BE+CD=2AB.(2)解:①由(1)知,CE=CD=AB,∵AB=3 cm,∴CE=3 cm,∵四边形ABCD是平行四边形,∴AD∥BC∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE=3 cm,∴点F的运动时间t=3÷1=3(秒);②由(1)知AB=BE,∵∠B=60°,∴△ABE是等边三角形,∴∠AEB=60°,AE=AB=3 cm,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠B=60°,∴∠BCD=120°,∵AE∥CF,∴∠ECF=∠AEB=60°,∴∠DCF=∠BCD-∠ECF=60°=∠ECF,由(1)知,CE=CD=AB=3 cm,∴CF⊥DE,∴∠CGE=90°,在Rt△CGE中,∠CEG=90°-∠ECF=30°,CG=CE=,∴EG=CG=,∵∠AEB=60°,∠CEG=30°,∴∠AEG=90°,在Rt△AEG中,AE=3,根据勾股定理得,AG=.20.【答案】(1)解:∵A(1,0),B(-3,0)关于直线x=-1对称,∴抛物线的对称轴为x=-1,抛物线的解析式为y=(x-1)(x+3)=x2+2x-3.(2)解:设点E(m,m2+2m-3).∵AD=2,OC=3,∴S△ACD=×AD·OC=3.∵S△ACE=,∴S△ACE=10.设直线AE的解析式为y=kx+t,把点A和点E的坐标代入得:,解得:.∴直线AE的解析式为y=(m+3)x-m-3.设直线AE交y轴于F,∴F(0,-m-3).∵C(0,-3),∴FC=-m-3+3=-m,∴S△EAC=×FC×(1-m)=10,即-m(1-m)=20,解得:m=-4或m=5(舍去),∴E(-4,5).(3)解:如图所示:过点D作DN⊥DP,交PM的延长线与点N,过点N作NL⊥x轴,垂足为L,过点P作PE⊥x轴,垂足为E.∵∠MPD=∠ADC,∠NDP=∠DOC,∴△NPD∽△CDO,∴=,∴==3.又∵△NLD∽△DEP,∴===3,∴NL=7,DL=7,∴N(-8,7),∴直线PN的解析式为y=-x-3.联立y=x2+2x-3与y=-x-3,解得:x=(舍去)或x=-4,∴M(-4,5).21.【答案】(1)解:∵AB=AC=13,AD⊥BC,∴BD=CD=5 cm,且∠ADB=90°,∴AD2=AC2-CD2,∴AD=12 cm.(2)解:∵AP=t,∴PD=12-t,在Rt△PDC中,,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍),即t的值为10 s.(3)解:假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60.①若点M在线段CD上,即时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t),2t2-29t+43=0,解得(舍去),.②若点M在射线DB上,即.由S△PMD=S△ABC,得(12-t)(2t-5)=,2t2-29t+77=0,解得 t=11或,综上,存在t的值为s或 11 s或s,使得S△PMD=S△ABC.22.【答案】(1)证明:∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∴∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵AB=AC,∠B=∠ACN=60°,∴△BAM≌△CAN,∴BM=CN,∴CM+CN=CM+BM=BC.(2)证明:如图2中,连接EC.∵BA=BC,∠ABE=∠CBE,BE=BE,∴△ABE≌△CBE,∴EA=EC,∠BAE=∠BCE,∵EG∥AN,∴∠G=∠AND,∵∠AND=∠CAN+∠ACN=60°+∠CAN,∠ECG=60°+∠ECB,∵∠ECB=∠BAE=∠CAN,∴∠ECG=∠AND=∠G,∴EC=EG,∴EA=EG.(3)解:如图3中,将△ABE绕点A逆时针旋转120°得到△ADQ,易证△AFE≌△AFQ,∴∠AEF=∠AQF=45°,∵∠AEB=∠AQD=135°,∴∠FQD=90°,∴在四边形AEDQ中,∠QDF=360°-120°-45°-135°=60°,设DQ=BE=x,则DF=2x,EF=FQ=x,∵AB=AD=1,∠ABD=30°,∴BD=,∴x+2x+x=,∴x=,∴EF=x=.23.【答案】解:根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1-y2=-x+20,∵x>15,∴-x<-15,∴-x+20<5,若y1<y2,则-x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则-x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则-x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.。
2020年人教版八年级下学期数学期末测试卷 (含答案)

人教版八年级下册数学期末测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 3 分,共计36分)1. 下列计算正确的是()=1 B.√4−√3=1 C.√6÷√3=2 D.√4=±2A.√2√22. 函数y=√x−3中,自变量x的取值范围是()A.x<0B.x≥0C.x≥3D.x<33. 关于一次函数y=−2x+3,下列结论正确的是()A.图象过点(1, −1)B.图象经过一、二、三象限时,y<0C.y随x的增大而增大D.当x>324. 下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2−b2=c2的三角形是直角三角形.A.1个B.2个C.3个D.4个5. 如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.486. 已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<07. 已知△ABC的三边之长分别为a,1,3,则化简|9−2a|−√9−12a+4a2的结果是( )A.12−4aB.4a−12C.12D.−128. 某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,439. 某班同学在探究弹簧长度跟外力的关系变化时,实验记录得到的数据如表:则y关于x的函数图象是()A. B.C. D.10. 下列命题中:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③一组对角相等,一组对边平行的四边形是平行四边形;④对角线平分一组对角的平行四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.其中正确的命题有()个A.1B.2C.3D.411. 如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(m, n),且2m+n=6,则直线AB的解析式是()A.y=−2x−3B.y=−2x−6C.y=−2x+3D.y=−2x+612. 如图,已知在△ABC中,∠BAC=90∘,D,E,F分别是△ABC三边的中点,AB=4√5,AC=2√5,则下列判断中不正确的是()A.AE=DFB.S△ADE=10C.四边形ADEF是矩形D.CE=5卷II(非选择题)二、填空题(本题共计 6 小题,每题 3 分,共计18分)=________.13. 计算:2√8÷√1214. 如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是________.,a⋆b=ab−b2.15. 规定a#b=√a⋅√b+√ab(1)3#5=________;(2)2⋆(√3−1)=________.16. 