音箱线阵列能否产生柱面波

合集下载

线阵音响发声原理

线阵音响发声原理

线阵音响发声原理线阵音响的发声原理主要依赖于线阵列扬声器的设计,这是一种由多个扬声器单元以直线排列的方式组成的音响系统。

这种排列方式允许声波在垂直方向上进行数字波束成型,通过控制声波的传播方向和音量分布实现音量控制和频率响应的匹配。

线阵列扬声器的设计原理包括利用声波干涉原理(增强或减弱)来限制声波的辐射角度,从而实现对声音的良好控制并在产生反馈之前提供适当的增益。

此外线阵列扬声器还能结合演出地点的具体形状,通过恰当的吊挂、瞄准和弯曲对大多数观众提供杰出的音质表现。

线性阵列音箱主要适用于大型流动演出、体育场馆和大型剧院等场合。

当在大的场地扩声一两只喇叭是达不到要求的声压的,而多只普通音箱组合又会产生声干涉。

为了解决声干涉,人们研发了线性阵列组合音箱。

线阵列扬声器的优点包括覆盖均匀、扩散度好,能够在主轴垂直平面呈现窄波束,能量叠加可以远距离辐射。

这种线性阵列的设计改进了扩声音箱的技术、工艺和安装要求,使得声音覆盖范围更广同时保持了音质的一致性。

线阵列音箱是一组排列成直线、间隔紧密的辐射单元且具有相同的振幅与相位,这种设计使得声音在传播过程中更加集中并减少了能量的分散、提高了声音的指向性和效率。

过去几十年中大规模的音箱线性阵列应用非常广泛并且已广为人知,但是一种新型的紧凑阵列系统已经开始出现并应用于各种小型活动中,还具有大型阵列的各项优点。

在应用大型音箱阵列的过程中,几乎每人都意识到了大型音箱重量、体积大及价钱高的局限性。

在排列成弧形时由于体积大的缘故很难做出垂直的弧度效果,这些因素的限制已经令音箱线性排列在小型活动中变得不受欢迎,传统的模块扬声器更适合应用在这些场合。

紧凑的音箱线性阵列是适用于小型活动与经济预算的更佳解决方案,这样更多的听众能享受近场音响的绝妙效果。

不要误导线阵列音箱的使用

不要误导线阵列音箱的使用

不要误导线阵列音箱的使用来源:网络20世纪90年代以来,扬声器产品大家族中又增加了一个新的成员——线阵列扬声器系统。

在使用中如果配置适当,线阵列扬声器系统在宽带范围内可以提供一个平滑的水平覆盖,以及一个“可控”的并具有很强的垂直指向特性。

同时它可提供高声压级,适合于大场地远距离供声。

特别是线阵列扬声器系统在现场安装、吊挂方便。

这些显而易见的优异性能在现代的大型流动演出中深受使用者的喜爱。

然而,近一段时间以来,线阵列扬声器系统在应用方面,出现了一些误导的现象。

主要表现为:①有些扬声器制造厂商在介绍自身产品的特点时不够严谨,使人感到有夸大性的商业宣传之嫌;②有的演出单位在刊物上介绍体育场、广场使用线阵列扬声器系统的体会时,有的论据不够准确,例如,“线阵列扬声器系统的传输特性与常规的系统不同,它的自由行程距离每增加一倍声音只衰减3 dB。

在200 m处的远场扩声声压级比常规扬声器系统会高出20 dB以上……”;③有些工程公司在一些剧院项目中,为业主方设计的扩声系统方案中推介使用线阵列扬声器系统。

如果在建筑、室内装修等方面条件允许的情况下或许是一个不错的方案。

问题在于,仅以使用了线阵列扬声器系统就称之为“代表了系统的先进性”的提法僮得商榷。

至于有些文章在介绍线阵列扬声器系统时,过于“理想化”或更多的阐述理论上推演的结果,并未有针对性地指出推演结果的近似条件和实际使用中的近似性,容易使一些读者误把“理想的线阵列”与“实际的线阵列扬声器系统”相等同。

需要指出的是,线阵列在理论上推演出的结果与线阵列扬声器系统的特性之间,在实际应用中会有较大的距离。

但是理论上的阐述和推演出的结论,对于我们正确理解、认识和把握线阵列扬声器系统的应用是有帮助的。

1.线阵列扬声器系统的提出以往为了解决大场地(如大型体育馆、体育场和广场)扩声的需要,常采用几十只或上百只音箱组成大型的“音箱阵”或“音墙”,来满足场地扩声声压级和声场覆盖的要求。

