2020届高考物理冲刺专项训练21 带电粒子在复合场中的运动 (原卷版)
2020年高考物理压轴题专练附解答:带电粒子在复合场中的运动

原理图规律质谱仪粒子由静止被加速电场加速:qU=12mv2,在磁场中做匀速圆周运动,qvB=2mvr,则比荷qm=222UB r 带电粒子在复合场中的运动考点一带电粒子在复合场中的运动实例电磁流量计错误!未找到引用源。
q=qvB,所以v=错误!未找到引用源。
,所以Q=vS=错误!未找到引用源。
π4DUB霍尔元件当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现电势差(如果是电子导电,则霍尔电压方向相反)回旋加速器接交流电源交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动过程中每次经过D形盒缝隙都会被加速.由qvB=错误!未找到引用源。
得E km=错误!未找到引用源。
2222q B rm速度选择器若qv0B=Eq,即v0=错误!未找到引用源。
,粒子做匀速直线运动磁流体发电机等离子体射入,受洛伦兹力偏转,使两极板带正、负电荷,两极电压为U时稳定,q错误!未找到引用源。
=qv0B,U=v0Bd考点二带电粒子在组合场中的运动1.常见类型(1)先电场后磁场①带电粒子先匀加速,后偏转,如图.②带电粒子先后都偏转,如图.(2)先磁场后电场①带电粒子先偏转,后匀加速或匀减速,如图(甲).②带电粒子先后都偏转,如图(乙).(3)先后两个不同的磁场2.处理思路考点三:带电粒子在叠加场中的运动1.带电体在叠加场中无约束情况下的运动情况分类(1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动.因洛伦兹力不做功,故机械能守恒.(2)静电力、洛伦兹力并存(不计重力的微观粒子)①若静电力和洛伦兹力平衡,则带电体做匀速直线运动.②若静电力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)静电力、洛伦兹力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与静电力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电体在叠加场中有约束情况下的运动带电体在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,运用动能定理、能量守恒定律结合牛顿运动定律求解.典例精析★考点一:带电粒子在复合场中的运动实例◆典例一:(2020广西柳州模拟)(20分)如图所示,在xOy平面内,以O(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等;第四象限有一垂直于纸面倾斜放置的挡板PQ,挡板的两端点P、Q分别在x、y坐标轴上且挡板与两坐标轴各成45°角,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m、电荷量为+q的簇带电粒子,当所有的粒子均沿x 轴正方向以速度ひ射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上;不计粒子重力、不考虑粒子间相互作用力。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
2021届高考物理三轮冲刺专练:带电粒子在复合场中的运动 (解析版)

带电粒子在复合场中的运动【原卷】1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P点,第二次穿过MN时的位置记为Q点,P、Q两点间的距离记为d,从P点运动到Q点的时间记为t.不计粒子的重力,若增大v0,则()A.t不变,d不变B.t不变,d变小C.t变小,d变小D.t变小,d不变2.如图所示,在水平线ab的下方有一匀强电场,电场强度为E,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小m/s,接着沿直线CD运球沿轨道AC下滑,至C点时速度为v C=1007动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G点(未标出),求G点到D点的距离.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.7.如图所示,两平行金属板A、B间的电势差为U=5×104 V.在B板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d1=d2=6.25 m,磁感应强度分别为B1=2.0 T、B2=4.0 T,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?8.如图所示,三块挡板围成截面边长L=1.2 m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,场强E=4×10-4N/C.三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;AMN以外区域有垂直纸面向外,磁感应强度大小为B2=3B1的=108C/kg的帯正电的粒子,从O点由静止匀强磁场.