如图所示,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出________个平行四边形.并在图中画出来________.17.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是________,DC边上的高AF的长是________.的图象相交于A,C两点,AB⊥x 18.如图,正比例函数y=x与反比例函数y=1x轴于B,CD⊥x轴于D,则四边形ABCD的面积为________.三、解答题(本题共计 8 小题,共计66分)19.(6分) 计算下列各小题.(1)√27√3−√8×√23(2)√12−√6÷√2+(1−√3)2.20.(6分) 若a,b,c满足的关系是√2a−5b+5+c+√3a−3b−c=√5−a+b+√a−b−5.求:(1)a,b,c的值;(2)√a−b⋅√c的值.x+2与x轴交于点A,与y轴交于点B,直线l2:y=−2x+ 21.(8分) 已知直线l1:y=12b经过点B且与x轴交于点C.(1)b=________;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?23.(8分) 已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=√5.(1)求平行四边形ABCD的面积S;平行四边形ABCD(2)求对角线BD的长.24.(8分) 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行。
【人教版】数学八年级下册《期末检测试题》含答案

17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;
数学八年级下学期《期末测试卷》附答案

人教版数学八年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3 2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =73.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A .4B .3C .2D .15.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .177.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y 的值随x 的增大而增大,其中正确结论的个数是( ) A .1B .2C .3D .410.如图,点E ,F 是▱A B C D 对角线上两点,在条件①D E =B F ;②∠A D E =∠C B F ;③A F =C E ; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F 是平行四边形,可添加的条件是( )A .①②③B .①②④C .①③④D .②③④11.如图,矩形A B C D 中,A B =1,B C =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为.15.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了 件.17.如图,在矩形A B C D 中,B C =20C m ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P 和点Q 的速度分别为3C m /s 和2C m /s ,则最快 s 后,四边形A B PQ 成为矩形.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为 . 三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 成绩人数x部门八年级0 0 1 11 1九年级 1 0 0 7(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 52.1 请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为;(2)可以推断出年级学生的体质健康情况更好一些,理由为.(至少从两个不同的角度说明推断的合理性).22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.23.如图,直线l与x轴交于点A ,与y轴交于点B (0,2).已知点C (﹣1,3)在直线l上,连接OC .(1)求直线l的解析式;(2)P为x轴上一动点,若△A C P的面积是△B OC 的面积的2倍,求点P的坐标.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表: x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(1)如图1,在正方形A B C D 中,E是A B 上一点,F是A D 延长线上一点,且D F=B E.求证:C E =C F;(2)如图2,在正方形A B C D 中,E是A B 上一点,G是A D 上一点,如果∠GC E=45°,请你利用(1)的结论证明:GE=B E+GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E是A B上一点,且∠D C E=45°,B E=4,则D E=.②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得,2﹣x≥0且x﹣3≠0,解答x≤2且x≠3,所以,自变量x的取值范围是x≤2.故选:A .2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =7【分析】根据勾股定理的逆定理对各个选项逐一代入计算,看是否符合A 2+B 2=C 2即可.【解析】A 、∵12+22≠32,∴不符合A 2+B 2=C 2.∴不能构成直角三角形.B 、∵A =32,B =42,C =52,∴A =9,B =16.C =25,∵92+162≠252,不符合A 2+B 2=C 2,∴不能构成直角三角形.C 、√22+√32=√52,符合A 2+B 2=C 2,∴能构成直角三角形.D 、52+62≠72,不符合A 2+B 2=C 2,∴不能构成直角三角形.故选:C .3.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人)2566876根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解. 【解析】该班人数为:2+5+6+6+8+7+6=40, 得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:45+452=45,平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425.故错误的为D . 故选:D . 4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个. A .4B .3C .2D .1【分析】根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.【解析】∵四边相等的四边形一定是菱形,∴①正确; ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个.故选:C .5.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .【分析】由直线经过的象限结合四个选项中的图象,即可得出结论. 