低音区的好朋友:心形超低音线阵列扬声器背后的原理

低音区的好朋友:心形超低音线阵列扬声器背后的原理

低音区的好朋友:心形超低音线阵列扬声器背后的原理随着有源音箱的迅猛发展,内置“心形模式(cardioid mode)”DSP的有源超低音音箱(俗称低音炮)正在崛起。

但是在这一切现象之下究竟发生了什么?让我们先来了解一下心形超低音音箱阵列背后的原理,为您解除一些常见的困惑,并学习如何在演出现场对心形超低音音箱阵列进行部署。

在对如何控制超低音音箱的覆盖范围进行深入讨论之前,让我们先了解一下我们为什么需要对它进行控制。

与全频音箱不同,我们不能简单地将超低音音箱对准我们想要(声音传播的)的方向。

我们经常说:超低音音箱是全指向性的,它会将声能分散地传播到各个方向。

在我们所讨论的频率范围内,波长都是比较长的(在30赫兹的情况下,波长超过37英尺),因此,相对较小的音盆直径不能对输出的声波进行有效的方向控制。

一个针对这个观点的反驳是:超低音音箱在前面的声音都更响亮。

虽然超低音音箱在其频率范围的低频段非常接近于全指向性,但是较高的声音频率通常会带来较短的波长,也就意味着随着频率的增加对声音方向控制更容易。

尽管交叉滤波器可以在较高频率的频段造成频率响应的滚降,但是我们的耳朵对100 Hz以上的声波更敏感,这也使得超低音音箱在其主要覆盖范围内,听起来指向性更强。

对这个问题进行量化分析需要一个宽敞而且开放的室外空间,在这个场地内架设超低音音箱和用于测量的麦克风。

应该选什么地方呢?没错,我的后院是个非常好的选择。

因为在这个测试当中,我并不打算挪动我的房子还有工具房,所以在我们所获得的测量结果中,能够看出这些边界对测量结果存在着一定的影响。

接下来您很快就能发现,测量的距离对低音音箱阵列的感官性能也会产生非常显着的影响。

我将一对18英寸的超低音音箱放置在院子的中央,并在距离他们前后各二十英尺的地方架设了测量麦克风,这个距离是在不毁掉我的后院的情况下,能达到的最远的距离了。

图1显示了这两个测量麦克风的架设位置,是从后置的测量麦克风看过去的角度。

传统音箱与线阵音箱的区别

传统音箱与线阵音箱的区别

⏹传统音箱声音扩散点声源的扩散点声源声音衰减:距离增加一倍,声压降低6dBIven Yip⏹线阵音箱声音扩散线声源的扩散线性声源声音衰减:距离增加一倍,声压降低3dBIven Yip⏹传统音箱与线阵音箱的传输对比点声源与线声源的声压衰减“线阵列是一组振幅相等并同相紧密地排成一条直线的声辐射元素”。

这是声学工程师Olson 在其1957年的著作中对线阵列的描述。

一个理想的线声源由无限多个、间距极小并且连续的振动元素组成,发出柱面波。

这样的线声源有一个不寻常的幅射特性,它的声压级衰减在每倍的距离只有3dB,一个点声源产生一个球面波,它的声压级衰减为与声源距离的平方反比关系,每倍距离衰减6个dB。

Iven Yip⏹传统音箱与线阵音箱的传输对比点声源的声压衰减理论值10M80M40M20M125dB105dB 99dB 93dB 87dB 125dB115dB 112dB 109dB 106dB线声源的声压衰减理论值10M80M40M20MIven Yip⏹线阵音箱的准则波阵面的面积及距离1°WH1+WH2+WH3+WH4+WH5 ≥80% WH2°Step ≤λ/2Iven Yip⏹线阵音箱的准则波阵面的高度及偏离角距离Deviation <λ/4Fmax = 170/(H x (1/sin(V/2) –1/tan(V/2)))Example 1 : H= 30cm V= 10°Fmax = 13kHzExample 2 : H= 15cm V=10°Fmax = 26kHzIven Yip。

扬声器、拾音器的指向特性在扩声系统中的作用

扬声器、拾音器的指向特性在扩声系统中的作用
TRACT
The fundamental role of sound reinforcement system is through the construction of acoustic and electric acoustic means of making the audience or the technical and artistic personnel need access to sound information. It is weeks, natural sound emitted by the source of the sound power is limited. With the sound transmission, sound pressure level will gradually decline, resulting in noisy listening environments hear the voices of those on the content, or even hear voices. Therefore, in the indoor hall and outdoor occasions, the need for sound reinforcement system for signal amplification, such as voice processing, so that listeners of the sound field in which there is a satisfactory environment for sound pressure level. To achieve this purpose, it is necessary to use the indoor acoustic and electric acoustic means. Room acoustics in some of the facilities are still using traditional, because they meet some basic requirements, and basically do not have to maintain. However, the versatility of their systems and transmission of the lack of sound quality, etc., can no longer meet the requirements of a contemporary design. The development of the acoustic power of modern sound reinforcement system design provides a powerful support.