现将一比荷qm释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π,6求该粒子的比荷及其从M点运动到N点的时间.10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒时刻通过S2垂直于边界进入子在电场力的作用下向右运动,在t=T02右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.11.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.12.(2020山东潍坊一模)如图所示为竖直平面内的直角坐标系xOy,x轴水平且上方有竖直向下的匀强电场,场强大小为E;在x轴下方有一圆形有界匀强磁场,与x轴相切于坐标原点,半径为R.已知质量为m、电量为q的粒子,在y轴上的(0,R)点无初速度释放,R,-R)点,粒子重力不计,求:粒子恰好经过磁场中(√33(1)磁场的磁感强度B;(2)若将该粒子的释放位置沿y=R直线向左移动一段距离L,将粒子无初速度释放,当L为多大时粒子在磁场中运动的时间最长,最长时间多大?带电粒子在复合场中的运动1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P 点,第二次穿过MN 时的位置记为Q 点,P 、Q 两点间的距离记为d ,从P 点运动到Q 点的时间记为t.不计粒子的重力,若增大v 0,则 ( )A .t 不变,d 不变B .t 不变,d 变小C .t 变小,d 变小D .t 变小,d 不变【答案】 D【解析】 粒子在电场中做类平抛运动,设第一次到达P 点时竖直速度为v 1(大小不变),则粒子进入磁场的速度大小为v=√v 02+v 12,速度方向与MN 的夹角θ的正切值为tan θ=v1v 0;粒子进入磁场后做匀速圆周运动,半径R=mv qB ;第二次经过MN 上的Q 点时,由几何关系可得:d=2R sin θ,又sin θ=√2=1√v 02+v 12,联立解得:d=2mv 1qB ,即当增大v 0时d 不变;运动的时间t=θ2π·2πm qB =θmqB ,则当增大v 0时,tan θ减小,θ减小,t 减小,故D 正确.2.如图所示,在水平线ab 的下方有一匀强电场,电场强度为E ,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.【答案】(1)√3BRE (2)qBRm【解析】(1)设粒子第一次在磁场中运动的速度为v,粒子在磁场中受到的洛伦兹力提供向心力,即:qvB=2√3R解得:v=√3qBRm粒子在电场中受到的电场力为qE,设运动的时间为t,则:qEt=mv-0联立可得:t=√3BRE(2)粒子在磁场中做匀速圆周运动的过程中,其周期T=2πmqB,可知粒子在磁场中运动的周期与其速度、半径都无关;根据t0T =θ2π,可知粒子在磁场中运动的时间由轨迹的圆弧对应的圆心角有关,圆心角越小,则时间越短;所以当轨迹与内圆相切时,所用的时间最短,设粒子此时的半径为r,如图所示.由几何关系可得:(r-R)2+(√3R)2=r2设粒子进入磁场时速度的方向与ab的夹角为θ,则圆弧所对的圆心角为2θ,由几何关系可得:tan θ=√3Rr-R粒子从Q点抛出后做类平抛运动,在电场方向上的分运动与从P 释放后的情况相同,所以粒子进入磁场时,沿竖直方向的分速度同样也为v,在垂直于电场方向的分速度始终为v0,则:tan θ=vv0联立可得:v0=qBRm.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.【答案】(1)√2v0,方向与x轴正方向成45°角斜向上(2)v02【解析】(1)在电场中,粒子做类平抛运动,设Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,有at22L=v0t,L=12设粒子到达O点时沿y轴方向的分速度为v y,有v y=at设粒子到达O点时速度方向与x轴正方向夹角为α,有tan α=v yv0联立可得α=45°即粒子到达O点时速度方向与x轴正方向成45°角斜向上.设粒子到达O点时速度大小为v,由平行四边形定则有v=√v02+v y2联立可得v=√2v0.(2)设电场强度的大小为E,粒子电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得F=ma又F=qE由于v y2=2aL解得E=mv022qL设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有qvB=m v 2R 由几何关系可知R=√2L联立可得EB =v0 2.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为v C=1007m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为G 点(未标出),求G 点到D 点的距离.【答案】 (1)正电荷 (2)27.6 J (3)2.26 m【解析】 (1)依题意可知小球在CD 间做匀速直线运动,在CD 段受重力、电场力、洛伦兹力且合力为零.