【解析】∵直线y =kx +B 经过一、二、四象限, ∴k <0,B >0, ∴﹣k >0,∴选项B 中图象符合题意. 故选:B .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .17【分析】根据菱形得出A B =B C ,得出等边三角形A B C ,求出A C 的长,根据正方形的性质得出A F =EF =EC =A C =4,求出即可. 【解析】∵四边形A B C D 是菱形, ∴A B =B C , ∵∠B =60°,∴△A B C 是等边三角形, ∴A C =A B =4,∴正方形A C EF 的周长是A C +C E +EF +A F =4×4=16, 故选:C .7.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解析】如图:A B =A C =13C m ,B C =10C m . △A B C 中,A B =A C ,A D ⊥B C ; ∴B D =D C =12B C =5C m ;Rt △A B D 中,A B =13C m ,B D =5C m ; 由勾股定理,得:A D =√AB 2−BD 2=12C m . 故选:A .8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:A ﹣B ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:A ﹣B , ∵每一个直角三角形的面积为:12A B =12×8=4, ∴4×12A B +(A ﹣B )2=25, ∴(A ﹣B )2=25﹣16=9, ∴A ﹣B =3, 故选:D .9.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y的值随x的增大而增大,其中正确结论的个数是()A .1B .2C .3D .4【分析】根据一次函数的性质对各小题进行逐一判断即可.【解析】因为函数y=﹣2x+2,所以①当x>1时,y<0,正确;②它的图象经过第二、一、四象限,错误;③它的图象必经过点(﹣2,﹣2),错误;④y的值随x的增大而减小,错误;故选:A .10.如图,点E,F是▱A B C D 对角线上两点,在条件①D E=B F;②∠A D E=∠C B F;③A F=C E; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F是平行四边形,可添加的条件是()A .①②③B .①②④C .①③④D .②③④【分析】若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以.【解析】由平行四边形的判定方法可知:若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以,故选:D .11.如图,矩形A B C D 中,A B =1,B C =2,点P从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解析】由题意知,点P从点B 出发,沿B →C →D 向终点D 匀速运动,则当0<x≤2,s=12 x,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)【分析】(方法一)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,结合点C 、D ′的坐标求出直线C D ′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,根据三角形中位线定理即可得出点P为线段C D ′的中点,由此即可得出点P的坐标.【解析】(方法一)作点D 关于x轴的对称点D ′,连接C D ′交x轴于点P,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点, ∴点C (﹣3,2),点D (0,2). ∵点D ′和点D 关于x 轴对称, ∴点D ′的坐标为(0,﹣2). 设直线C D ′的解析式为y =kx +B ,∵直线C D ′过点C (﹣3,2),D ′(0,﹣2), ∴有{2=−3k +b −2=b ,解得:{k =−43b =−2,∴直线C D ′的解析式为y =−43x ﹣2.令y =−43x ﹣2中y =0,则0=−43x ﹣2,解得:x =−32, ∴点P 的坐标为(−32,0). 故选C .(方法二)连接C D ,作点D 关于x 轴的对称点D ′,连接C D ′交x 轴于点P ,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点,∴点C (﹣3,2),点D (0,2),C D ∥x轴,∵点D ′和点D 关于x轴对称,∴点D ′的坐标为(0,﹣2),点O为线段D D ′的中点.又∵OP∥C D ,∴点P为线段C D ′的中点,∴点P的坐标为(−32,0).故选:C .二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为3或﹣2,对应的n值为﹣2或3,该组数据的中位数是3.【分析】利用平均数和众数的定义得出m的值,进而利用平均数的定义求出n的值,从而求得中位数即可.【解析】∵一组数据4,3,2,m,n的众数为3,平均数为2,∴m的值可能为3,∴4+3+2+3+n=2×5,解得n=﹣2.同理m可能是﹣2,n可能是3,所以该组数据排序为:﹣2,2,3,3,4,所以中位数为3,故答案为:3或﹣2,﹣2或3,3.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为y=﹣2x+5.【分析】直接根据”上加下减,左加右减”的原则进行解答.【解析】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)x﹣1=﹣2x+5.故答案为:y=﹣2x+515.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度12米.【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和B C 构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【解析】设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了280件.【分析】根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【解析】甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分因此:40×(70÷10)=280件,故答案为:28017.如图,在矩形A B C D 中,B C =20C m,点P和点Q分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P和点Q的速度分别为3C m/s和2C m/s,则最快4s后,四边形A B PQ成为矩形.【分析】根据矩形的性质,可得B C 与A D 的关系,根据矩形的判定定理,可得B P=A Q,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形A B PQ成为矩形,由B P=A Q得3x=20﹣2x.解得x=4,故答案为:4.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为4或8.【分析】作D E⊥A B 于E,由直角三角形的性质得出D E=12A D =2√3,由勾股定理得出A E=√3D E=6,B E=√BD2−DE2=2,得出A B =A E﹣B E=4,或A B =A E+B E=8,即可得出答案.