线阵列的的特点

线阵列的的特点

线阵列的的特点在专业音响领域,你会发现线阵列音箱应用非常广泛。

比如大型年会、音乐演唱会、体育赛事等场所都会用到。

那么线阵列音箱到底有何特点?什么场所可以使用这些线阵列音箱?为了搞清楚这些问题我们有必要了解线阵列的一些技术名词。

通过这些技术名词更好地掌握线性阵列音箱所包含的内容,以辨别出不同厂家产品的相似之处和特别之处。

1、圆柱状波形一般来说,一个线性声源将会建立一个声压波阵面,在一个特定范围的波长(频率)下,这个波阵面呈松散的圆柱状。

它的形状正像一个蛋糕上的一部分,因为波阵面的表面区域仅在水平面上扩张,所以每当距离加倍时,其影响的范围也加倍,这等于说每当距离加倍,声压级水平将损失3dB。

2、球状波形一个理想状态下的点声源,例如一个扬声器或者是一个非线性音箱簇会发射出一个球状波形而不是一个圆柱状波形。

这种波形的波阵面在每个距离上其影响的范围为四倍水平,等于每当距离加倍,声压级水平将损失6dB。

这就是通常说的反区间法则,这个法则适用于所有点声源发射的能量。

因此说阵列线音箱的最大优势就是在给定数目扩音器的情况下,它的长距离传送水平会比非线性阵列音箱,或者点声源音箱系统强大很多。

3、指向性图形这是一个在离散模型,简单的说来就是当你将一些扬声器码放在一起时,由于单个驱动器在垂直平面的位置离轴而使得它们的指向性发生变化,这样它们的垂直散射角度就会减小。

码放的高度越高,垂直散射的角度就越小,同时轴线上的声压会越高。

在水平面上,一个多驱动器阵面会和一个单独驱动器有着同样的指向性图形。

有些人认为线性阵列音箱的水平图形会比驱动器的图形来的宽阔些,但他们错了,他们被由于多个驱动器较高的声压而带来的声音更加响亮这个现象给迷惑了。

总之,线性阵列音箱的极性图形和单个驱动器的图形是一致的。

4、线性阵列的长度除了将垂直覆盖角度变窄以外,线性阵列的长度也能够决定指向性频率的范围。

阵列线越长,这种模式下所控制的频率(较波长为长)越低。

扬声器线阵列测量技术(续完)

扬声器线阵列测量技术(续完)
矍 垡 墨
⑥凹圈 @囿 @。圈响 咖 6 响@ 岛 , @⑥ 响
文 章 编 号 :0 2 88 (0 2 1- 0 3 0 1 0 - 6 4 2 1 )0 0 2 - 5
扬声器线 阵列 测量 技术 ( 完 ) 续
董庆宾 , 齐 娜
・术 究・ 技研
( 中国传媒 大学
●一 技 蠢
。以 口 f “ r ^ f ⑥ 凹
扬 声 器 与 传 声 器
固 ⑧ 囿∞ 晌 6 畸⑥ @ ⑥
尤其是 对于大 型阵列 , 在实验 室环境下 依据 如何
t. y Amsed m,T e Neh r n s AE 2 0 : 2—1 . tr a h t e l d : S, 0 1 1 a 5
单元 个数 , 测量扬声 器阵列 的频 率响应 在扬声 器 主要 箱个 数增加 过程 中发 生 的“ 畸变 ” 。在该 测 量方 法 中 还涉 及增大 阵列单元 间夹角 的测量 , 并将测量 结果 与
未增 加角度 的阵列 测 量结 果相 比较 。在 J L的测量 B 中还 证 明了多个大 功率 低 音炮 组成 的阵列 也会 有较
加, 旁瓣声压级减小 , 指向性变尖锐 , 且声波干涉加
强, 低频时指 向性加强 。 如图 9所示 , 高频单元位 置 的变 化和箱体位 置的
■ 膏 拄 ● 投 稿 网址 :t :A do - ht / u i c p/ E n
22 3卷 1 2 l 0 ̄ 6 第 0 3 1 期}
Y0 k,NY ,US : r A AES,2 01:2 0 1—2
[3 赵其昌 . 1] 线阵列的柱面波及其发散 [ ] 电声技术 ,03 J. 20
这些特点决定了它无法使用单个扬声 器单元 的测量 方 法, 而且能反映线 阵列扬 声器 系统 的特性 参数 也与 基 于单个扬声器单元定义 的特 『参数 有所不 同。这些 操 生