若小球带负电,小球受到的合力不为零,因此带电小球应带正电荷. (2)小球在D 点时的速度为v D =v C =1007m/s设重力与电场力的合力为F 1,如图所示,则:F 1=F 洛=qv C B 又F 1=mg cos37°=5 N解得:qB=F1v C =720C·T在F 处由牛顿第二定律可得:qv F B+F 1=mv F 2R把qB=720 C·T 代入得R=1 m设小球在DF 段克服摩擦力做功W f ,从D 到F 的过程由动能定理可得:-W f -2F 1R=12m v F 2-12m v D 2解得:W f≈27.6 J.(3)小球离开F点后做类平抛运动,其加速度为a=F1m由2R=at 22解得:t=√4mRF1=2√25s交点G与D点的距离GD=v F t=8√25m≈2.26 m.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.【答案】(1) 10 V/m,方向竖直向上(2) π2s(3)N点右侧3 m和N点左侧√55m的范围内【解析】(1)小球在叠加场中做匀速圆周运动,则电场力与重力平衡,即:qE=mg解得:E=10 V/m,方向竖直向上.(2)当小球以速度v=3 m/s在磁场中做匀速圆周运动时,由洛伦兹力提供向心力得:qvB=m v 2r解得:r=3 m=h对应小球运动的轨迹如图所示.在0<v0≤3 m/s的速度范围内,此轨迹所对的圆心角最小,即小球在磁场中运动的时间最短.小球做圆周运动的周期:T=2πrv=2π s小球在磁场中运动的最短时间:t1=14T=π2s(3)当小球以3 m/s的速度进入磁场后落在N点的右侧最远,x1=r=3 m当小球的速度较小时,小球会在磁场中运动半周,然后从MN离开磁场而做平抛运动.设小球在磁场中运动的轨道半径为R,则:竖直方向:h-2R=12gt2水平方向:x=vt粒子做圆周运动的轨道半径:R=mvqB解得:x2=√2(h-2R)R2g当R=1 m时x2有最大值,解得:x2max=√55m所以,小球落在N点右侧3 m和N点左侧√55m的范围内.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.【答案】(1)mgq (2)mq√gl(3)(3π4+1)√lg【解析】 (1)微粒到达A (l ,l )之前做匀速直线运动,对微粒受力分析如图甲,可知:Eq=mg 解得:E=mg q.甲 乙(2)由平衡条件得:qvB=√2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙,则有:qvB=m v 2r由几何知识可得:r=√2l 联立解得:v=√2gl ,B=m q √gl.(3)微粒做匀速直线运动的时间:t 1=√2lv =√l g做匀速圆周运动的时间:t 2=34π·√2l v=3π4√lg故微粒在复合场中的运动时间:t=t 1+t 2=(3π4+1)√lg.7.如图所示,两平行金属板A 、B 间的电势差为U=5×104 V .在B 板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d 1=d 2=6.25 m ,磁感应强度分别为B 1=2.0 T 、B 2=4.0 T ,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?s(3)60°(4)9.375 m 【答案】(1)4.0×103 m/s(2)π1 920【解析】(1)粒子在电场中做匀加速直线运动,由动能定理mv2-0,解得v=4.0×103 m/s.有:qU=12(2)粒子运动轨迹如图甲.设粒子在磁场区域Ⅰ中做匀速圆周运动的半径为r,由洛伦兹力提,代入数据解得r=12.5 m供向心力得:qvB1=mv2r设粒子在Ⅰ区内做圆周运动的圆心角为θ,则 sin θ=d1r =6.25m 12.5m =12,所以θ=30°粒子在Ⅰ区运动的周期T=2πm qB 1则粒子在Ⅰ区运动时间t=θ360°T ,解得t=π1 920s(3)设粒子在Ⅰ区做圆周运动的轨道半径为R ,则qvB 2=mv 2R解得R=6.25 m如图甲所示,由几何关系可知△MO 2P 为等边三角形,所以粒子离开Ⅰ区域时速度方向与边界面的夹角为α=60°.(4)要使粒子不能从Ⅰ区右边界飞出磁场,粒子运动的轨迹与磁场边界相切时,由图乙可知Ⅰ区磁场的宽度至少为:d 2=R+R cos 60°=1.5R=9.375 m .8.如图所示,三块挡板围成截面边长L=1.2 m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E=4×10-4 N/C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外,磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷qm =108 C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).×10-5【答案】(1)6.6×10-6T(2)2.85×10-2s(3)B2'=4k+23T,k=0,1,2,3,….mv2【解析】(1)粒子从O点加速到C点,由动能定理得:qEx=12解得:v=400 m/s带电粒子经内部磁场偏转后直接垂直AN经过Q点进入外部磁场=0.6 m由几何关系可知R1=L2知磁感应强度B1=6.6×10-6T.