【解析】作D E⊥A B 于E,如图所示:∵∠A =30°,∴D E=12A D =2√3,∴A E=√3D E=6,B E=√BD2−DE2=√42−(2√3)2=2,∴A B =A E﹣B E=4,或A B =A E+B E=8,∵四边形A B C D 是平行四边形,∴C D =A B =4或8;故答案为:4或8.三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.【分析】原式利用二次根式性质,二次根式除法法则,以及平方差公式计算即可求出值. 【解析】原式=√22−(4﹣3)+√94=√22−1+32=√2+12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.【分析】(1)根据勾股定理作出边长为√5的正方形即可得;(2)连接A C ,根据勾股定理逆定理可得△A B C 是以A C 、B C 为腰的等腰直角三角形,据此可得答案.【解析】(1)如图1所示:(2)如图2,连A C ,则BC=AC=√12+22=√5,AB=√12+32=√10,∵(√5)2+(√5)2=(√10)2,即B C 2+A C 2=A B 2,∴△A B C 为直角三角形,∠A C B =90°,∴∠A B C =∠C A B =45°.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 人数x部门八年级0 0 1 11 7 1九年级 1 0 0 7 10(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 8152.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.(至少从两个不同的角度说明推断的合理性).【分析】整理、描述数据:根据八、九年级各的20名学生的成绩即可补全表格;分析数据:根据众数的定义即可得;(1)总人数乘以样本中九年级体质优秀人数占九年级人数的比例即可得;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些.【解析】整理、描述数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级0 0 1 11 7 1九年级 1 0 0 7 10 2分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 81 52.1(1)估计九年级体质健康优秀的学生人数为180×10+220=108人,故答案为:108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.故答案为:九年级;两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.【分析】(1)根据平行四边形的性质得到D F=B E,A B ∥C D ,根据平行四边形的判定定理证明四边形D EB F是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形A GB D 是矩形,根据直角三角形的性质得到ED =EB ,证明结论.【解答】(1)证明:∵四边形A B C D 是平行四边形,∴A B =C D ,A B ∥C D ,∵E、F分别为边A B 、C D 的中点,∴D F=B E,又A B ∥C D ,∴四边形D EB F是平行四边形,∴D E∥B F;(2)∵A G∥D B ,A D ∥C G,∴四边形A GB D 是平行四边形,∵∠G=90°,∴平行四边形A GB D 是矩形,∴∠A D B =90°,又E为边A B 的中点,∴ED =EB ,又四边形D EB F是平行四边形,∴四边形D EB F是菱形.23.如图,直线l 与x 轴交于点A ,与y 轴交于点B (0,2).已知点C (﹣1,3)在直线l 上,连接OC .(1)求直线l 的解析式;(2)P 为x 轴上一动点,若△A C P 的面积是△B OC 的面积的2倍,求点P 的坐标.【分析】(1)利用待定系数法求直线l 的解析式;(2)利用直线l 的解析式确定A 点坐标,再计算出S △A C P =2S △B OC =2,设P (t ,0),根据三角形面积公式得到12•|t ﹣2|×3=4,然后解方程求出即可的P 点坐标. 【解析】(1)设直线l 的解析式y =kx +B ,把点C (﹣1,3),B (0,2)代入解析式得,{b =2−k +b =3, 解得k =﹣1,B =2,∴直线l 的解析式:y =﹣x +2;(2)把 y =0代入y =﹣x +2得﹣x +2=0,解得:x =2,则点A 的坐标为(2,0),∵S △B OC =12×2×1=1,∴S △A C P =2S △B OC =2,设P (t ,0),则A P =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).24.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x /元… 15 20 25 … y /件 … 25 20 15 …已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【分析】(1)根据题意可以设出y 与x 的函数关系式,然后根据表格中的数据,即可求出日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解析】(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =kx +B , {15k +b =2520k +b =20, 解得,{k =−1b =40, 即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =﹣x +40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元), 即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(1)如图1,在正方形A B C D 中,E 是A B 上一点,F 是A D 延长线上一点,且D F =B E .求证:C E =C F ;(2)如图2,在正方形A B C D 中,E 是A B 上一点,G 是A D 上一点,如果∠GC E =45°,请你利用(1)的结论证明:GE =B E +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E 是A B 上一点,且∠D C E =45°,B E =4,则D E = 10 .②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.【分析】(1)根据正方形的性质,可直接证明△C B E≌△C D F,从而得出C E=C F;(2)延长A D 至F,使D F=B E,连接C F,根据(1)知∠B C E=∠D C F,即可证明∠EC F=∠B C D =90°,根据∠GC E=45°,得∠GC F=∠GC E=45°,利用全等三角形的判定方法得出△EC G≌△FC G,即GE=GF,即可得出答案GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中利用勾股定理即可求解;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E的垂线,垂足是E,过C 作A G的垂线,垂足是G,B E和GC 相交于点F,B F=6﹣2=4,设GC =x,则C D =GC =x,FC =6﹣x,B C =2+x.在直角△B C F中利用勾股定理求得C D 的长,则三角形的面积即可求解.【解析】(1)证明:如图1,在正方形A B C D 中,∵B C =C D ,∠B =∠C D F,B E=D F,∴△C B E≌△C D F,∴C E=C F;(2)证明:如图2,延长A D 至F,使D F=B E,连接C F,由(1)知△C B E≌△C D F,∴∠B C E=∠D C F.