浅谈SLS带式高音音箱及线性音柱的发展应用

浅谈SLS带式高音音箱及线性音柱的发展应用

浅谈SLS带式高音音箱及线性音柱的发展应用从2012德国法兰克福展、北京专业音响展、广州专业音响展等各大业内展会看,各大品牌厂商均大力推出各自最新研发的线性阵列音箱、线性阵列音柱,其研发和推广的力度已远远超过传统音箱。

从目前扬声器产品的发展看,线性阵列音箱、有源、体积小已经成为业界发展的潮流。

线阵列扬声器系统是近十几年迅速发展起来的。

在法国巴黎郊外的一家当时并不大的公司,L-Acoustices首先在1993年推出V-DOCS 线阵列扬声器系统,逐步受到用户的欢迎和重视。

随后各公司看到市场的需求,依据本身的技术基础,纷纷开发、研制、生产各自的线阵列扬声器系统。

线阵列扬声器系统在宽带范围内可以提供一个平滑的水平覆盖,一及一个可控的并具有很强的垂直指向性。

同时它可提供高声压级,适合于大场地远距离供声。

特别是线阵列扬声器系统在现场安装、吊挂方便。

这些显而易见的优异性能在现代的大型流动演出中深受使用者的喜爱。

在各大品牌的中值得一提的是美国SLS厂家,其专利的带状高音技术使得其线阵列扬声器系统在众多优秀产品中独树一帜,已经站在了行业发展的前头。

以前带式高音一般用在民用顶级HI-FIT音箱和录音棚监听音箱上,作为高保真还原使用。

世界著名的Hi-End高级扬声器制造商惠威集团,1997年推出了等磁场带式扬声器,奠定了其在国际电声界的科技领先地位;使用了带式技术的监听级M系列HI-FIT音箱,一直令业界瞩目,其赏心悦目的音质到至今为止,一直获得了专家及媒体一致的高度评价。

享誉全球并在国际监听音箱界中,一直拥有极高口碑的德国著名ADAM品牌,以其带式高音技术闻名于世;带式高音已经有较长的历史了,其出色的定位和频宽,显示了新一代霸主的地位。

而翻看一下她的客户名录;包括英国伦敦的Abbey Road Studios、美国纽约的林肯中心(Lincoln Center),日本的ONKIOHAUS等世界顶级录音室也都对其产品青睐有佳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于音箱的波束导向以及线阵列的指向性控制对于线阵列,多个品牌都在介绍自己的独特技术,但从物理层面来讲,不少“技术”都有吹嘘之嫌。

我在这里抛砖引玉,欢迎大家讨论。

扬声器不象手电筒,声音的特性也跟光线的特性不同,扬声器不能象手电筒一样对各频段的声音产生锐利的投射声束,而且声音也不象光束,不同的声音覆盖在同一块地方会因相位的关系相互抵消和出现梳状滤波(事实上,不同的光源发出的光线在同一处叠加也会相互抵消和产生梳状滤波,不过由于光速太快,波长太短,使得人眼不能分辨而已)。

虽然怎样处理扬声器波束导向的书和论文都很少。

可是,在军事上很早就有两个领域应用了波束导向技术:天线阵(相控雷达)和水下天线阵(声纳),而且应用广泛。

相对于雷达和声纳,扬声器的波束导向是相当困难的,因为人耳的听域范围非常宽,从20Hz(低频)到20KHz (高频)。

一个20Hz纯音的波长是15.25米,而一个20KHz纯音的波长仅0.013米。

这11倍频程的频率范围使波束导向的变得非常困难。

事实上,雷达和声纳的工作频率范围最多是单个倍频程,往往只是工作在单一频率。

如果只需单个频率的声音进行导向,也很容易做到,但是,从20Hz(低频)到20KHz(高频)就很困难了。

由于阵列的间隔和几何尺寸对波束的传播都有影响,通常,对不同的阵列进行优化处理用于不同的频率范围,而这对于专业音频领域的应用是不切实际的,它受扬声器单元尺寸和工艺的限制,波束导向在专业音频的应用只限制于某一频段。

为了使波束导向能够应用,阵列中的每一个扬声器单元的辐射区域必须和阵列中其它扬声器的辐射区域相叠加,如果从两个(或更多)的扬声器单元辐射出来的声音不能交叠,声音的导向跟本无从谈起,相关的理论可以查阅波动力学。