由qvB1=m v2R1(2)由题可知B2=3B1=2×10-5 T,由qvB2=m v2R2可知:R2=R13=0.2 m粒子从O点出发,到再次回到O点的轨迹如图所示,则粒子进入电场做匀加速运动,则x=12vt1得到t1=0.01 s粒子在磁场B1中的周期为T1=2πmqB1则在磁场B1中的运动时间为t2=T13=3×10-3s在磁场B2中的运动周期为T2=2πmqB2在磁场B2中的运动时间为t3=180°+300°+180°360°T2=5.5×10-3s则粒子从O点出发,到再次回到O点经历的时间t=2t1+t2+t3=2.85×10-2s.(3)设挡板外磁场变为B2',粒子在磁场中的轨迹半径为r,则有qvB2'=m v2r粒子可以垂直于MA经孔P回到O点需满足条件:L2=(2k+1)r,k=0,1,2,3,…解得B2'=4k+23×10-5T,其中k=0,1,2,3,…9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.【答案】(1)见解析(2)2El'Bl (3)4√3El'B2l2BlE(1+√3πl18l')【解析】(1)粒子在电场中的轨迹为抛物线,在磁场中的轨迹为圆弧,整个轨迹上下对称,故画出粒子运动的轨迹,如图所示.(2)粒子从电场下边界入射后在电场中做类平抛运动,设粒子从M点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度大小为a ,粒子的电荷量为q 、质量为m ,粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图所示, 根据牛顿第二定律可得:Eq=ma Ⅰ 速度沿电场方向的分量为:v 1=at Ⅰ 垂直电场方向有:l'=v 0t Ⅰ 根据几何关系可得:v 1=v cos θ Ⅰ粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力可得:qvB=m v 2R Ⅰ根据几何关系可得:l=2R cos θ Ⅰ联立ⅠⅠⅠⅠⅠⅠ式可得粒子从M 点入射时速度的大小:v 0=2El 'BlⅠ(3)根据几何关系可得速度沿电场方向的分量:v 1=v 0tanπ6Ⅰ联立ⅠⅠⅠⅠⅠ式可得该粒子的比荷:q m =4√3El 'B 2l 2Ⅰ粒子在磁场中运动的周期:T=2πR v=2πm qBⅠ粒子由M 点到N 点所用的时间:t'=2t+2(π2-π6)2π·T联立ⅠⅠⅠ式可得:t'=BlE (1+√3πl18l').10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=T02时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.【答案】(1)√2qU0m T04√2qU0m(2)B<4L√2mU0q(3)74T08πm 7qT0【解析】(1)粒子由S1到S2的过程,根据动能定理得qU0=12mv2Ⅰ由Ⅰ式得v=√2qU0mⅠ设粒子的加速度大小为a,由牛顿第二定律得q U0d=maⅠ由运动学公式得d=12a(T02)2Ⅰ联立ⅠⅠ式得d=T04√2qU0mⅠ(2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R对粒子在磁场中由牛顿第二定律得qvB=m v 2RⅠ要使粒子在磁场中运动时不与极板相撞,应满足2R>L2Ⅰ联立ⅠⅠⅠ式得B<4L √2mU0qⅠ(3)设粒子在两边界之间无场区向左匀速运动的过程用时为t1,有d=vt1Ⅰ联立ⅠⅠⅠ式得t1=T04Ⅰ若粒子再次到达S2时速度恰好为零,粒子回到极板间做匀减速运动,设匀减速运动的时间为t2,根据运动学公式得d=v2t2联立ⅠⅠ式得t2=T02-t1-t2设粒子在磁场中运动的时间t=3T0-T02联立式得t=7T04则粒子在匀强磁场中做匀速圆周运动的周期为T,由Ⅰ式结合运动学公式得T=2πmqB由题意可知T=t=7T04.联立式得B=8πm7qT011.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.【答案】(1)(0,12L)(2)mv022qL√2mv02qL(3)Lv0+√2(1+π)L2v0【解析】(1)粒子在电场中的运动为类平抛运动的逆运动水平方向:L=v0cos θ·t1竖直方向:y=v0 sin θ·t1解得:y=12L粒子从y轴上射出电场的位置坐标为(0,12L).(2)粒子在电场中的加速度:a=qEm竖直分位移:y=12a t12解得:E=mv022qL.粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子的运动轨迹如图所示,由几何知识得:AC与竖直方向的夹角为45°,且AD=√2y=√22L,因此AC刚好为有界磁场边界圆的直径,则粒子在磁场中做圆周运动的轨道半径:r=L粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m v2r,其中粒子的速度:v=v0cos θ解得:B=√2mv02qL.。
高考物理带电粒子在复合场中的运动专题训练答案及解析