∴∠B C E+∠EC D =∠D C F+∠EC D即∠EC F=∠B C D =90°,又∵∠GC E=45°,∴∠GC F=∠GC E=45°,∵C E=C F,∠GC E=∠GC F,GC =GC ,∴△EC G≌△FC G,∴GE=GF,∴GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形.A E=AB ﹣B E=12﹣4=8,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中,A E2+A D 2=D E2,则82+(12﹣x)2=(4+x)2,解得:x=6.则D E =4+6=10.故答案是:10;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E 的垂线,垂足是E ,过C 作A G 的垂线,垂足是G ,B E 和GC 相交于点F ,则四边形A EFG 是正方形,且边长=A D =6,B E =B D =2,则B F =6﹣2=4,设GC =x ,则C D =GC =x ,FC =6﹣x ,B C =2+x .在直角△B C F 中,B C 2=B F 2+FC 2,则(2+x )2=42+x 2,解得:x =3.则B C =2+3=5,则△A B C 的面积是:12A D •B C =12×6×5=15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人 教 版 数 学 八 年 级 下 学 期期 末 测 试 卷一、选择题1.若二次根式2x -在实数范围内有意义,则x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 任何实数 2.能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BC;B. ∠A=∠B ,∠C=∠D;C. AB=CD ,AD=BC;D. AB=AD ,CB=CD3.已知正比例函数y=(k+5)x ,且y 随x 的增大而减小,则k 的取值范围是( )A. k>5B. k<5C. k>−5D. k<−5 4.如图,字母B 所代表的正方形的面积是( )A. 12B. 144C. 13D. 1945. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是( )A. 6B. 7C. 8D. 96.不能判定一个四边形是菱形的条件是( )A. 对角线互相平分且有一组邻边相等B. 四边相等C. 两组对角相等,且一条对角线平分一组对角D. 对角线互相垂直7.如图所示,一次函数y mx m =+的图像可能是 ( )A. B. C. D. 8.已知25523y x x =--,则2xy 的值为( ) A. 15- B. 15 C. 152- D. 1529.从鱼塘捕获同时放养草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为( )A. 300千克B. 360千克C. 36千克D. 30千克10.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A. 3.5B. 4.2C. 5.8D. 711.等腰三角形的周长是40 cm,腰长y(cm)是底边长x(cm)的函数.此函数的表达式和自变量取值范围正确的是()A. y=-2x+40(0<x<20)B. y=-0.5x+20(10<x<20)C. y=-2x+40(10<x<20)D. y=-0.5x+20(0<x<20)12.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若ABCV的周长为10,则OEC△的周长为()A. 5cmB. 6cmC. 9cmD. 12cm13.一个三角形的三边长分别为15,20和25,那么它的最长边上的高为().A. 12.5B. 12C. 522D. 914.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95 乙98 90 95 丙80 88 90A. 甲B. 乙丙C. 甲乙D. 甲丙15.一次函数y ax b =+的图象如图所示,则不等式0ax b +>的解集是( )A. 2x <-B. 2x >-C. 1x <D. 1x >16.一天,小明和爸爸去登山,已知山脚到山顶的路程为300米,小明先走了一段路程,爸爸才开始出发,图中两条线段分别表示小明和爸爸离开山脚的路程y (米)与登山所用时间x (分)的关系(从爸爸开始登山时计时),根据图象,下列说法错误的是( )A. 爸爸登山时,小明已经走了50米B. 爸爸走了5分钟,小明仍在爸爸的前面C. 小明比爸爸晚到5分钟D. 爸爸前10分钟登山的速度比小明慢,10分钟之后登山的速度比小明快二、填空题17.已知a ,b 为两个连续..的整数,且29a b <<,则a b +=______.18.某校八年级有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是______分.19.一艘轮船以16海里/小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里/小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距______海里.20.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.三、解答题21.计算:(1)80205-+; (2)()()132322724+-+; (3)()()()265652332-++-. 22.如图,点E ,F 分别是锐角A ∠两边上的点,分别以点E ,F 为圆心,以AF ,AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF .(1)请你判断所画四边形的形状,并说明理由;(2)若AE AF =,请判断此四边形的形状,并说明理由;(3)在(2)的条件下,连接AD ,若8AE =厘米,60A ∠=︒,求线段AD 的长.23.省射击队从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次 第二次 第三次 第四次 第五次 第六次 甲10 8 9 8 10 9 乙 10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.计算方差的公式:s2=1n[(x1-x)2+(x2-x)2++(x n-x)2] .24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y千米,出租车离甲地的距离为2y千米,两车行驶的时间为x小时,1y、2y关于x的函数图像如图所示:(1)根据图像,求出1y、2y关于x的函数关系式;(2)设两车之间的距离为S千米. ①求两车相遇前S关于x的函数关系式;②求出租车到达甲地后S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.25.知识再现如图1,若点A,B在直线l同侧,A,B到l的距离分别是3和2,4AB=,现在直线l上找一点P,使AP BP+的值最小,做法如下:作点A关于直线l的对称点A',连接BA',与直线l的交点就是所求的点P,线段BA'的长度即为AP BP+的最小值,请你求出这个最小值.实践应用如图2,菱形ABCD 中2AB =,120A ∠=︒,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK QK +的最小值为______;拓展延伸如图3,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠,保留作图痕迹,不必写出作法. 