一、带电粒子在复合场中的运动专项训练1.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(112qU m 21228Um m qB (3)d m 12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m >d 求得最大值:d m 12122m m m m --L2.如图,M 、N 是电压U =10V 的平行板电容器两极板,与绝缘水平轨道CF 相接,其中CD 段光滑,DF 段粗糙、长度x =1.0m .F 点紧邻半径为R 的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O 在同一水平面上,圆筒内存在磁感应强度B =0.5T 、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E .一质量m =0.01kg 、电荷量q =-0.02C 的小球a 从C 点静止释放,运动到F 点时与质量为2m 、不带电的静止小球b 发生碰撞,碰撞后a 球恰好返回D 点,b 球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a 、b 均视为质点,碰时两球电量平分,小球a 在DF 段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s 2.求(1)圆筒内电场强度的大小; (2)两球碰撞时损失的能量;(3)若b球进入圆筒后,与筒壁发生弹性碰撞,并从N点射出,则圆筒的半径.【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题【答案】(1)20N/C;(2)0J;(3)16tan Rnπ=(n≥3的整数)【解析】【详解】(1)小球b要在圆筒内做圆周运动,应满足:12Eq=2mg解得:E=20 N/C(2)小球a到达F点的速度为v1,根据动能定理得:Uq-μmgx=12mv12小球a从F点的返回的速度为v2,根据功能关系得:μmgx=12mv22两球碰撞后,b球的速度为v,根据动量守恒定律得:mv1=-mv2+2mv则两球碰撞损失的能量为:ΔE=12mv12-12mv22-12mv2联立解得:ΔE=0(3)小球b进入圆筒后,与筒壁发生n-1次碰撞后从N点射出,轨迹图如图所示:每段圆弧对应圆筒的圆心角为2nπ,则在磁场中做圆周运动的轨迹半径:r1=Rtannπ粒子在磁场中做圆周运动:21122vqvB mr=联立解得:16tanRnπ=(n≥3的整数)3.如图所示,在xOy平面直角坐标系中,直角三角形ACD内存在垂直平面向里磁感应强度为B的匀强磁场,线段CO=OD=L,CD边在x轴上,∠ADC=30°。
2020届高考回归复习—电学选择之带电微粒在复合场中的运动含答案

高考回归复习一电学选择之带电微粒在复合场中的运动1如图所示,两平行金属板水平放置,板长和板间距均为L ,两板间接有直流电源,极板间有垂直纸面向外的匀强磁场。
一带电微粒从板左端中央位置以速度v 0gL 垂直磁场方向水平进入极板,微粒恰好做匀动,则该微粒在极板间做匀速圆周运动的时间为( )做匀速圆周运动,b 在纸面内向右做匀速直线运动,e 在纸面内向左做匀速直线运动, 下列选项正确的是( )速直线运动。
若保持 a 板不动,让b 板向下移动 0.5L ,微粒从原位置以相同速度进入,恰好做匀速圆周运ngL 3gngL2•如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为 动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场 小球由棒的下端以某一速度上滑的过程中一定有 ( )m 、带电荷量为q ,小球可在棒上滑 (图示方向)中.设小球带电荷量不Xx iXXX s JXX -X X' 5 Ef XX XXXX LA •小球加速度一直减小B. 小球的速度先减小,直到最后匀速C. 杆对小球的弹力一直减小 D .小球受到的洛伦兹力一直减小3•如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上 (与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为 m a 、m b 、m e ,已知在该区域内,a 在纸面内C .X1X JX 1 」 X 1X左只X X X X右XXXXXB . m b m a m eD . m e m b m a4.如图所示,环形塑料管半径为R ,竖直放置,且管的内径远小于环的半径,ab 为该环的水平直径,环的mgab 及其以下部分有水平向左的匀强电场,电场强度的大小E,管的内壁光滑。
现将一质量为 m ,电q荷量为+q 的小球从管中a 点由静止开始释放,则()A .小球到达b 点时速度为零,并在 adb 间往复运动 B. 小球每周的运动过程中最大速度在圆弧 ad 之间的某一位置C.小球第一次和第二次经过最高点 e 时对管壁的压力之比为 1:5D .小球第一次经过最低点 d 和最高点e 时对管壁的压力之比为 4:15. 如图所示,质量为 m ,带电荷量为q 的微粒以速度v 与水平方向成45。
2020届高考物理一轮复习检测:第十一章_磁场_第3讲_带电粒子在复合场中的运动(含答案)

第3讲带电粒子在复合场中的运动基础巩固1.地面附近水平虚线MN的下方存在着正交的匀强电场和匀强磁场,电场强度为E,磁感应强度为B,如图所示。
一带电微粒自距MN为h的高处由静止下落,从P点进入场区,沿半圆圆弧POQ运动,经圆弧的最低点O从Q点射出。
重力加速度为g,忽略空气阻力的影响。
下列说法中错误的是( )A.微粒进入场区后受到的电场力的方向一定竖直向上B.微粒进入场区后做圆周运动,半径为C.从P点运动到Q点的过程中,微粒的电势能先增大后减小D.从P点运动到O点的过程中,微粒的电势能与重力势能之和越来越小2.(2016北京西城期末,16)(多选)如图所示,两个半径相同的半圆形光滑轨道置于竖直平面内,左右两端点等高,分别处于沿水平方向的匀强电场和匀强磁场中。
两个相同的带正电小球同时从两轨道左端最高点由静止释放。
M、N为轨道的最低点。
则下列分析正确的是( )A.两个小球到达轨道最低点的速度< v NB.两个小球第一次经过轨道最低点时对轨道的压力> F NC.小球第一次到达M点的时间小于小球第一次到达N点的时间D.磁场中小球能到达轨道另一端最高处,电场中小球不能到达轨道另一端最高处3.(多选)在如图所示的空间直角坐标系所在的区域内,同时存在匀强电场E和匀强磁场B。
已知从坐标原点O沿x轴正方向射入的质子,穿过此区域时未发生偏转,则可以判断此区域中E和B的方向可能是( )A.E和B都沿y轴的负方向B.E和B都沿x轴的正方向C.E沿y轴正方向,B沿z轴负方向D.E沿z轴正方向,B沿y轴负方向4.显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转。
设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是( )5.(2017北京海淀一模,22,16分)如图所示,分界线MN左侧存在平行于纸面水平向右的有界匀强电场,右侧存在垂直于纸面向里的有界匀强磁场。
2020届高考物理冲刺练习卷:带电粒子在复(组)合场中的运动

带电粒子在复(组)合场中的运动一、选择题(本题共8小题,在每小题给出的四个选项中,至少有一项符合题目要求)1.(2020届云南省峨山彝族自治县第一中学2月月考)如图所示,倾角为的光滑绝缘斜面处在垂直斜面的匀强磁场和方向未知的匀强电场中,有一个质量为m ,带电量为q (q >0)的小球在斜面上作匀速圆周运动,其角速度为。
则下列说法正确的是( )A. 匀强磁场方向一定垂直于斜面向下B. 匀强磁场的磁感应强度B 的大小为mw qC. 未知电场的方向一定沿斜面向上D. 未知电场的方向可能垂直于斜面2. 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k H I Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离。
电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A.霍尔元件前表面的电势低于后表面B.若电源的正负极对调,电压表将反偏C.I H 与I 成正比D.电压表的示数与R L 消耗的电功率成正比3.目前,世界各国都在积极研究磁流体发电机,该装置由绝缘材料制成,长、宽、高分别为b 、a 、d ,两极板间匀强磁场的磁感应强度为B .等离子体垂直进入磁场的速度为v ,单个离子所带的电量为q .离子通道(即两极板内所围成空间)的等效电阻为r ,负载电阻为R .则下列说法中正确的是( )A. 等离子体离子浓度越高,该发电机的电动势越大B. 等离子体离子浓度越高,通过R的电流越大C. 在其它条件不变的情况下,增大等离子的流量可以增大该发电机的电动势D. 在其它条件不变的情况下,增大装置的宽度a对通过R的电流将增大4.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面、磁感应强度大小可调的均匀磁场,带电粒子可在环中做圆周运动。
新高考物理考试易错题易错点21带点粒子在磁场、组合场和叠加场中的运动附答案

易错点21 带点粒子在磁场、组合场和叠加场中的运动易错总结一、带电粒子在匀强磁场中的运动1.若v∥B,带电粒子以速度v做匀速直线运动,其所受洛伦兹力F=0.2.若v⊥B,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小.(2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力.二、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.解题方法一、带电粒子在匀强磁场中的圆周运动1.圆心的确定圆心位置的确定通常有以下两种基本方法:(1)已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).(2)已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连线入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P为入射点,M为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t=α360°T(或t=α2πT).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角.(2)当v一定时,粒子在匀强磁场中运动的时间t=lv,l为带电粒子通过的弧长.二、带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要正确进行受力分析,确定带电粒子的运动状态.(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动.(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.3.处理带电粒子在叠加场中的运动的基本思路(1)弄清叠加场的组成.(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)画出粒子运动轨迹,灵活选择不同的运动规律.