26.如图1,在平面直角坐标系中,直线2L :162y x =-+与1L :12y x =交于点A ,分别与x 轴、y 轴交于点B 、C .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式;(3)在(2)的条件下,设P 是射线CD 上的点.①如图2,过点P 作//PQ OC ,且使四边形OCPQ 为菱形,请直接写出点Q 的坐标; ②在平面内是否存在其它点Q ,使以O 、C 、P 、Q 为顶点四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.答案与解析一、选择题1.x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 任何实数【答案】B【解析】【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【详解】由题意得,x-2≥0,解得x≥2.故选B .2.能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BC;B. ∠A=∠B ,∠C=∠D;C. AB=CD ,AD=BC;D. AB=AD ,CB=CD 【答案】C【解析】【分析】利用一组对边平行且相等的四边形为平行四边形可对A 进行判定;根据两组对角分别相等的四边形为平行四边形可对B 进行判定;根据两组对边分别相等的四边形为平行四边形可对C 、D 进行判定.【详解】A 、若AB ∥CD ,AB =CD ,则四边形ABCD 为平行四边形,所以A 选项错误;B 、若∠A =∠C ,∠B =∠D ,则四边形ABCD 为平行四边形,所以B 选项错误;C 、若AB =CD ,AD =BC ,则四边形ABCD 为平行四边形,所以C 选项正确;D 、若AB =CD ,AD =BC ,则四边形ABCD 为平行四边形,所以D 选项错误.故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟知平行四边形的判定定理.3.已知正比例函数y=(k+5)x ,且y 随x 的增大而减小,则k 的取值范围是( )A. k>5B. k<5C. k>−5D. k<−5 【答案】D【解析】分析】根据正比例函数图象的特点可直接解答.【详解】解:∵正比例函数y=(k+5)x中若y随x的增大而减小,∴k+5<0.∴k<﹣5,故选D.4.如图,字母B所代表的正方形的面积是()A. 12B. 144C. 13D. 194【答案】B【解析】【分析】外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.【详解】如图,根据勾股定理我们可以得出:a2+b2=c2a2=25,c2=169,b2=169﹣25=144,因此B的面积是144.故选B.【点睛】本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.5. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此求解即可.【详解】将这组数据重新排序为6,7,8,9,9,∴中位数是按从小到大排列后第3个数为:8.故选C.6.不能判定一个四边形是菱形的条件是()A. 对角线互相平分且有一组邻边相等B. 四边相等C. 两组对角相等,且一条对角线平分一组对角D. 对角线互相垂直【答案】D【解析】【分析】菱形的判定方法:(1)一组邻边相等的平行四边形是菱形;(2)四边相等;(3)对角线互相垂直平分的四边形是菱形;据此判断即可.【详解】∵对角线互相平分且有一组邻边相等的四边形是菱形,∴选项A能判定一个四边形是菱形;∵四边相等的四边形是菱形,∴选项B能判定一个四边形菱形;∵两组对角相等,且一条对角线平分一组对角的四边形是菱形,∴选项C能判定一个四边形是菱形;∵对角线互相垂直平分的四边形是菱形,∴选项D不能判定一个四边形是菱形.故答案选:D.【点睛】本题考查了菱形的判定,解题的关键是熟练的掌握菱形的性质与判定.=+的图像可能是 ( )7.如图所示,一次函数y mx mA. B. C. D.【答案】D【解析】分析:根据题意,当m ≠0时,函数y =mx +m 是一次函数,结合一次函数的性质,分m >0与m <0两种情况讨论,可得答案.详解:根据题意,当m ≠0时,函数y =mx +m 是一次函数,有两种情况:(1)当m >0时,其图象过一二三象限,D 选项符合,(2)当m <0时,其图象过二三四象限,没有选项的图象符合,故选D.点睛:本题考查了一次函数的定义、图象和性质.熟练应用一次函数的性质对图象进行辨别是解题的关键. 8.已知25523y x x =--,则2xy 的值为( ) A. 15-B. 15C. 152-D. 152 【答案】A【解析】 试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .9.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为( )A. 300千克B. 360千克C. 36千克D. 30千克 【答案】B【解析】先计算出8条鱼的平均质量,然后乘以240即可.【详解】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选B.【点睛】本题考查了用样本平均数估计总体平均数的方法,这种方法在生活中常用.10.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A. 3.5B. 4.2C. 5.8D. 7【答案】D【解析】【详解】解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.≤≤∴3PA6故选D.11.等腰三角形的周长是40 cm,腰长y(cm)是底边长x(cm)的函数.此函数的表达式和自变量取值范围正确的是()A. y=-2x+40(0<x<20)B. y=-0.5x+20(10<x<20)C. y=-2x+40(10<x<20)D. y=-0.5x+20(0<x<20)【答案】D【解析】【分析】根据三角形的周长=2y+x可得出y与x的关系,再根据三角形的三边关系可确定x的范围.【详解】解:根据三角形周长等于三边之和可得:2y=40-x∴y=-0.5x+20,根据三角形三边关系可得:x<2y,x>y-y∴可知0<x<20【点睛】本题考查三角形的周长和三边关系,掌握三角形周长等于三边之和及两边之和大于第三边,两边之差小于第三边是解决本题的关键.12.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若ABCV的周长为10,则OEC△的周长为()A. 5cmB. 6cmC. 9cmD. 12cm【答案】A【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OA=OC,DO=BO,E点是CD的中点,可得OE是△ABC的中位线,可得OE=12AB.从而得到结果是5cm.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,又∵E是BC中点,∴OE是△ABC的中位线,BE=CE,∴OE=12 AB,∴△OEC的周长=12△ABC的周长=12×10=5,故选:A.【点睛】本题主要考查平行四边形的性质及三角形中位线的性质的应用.13.一个三角形的三边长分别为15,20和25,那么它的最长边上的高为().A. 12.5B. 12C. 522D. 9【答案】B【解析】【分析】首先,建立三角形,根据AC2+BC2=152+202=625,AB2=252=625,得到AC2+BC2=AB2,由此得∠C=90°;然后,在直角三角形中,根据三角形面积的不同表达方式,即可得到答案.【详解】如图:设AB=25是最长边,AC=15,BC=20,过C 作CD ⊥AB 于 D.