○1当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.○2当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解.○3当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·全国高三课时练习)用洛伦兹力演示仪可以观察电子在磁场中的运动径迹.图(甲)是洛伦兹力演示仪的实物图,图(乙)是结构示意图.励磁线圈通电后可以产生垂直纸面的匀强磁场,励磁线圈中的电流越大,产生的磁场越强.图(乙)中电子经电子枪中的加速电场加速后水平向左垂直磁感线方向射入磁场.下列关于实验现象和分析正确的是()A.仅增大励磁线圈中的电流,电子束径迹的半径变小B.仅升高电子枪加速电场的电压,电子束径迹的半径变小C.仅升高电子枪加速电场的电压,电子做圆周运动的周期将变小D.要使电子形成如图(乙)中的运动径迹,励磁线圈应通以逆时针方向的电流【答案】A【详解】AB.电子在加速电场中加速,由动能定理有:eU=12mv02;电子在匀强磁场中做匀速圆周运动,洛伦兹力充当向心力,有:e B v0=m2vr,解得:012mv mUreB B e==电压不变,B不变,增加加速电压,电子束形成圆周的半径增大.保持加速电压不变,增加励磁电流,B增大,电子束形成圆周的半径减小,故A正确,B错误;C.电子在磁场中运动的周期:2rTvπ=,与电子的速度无关,与加速电场的大小无关.故C错误;D.若励磁线圈通以逆时针方向的电流,由安培定则知,产生的磁场向外,根据左手定则判断知,电子进入磁场时所受的洛伦兹力向下,电子的运动轨迹不可能是图中所示,同理,可得励磁线圈通以顺时针方向的电流,则能形成结构示意图中的电子运动径迹.故D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中的运动一、单选题1.(2020·全国高三专题练习)作用在导电液体上的安培力能起到推动液体流动的作用,这样的装置称为电磁泵,它在医学技术上有多种应用,血液含有离子,在人工心肺机里的电磁泵就可作为输送血液的动力.某电磁泵及尺寸如图所示,矩形截面的水平管道上下表面是导体,它与磁感强度为B的匀强磁场垂直,并有长为的部分在磁场中,当管内充满血液并通以横穿管子的电流时血液便能向前流动.为使血液在管内不流动时能产生向前的压强P,电流强度I应为A.B.C.D.2.(2020·全国高三专题练习)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的()A.前表面的电势比后表面的低B.前、后表面间的电压U与υ无关C.前、后表面间的电压U与c成正比D.自由电子受到的洛伦兹力大小为eU a3.(2020·江苏省高三月考)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .减小D 形金属盒的半径4.(2020·江苏省高三月考)磁流体发电机的结构简图如图所示。
把平行金属板A 、B 和电阻R 连接,A 、B 之间有很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v 喷入磁场,A 、B 两板间便产生电压,成为电源的两个电极。
下列推断正确的是( )A .A 板为电源的正极B .电阻R 两端电压等于电源的电动势C .若减小两极板的距离,则电源的电动势会减小D .若增加两极板的正对面积,则电源的电动势会增加5.(2020·四川省高三二模)反质子的质量与质子相同,电荷与质子相反。
一个反质子从静止经电压U 1加速后,从O 点沿角平分线进入有匀强磁场(图中未画岀)的正三角形OAC 区域,之后恰好从A 点射岀。
已知反质子质量为m ,电量为q ,正三角形OAC 的边长为L ,不计反质子重力,整个装置处于真空中。
则( )AB .保持电压U 1不变,增大磁感应强度,反质子可能垂直OA 射出C .保持匀强磁场不变,电压变为114U ,反质子从OA 中点射岀D .保持匀强磁场不变,电压变为114U ,反质子在磁场中运动时间减为原来的12 6.(2020·福建省高三一模)如图是质谱仪的工作原理示意图,它是分析同位素的一种仪器,其工作原理是带电粒子(不计重力)经同一电场加速后,垂直进入同一匀强磁场做圆周运动,挡板D 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2。
若( )A .只增大粒子的质量,则粒子经过狭缝P 的速度变大B .只增大加速电压U ,则粒子经过狭缝P 的速度变大C .只增大粒子的比荷,则粒子在磁场中的轨道半径变大D .只增大磁感应强度,则粒子在磁场中的轨道半径变大二、多选题7.(2020·长沙市雅礼书院中学高三月考)如图所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场,在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .极板M 比极板N 的电势高B .加速电场的电压U=ERC .直径D.若一群粒子从静止开始经过题述过程都落在胶片上的同一点,则该群粒子具有相同的比荷8.(2020·山东省章丘四中高三月考)用图示装置可以检测霍尔效应。
利用电磁铁产生磁场,电流表检测输入霍尔元件的电流,电压表检测元件输出的电压。