∵AC 2+BC 2=152+202=625,AB 2=252=625,∴AC 2+BC 2=AB 2,∴∠C=90°. ∵S △ACB =12AC×BC=12AB×CD , ∴AC×BC=AB×CD , 即:15×20=25CD , ∴CD=12.故选B.【点睛】本题主要考查勾股定理的逆定理和直角三角形的性质,熟悉掌握是关键.14.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力 成长记录 甲 9083 95 乙 9890 95 丙 8088 90A. 甲B. 乙丙C. 甲乙D. 甲丙 【答案】C【解析】【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1, 乙的总评成绩=98×50%+90×20%+95×30%=95.5, 丙的总评成绩=80×50%+88×20%+90×30%=84.6, ∴甲乙的学期总评成绩是优秀.故选C .【点睛】本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键. 15.一次函数y ax b =+的图象如图所示,则不等式0ax b +>的解集是( )A. 2x <-B. 2x >-C. 1x <D. 1x >【答案】B【解析】【分析】 从图象上得到函数的增减性及与x 轴的交点的横坐标,即能求得不等式ax +b >0的解集.【详解】解:一次函数y =ax +b 的图象经过点A (−2,0),且函数值y 随x 的增大而增大,∴不等式ax +b >0的解集是x >−2.故选:B .【点睛】正确理解图象,函数图象在x 轴上方,即函数值大于0;在下方时,函数值小于0;图象在y 轴左侧的部分函数的自变量x 小于0,在右侧则自变量x 大于0.16.一天,小明和爸爸去登山,已知山脚到山顶的路程为300米,小明先走了一段路程,爸爸才开始出发,图中两条线段分别表示小明和爸爸离开山脚的路程y (米)与登山所用时间x (分)的关系(从爸爸开始登山时计时),根据图象,下列说法错误的是( )A. 爸爸登山时,小明已经走了50米B. 爸爸走了5分钟,小明仍在爸爸的前面C. 小明比爸爸晚到5分钟D. 爸爸前10分钟登山的速度比小明慢,10分钟之后登山的速度比小明快【答案】D【解析】【分析】根据函数图象爸爸登山的速度比小明快进行判断.【详解】解:由图象可知,小明和爸爸离开山脚登山的路程S (米)与登山所用时间t (分钟)的关系都是一次函数关系,因而速度不变.错误的是:爸爸前10分钟登山的速度比小明慢,10分钟后登山的速度比小明快.A 由图象的起点为(0,50)判定正确,B 观察图像可得,当横坐标是5时,小明所在直线图象位于爸爸所在直线图象上方,正确,C 中用25-20=5,正确.故选:D .【点睛】本题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题17.已知a ,b 为两个连续..的整数,且29a b <<,则a b +=______. 【答案】11【解析】【分析】 252936<进而求出a,b 的值.【详解】解:<<∴<6∴a=5,b=6∴a+b=11故答案是:11【点睛】此题主要考查了估计无理数大小,正确得出a,b的值是解题关键.18.某校八年级有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是______分.【答案】48【解析】【分析】根据众数的定义即可判断【详解】解:50,48,47,50,48,49,48这组数据中,48出现了3次,出现的次数最多.故众数为48.故答案为48.【点睛】本题考查众数的定义,解题的关键是记住众数的定义,属于中考常考题型.19.一艘轮船以16海里/小时的速度从港口A出发向东北方向航行,同时另一轮船以12海里/小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距______海里.【答案】60【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48海里,36海里.再根据勾股定理,即可求得两条船之间的距离.【详解】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,三小时后,两艘船分别行驶了16×3=48海里,12×3=36海里,60(海里).故答案为:60海里.【点睛】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.20.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.【答案】1秒或3.5秒【解析】【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8, ①当Q 运动到E 和B 之间,设运动时间为t ,则得:3t−8=6−t ,解得:t=3.5;②当Q 运动到E 和C 之间,设运动时间为t ,则得:8−3t=6−t ,解得:t=1,∴当运动时间t 为1秒或3.5秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.三、解答题21.计算:(1(2)1324-;(3)(2+.【答案】(1) (2)44-- (3)31-【解析】【分析】 (1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式和完全平方公式计算.【详解】解:(1==(2)1324-=2244+--=44--(3)(2+=651218-+-=31126 -【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.如图,点E,F分别是锐角A∠两边上的点,分别以点E,F为圆心,以AF,AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)若AE AF=,请判断此四边形的形状,并说明理由;(3)在(2)的条件下,连接AD,若8AE=厘米,60A∠=︒,求线段AD的长.【答案】(1)(2)见解析;(3)3厘米【解析】【分析】(1)根据题意得出ED=AF,AE=DF,进而利用平行四边形的判定解答即可;(2)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形;(3)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.【详解】解:(1)四边形AEDF是平行四边形,根据题意可得:ED=AF,AE=DF,∴四边形AEDF是平行四边形;(2)菱形.理由:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形;(3)连接EF,交AD于点O,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米∴EO=4,由菱形的性质得∠AOE=90°,在直角三角形AOE中,22228443AO AE EO=-=-=3【点睛】此题考查了菱形的判定与性质以及等边三角形的判定与性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.23.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.计算方差的公式:s2=1n[(x1-x)2+(x2-x)2++(x n-x)2] .【答案】(1)9,9;(2)23,43;(3)甲,理由见解析.【解析】【分析】(1)平均数是指在一组数据中所有数据之和再除以数据的个数,所以甲的平均成绩=(10+8+9+8+10+8)÷6=9,乙的平均成绩=(10+7+10+10+9+8)÷6=9; (2)应用方差公式,直接计算即可;(3)方差就是和中心偏离的程度,用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定,因此作出判断.