已知图中的霍尔元件是半导体,与金属导体不同,它内部形成电流的“载流子”是空穴,空穴可视为能自由移动的带正电的粒子。
图中的1、2、3、4是霍尔元件上的四个接线端。
当开关S1、S2闭合后,电流表A和电流表B、C都有明显示数,下列说法中正确的是()A.电表B为电压表,电表C为电流表B.接线端4的电势低于接线端2的电势C.若调整电路,使通过电磁铁和霍尔元件的电流与原电流方向相反,但大小不变,则电压表的示数将保持不变D.若增大R1、增大R2,则电压表示数增大9.(2020·全国高三专题练习)长为l、间距为d的平行金属板水平正对放置,竖直光屏M到金属板右端距离为l,金属板左端连接有闭合电路,整个装置结构如图所示. 质量为m、电荷量为q的粒子以初速度0v 从两金属板正中间自左端N点水平射入,当滑动变阻器的滑片在某一位置时,粒子恰好垂直撞在光屏上. 对此过程,下列分析正确的是()A.粒子在平行金属板间的运动时间和从金属板右端到光屏的运动时间相等B.板间电场强度大小为2mg qC.若仅将滑片P向下滑动一段后,再让该粒子从N点以水平速度0v射入板间,粒子不会垂直打在光屏上D.若仅将两平行板的间距变大一些,再让该粒子从N点以水平速度0v射入板间,粒子依然会垂直打在光屏上10.(2020·湖北省襄阳三中高三月考)如图所示,H1、H2是同种金属材料(自由电荷为电子)、上下表面为正方形的两个霍尔元件,H1的边长和厚度均为H2边长和厚度的2倍。
将两个霍尔元件放置在同一匀强磁场B中,磁场方向垂直于两元件正方形表面。
在两元件上加相同的电压,形成图示方向的电流,M、N 两端形成霍尔电压U,下列说法正确的是()A.H1中的电流强度是H2中电流强度的2倍B.H1、H2上M端电势高于N端电势C.H1中产生的霍尔电压是H2中产生的霍尔电压的2倍D.H1中产生的霍尔电压等于H2中产生的霍尔电压11.(2020·黑龙江省黑龙江实验中学高三期末)如图甲所示,等离子气流(由高温高压的等电量的正、负离子组成)由左方连续不断地以速度v0射入P1和P2两极板间的匀强磁场中,ab直导线与P1、P2 相连接,线圈A与直导线cd相连接,线圈A内存在如图乙所示的变化磁场,且磁感应强度B的正方向规定为向左,则下列叙述正确的是()A.0~1s内ab、cd导线互相排斥B.1~2s内ab、cd导线互相吸引C.2~3s内ab、cd导线互相排斥D.3~4s内ab、cd导线互相吸引12.(2020·全国高三专题练习)去年底,我省启动“263”专项行动,打响碧水蓝天保卫战.暗访组在某化工厂的排污管末端安装了如图所示的流量计,测量管由绝缘材料制成,其长为L、直径为D,左右两端开口,匀强磁场方向竖直向下,在前后两个内侧面a、c固定有金属板作为电极.污水充满管口从左向右流经测量管时,a、c两端电压为U,显示仪器显示污水流量Q(单位时间内排出的污水体积).则()A .a 侧电势比c 侧电势高B .污水中离子浓度越高,显示仪器的示数将越大C .若污水从右侧流入测量管,显示器显示为负值,将磁场反向则显示为正值D .污水流量Q 与U 成正比,与L 、D 无关三、解答题13.(2020·全国高三零模)一个质量m=0.1g 的小滑块,带有q=4510C -⨯的电荷,放置在倾角30︒=α的光滑斜面上(斜面绝缘),斜面置于B=0.5T 的匀强磁场中,磁场方向垂直纸面向里,如图所示小滑块由静止开始沿斜面下滑,其斜面足够长,小滑块滑至某一位置时,要离开斜面问:(1)小滑块带何种电荷?(2)小滑块离开斜面时的瞬时速度多大?(3)该斜面的长度至少多长?14.(2020·山东省高三月考)如图所示,在xOy 平面内,紧挨着的三个“柳叶”形有界区域①②③内(含边界上)有磁感应强度为B 的匀强磁场,它们的边界都是半径为a 的圆,每个圆的端点处的切线要么与x 轴平行,要么与y 轴平行.①区域的下端恰在O 点,①②区域在A 点平滑连接,②③区域在C 点平滑连接.大量质量均为m 、电荷量均为q 的带正电的粒子依次从坐标原点O 以相同的速率、各种不同的方向射入第一象限内(含沿x 轴、y 轴方向),它们只要在磁场中运动,轨道半径就都为a .在y≤-a 的区域,存在场强为E 的沿-x 方向的匀强电场.整个装置在真空中,不计粒子重力和粒子之间的相互作用.求:(1)粒子从O点出射时的速率v0;(2)这群粒子中,从O点射出至运动到x轴上的最长时间;(3)这群粒子到达y轴上的区域范围.15.(2020·浙江省台州中学高三月考)如图甲所示,粒子源靠近水平极板M、N的M板,N板下方有一对长为L,间距为d=1.5L的竖直极板P、Q,再下方区域存在着垂直于纸面的匀强磁场,磁场上边界的部分放有感光胶片.水平极板M、N中间开有小孔,两小孔的连线为竖直极板P、Q的中线,与磁场上边界的交点为O.水平极板M、N之间的电压为U0;竖直极板P、Q之间的电压U PQ随时间t变化的图象如图乙所示;磁场的磁感强度.粒子源连续释放初速不计、质量为m、带电量为+q的粒子,这些粒子经加速电场获得速度进入竖直极板P、Q之间的电场后再进入磁场区域,都会打到感光胶片上.已知粒子在偏转电场中运动的时间远小于电场变化的周期,粒子重力不计.求:(1)带电粒子进入偏转电场时的动能E K;(2)磁场上、下边界区域的最小宽度x;(3)带电粒子打到磁场上边界感光胶片的落点范围.16.(2020·北京中关村中学高三月考)如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ;(2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。