【详解】解:(1)(1)甲:(10+8+9+8+10+9)÷6=9(环),乙:(10+7+10+10+9+8)÷6=9(环);故答案为:9;9.(2)s 2甲=2222221(109)(89)(99)(89)(109)(99)6⎡⎤-+-+-+-+-+-⎣⎦=1(110110)6+++++=23; s 2乙=2222221(109)(79)(109)(109)(99)(89)6⎡⎤-+-+-+-+-+-⎣⎦=1(141101)6+++++=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点睛】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键. 24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如图所示:(1)根据图像,求出1y 、2y 关于x 的函数关系式;(2)设两车之间的距离为S 千米.①求两车相遇前S 关于x 的函数关系式;②求出租车到达甲地后S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.【答案】(1)y 1=60x (0≤x ≤10),y 2=−100x +600(0≤x ≤6);(2)①S =y 2−y 1=−160x +600;②S =60x (6≤x≤10);(3)150km 或300km .【解析】【分析】(1)直接运用待定系数法就可以求出y 1、y 2关于x 的函数图关系式;(2)①根据当0≤x <154时,求出即可,②当6≤x ≤10时,求出即可;(3)分A 加油站在甲地与B 加油站之间,B 加油站在甲地与A 加油站之间两种情况列出方程求解即可.【详解】解:(1)设y 1=k 1x ,由图可知,函数图象经过点(10,600),∴10k 1=600,解得:k 1=60,∴y 1=60x (0≤x ≤10),设y 2=k 2x +b ,由图可知,函数图象经过点(0,600),(6,0),则 260060b k b ⎧⎨⎩=+= 解得:2100600k b -⎧⎨⎩== ∴y 2=−100x +600(0≤x ≤6);(2)①由题意,得60x =−100x +600x =154,即第154小时两车相遇 当0≤x <154时, S =y 2−y 1=−160x +600; ②令y 2=−100x +600=0,解得:x=6即第6小时出租车到达甲地当6≤x ≤10时,S =60x ;(3)由题意,得①当A 加油站在甲地与B 加油站之间时,(−100x +600)−60x =200,解得x =52, 此时,A 加油站距离甲地:60×52=150km ,②当B 加油站在甲地与A 加油站之间时,60x−(−100x +600)=200,解得x =5,此时,A 加油站距离甲地:60×5=300km ,综上所述,A 加油站到甲地距离为150km 或300km .【点睛】本题考查了分段函数,函数自变量的取值范围,用待定系数法求一次函数、正比例函数的解析式等知识点的运用,综合运用性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,注意:分段求函数关系式,题目较好,但是有一定的难度.25.知识再现如图1,若点A ,B 在直线l 同侧,A ,B 到l 的距离分别是3和2,4AB =,现在直线l 上找一点P ,使AP BP +的值最小,做法如下:作点A 关于直线l 的对称点A ',连接BA ',与直线l 的交点就是所求的点P ,线段BA '的长度即为AP BP +的最小值,请你求出这个最小值.实践应用如图2,菱形ABCD 中2AB =,120A ∠=︒,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK QK +的最小值为______;拓展延伸如图3,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠,保留作图痕迹,不必写出作法.【答案】知识再现:103拓展延伸:图形见详解【解析】【分析】知识再现:根据对称性和勾股定理即可解题,实践应用:先根据四边形ABCD 是菱形可知,AD ∥BC ,由∠A =120°可知∠B =60°,作点P 关于直线BD 的对称点P ′,连接P ′Q ,PC ,则P ′Q 的长即为PK +QK 的最小值,由图可知,当点Q 与点C 重合,CP ′⊥AB 时PK +QK 的值最小,再在Rt △BCP ′中利用锐角三角函数的定义求出P ′C 的长即可.拓展延伸:作B 关于AC 的对称点,连接DE 并延长,即可得出答案.【详解】解:知识再现:由对称的性质得到AP A P '=∴AP+BP=A P BP A B ''+=过点B 作BD⊥AC 于D,∴AC=3,CD=2,AD=1,5A D '=在Rt△ADB 中22224115BD AB AD =-=-=在Rt△A DB '中22225(15)40210A B A D BD ''=+=+==实践应用:∵四边形ABCD 是菱形,∴AD ∥BC ,∵∠A =120°,∴∠B =180°−∠A =180°−120°=60°,如图2中,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×32=3故答案为3拓展延伸:如图3所示:作B关于AC的对称点E,连接DE并延长交AC于P即可.【点睛】本题考查的是轴对称−最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.如图1,在平面直角坐标系中,直线2L:162y x=-+与1L:12y x=交于点A,分别与x轴、y轴交于点B、C.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点.①如图2,过点P作//PQ OC,且使四边形OCPQ为菱形,请直接写出点Q的坐标;②在平面内是否存在其它点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】(1)A(6,3).B(12,0).C(0,6),(2)y=−x+6.(3)①Q(,-3),②(−3,3),(6,6).【解析】【分析】(1)构建方程组确定交点A的坐标,利用待定系数法确定B,C两点坐标即可.(2)设D(m,12m),利用三角形的面积公式,构建方程求出m的值,再利用待定系数法即可解决问题.(3)①构建OC=PC,设P(m,12m),利用两点间距离公式,构建方程求出m即可.②当OC为菱形的对角线时,OC垂直平分线段PQ,利用对称性解决问题即可;当PC为对角线时,OQ⊥CP, 利用对称性解决问题即可.【详解】解:(1)由16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3).∵162y x=-+与分别与x轴、y轴交于点B、C,∴C(0,6),B(12,0).(2)设D(m,12m),由题意:OC=6,△COD的面积为12,∴12×6×m=12,∴m=4,∴D(4,2),∵C(0,6),设直线CD的解析式为y=kx+b,则有426k bb+=⎧⎨=⎩解得16 kb=-⎧⎨=⎩∴直线CD的解析式为y=−x+6.(3)①∵四边形OCPQ是菱形,∴OC=PC=6,设P(m,−m+6),∴m2+m2=36,∴m=32或−32,∴P(32,-32+6),∵PQ∥OC,PQ=OC,∴Q(32,-32)②如图,当OC为菱形的对角线时,OC垂直平分线段PQ,易知P′(3,3),Q′(−3,3),∴满足条件的点Q′的坐标为(−3,3).(−3,3)如下图,当PC为对角线时,OQ⊥CP,易知△OCP是等腰直角三角形,∴四边形OCQP是正方形,此时Q的坐标为(6,6).【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,菱形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。