对于现在市场上的所有线阵列音箱,线阵列看上去象紧密排列的单元——看上去就象雷达理论书上所示的图形,也跟介绍波束导向理论中理想化的全指向单元所组成的图形相同。

——但是它们的本质是非常不同的,现在的所有线阵列的本质都是---低频(有的包括中频)都是采用直接辐射的方式,而高频采用波导(Waveguides)方式。

而也没有任何的一款线阵列音箱产生柱面波,详情请查阅《Can line Arrays Form Cylindrical Waves》一文(线阵列能否产生柱面波)。

----(原文如下)。

只是不同品牌采用了不同的波导方式而已。

Can Line Arrays form cylindrical WavesWritten by Meyer Sound线阵列能否产生柱面波What Is a Line Array?A line array is a group of radiating elements arrayed in a straight line, closely spaced and operating with equal amplitude and in phase. Described by Olson in his 1957 classic text, Acoustical Engineering, line arrays are useful in applications where sound must be projected over long distances. This is because line arrays afford very directional vertical coverage and thus project sound effectively.什么是线阵列?线阵列是指一组排列在一条直线上的辐射元件,它们紧密的靠紧,工作时有着相同的振幅及相位。

Olson于1957年在他的经典著作<<Acoustical Engineering>>中说过:线阵列在需要长距离声音传输的场合中是非常有用的。

这是因为线阵列提供非常直接的垂直覆盖范围,因而有效地辐射出声音。

Fig. 1. Directional behavior of an eight meter long array of sixteen omni-directional sourcesThe MAPP plots of Figure 1 illustrate the directional characteristics of a line array composed of sixteen omni-directional sources uniformly spaced 0.5 meters apart. The array is highly directional to 500 Hz; above that, the directional characteristic begins to break down. Note the strong rear lobe at low frequencies; all conventional line arrays will exhibit this behavior because they are omnidirectional in this range. Note also the strong vertical lobes at 500 Hz. (The horizontal pattern of this system is independent of the vertical, and is omni-directional at all frequencies.)Fig. 2. Directional behavior of an eight meter long array of thirty-two omni-directional sourcesFigure 2 shows a line of thirty-two sources spaced 0.25 me ters apart. Notice that this array maintains its directional characteristic to 1 kHz, where the strong vertical lobe appears. This illustrates the fact that directionality at high frequencies requires progressively more closely spaced elements.How Do Line Arrays Work?Line arrays achieve directivity through constructive and destructive interference. A simple thought experiment illustrates how this occurs.Consider a speaker comprising a single twelve-inch cone radiator in an enclosure. We know from experience that this speaker’s directivity varies with frequency: at low frequencies, it is omni-directional; as the sound wavelength grows shorter, its directivity narrows; and above about 2 kHz, it becomes too beamy for most applications. This is why practical system designs employ crossovers and multiple elements to achieve more or less consistent directivity acr oss the audio band.Stacking two of these speakers one atop the other and driving both with the same signal results in a different radiation pattern. At points on-axis of the two there is constructive interference, and the sound pressure increases by 6 dB relative to a single unit. At other points off-axis, path length differences produce cancellation, resulting in a lower sound pressure level. In fact, if you drive both units with a sine wave, there will be points where the cancellation is complete(this is best demonstrated in an anechoic chamber). This is destructive interference, which is often referred to as combing.A line array is a line of woofers carefully spaced so that constructive interference occurs on-axis of the array and destructive interference (combing) is aimed to the sides. While combing has traditionally been considered undesirable, line arrays use combing to work: without combing, there would be no directivity.Can a Line Array Form Cylindrical Waves?In a word, no.The common misconception regarding line arrays is that they somehow magically enable sound waves to combine, forming a single "cylindrical wave" with special propagation characteristics. Under linear acoustic theory, however, this is impossible: the claim is not science but a marketing ploy.Unlike shallow water waves, which are non-linear and can combine to form new waves, sound waves at the pressures common in sound reinforcement cannot join together: ra ther, they pass through one another linearly. Even at the high levels present in the throat of compression drivers, sound waves conform to linear theory and pass through one another transparently. Even at pressure levels of 130 dB nonlinear distortion is less than 1%.The MAPP plot of Figure 3, which shows a cross-fired pair of Meyer MSL-4 loudspeakers, illustrates this point. At the area labeled A, in the crossfire region, there is significant destructive interference in the dark areas. At the area labeled B, however, the output of the corresponding MS L-4 is completely unaffected by the cross-firing unit. Though the waves interfere at A, the interference is local to that area in space, and they still pass through one another unaffected. In fact, you could turn off the cross-firing unit and hear virtually no change whatsoever at B.Fig. 3. Cross-fired MSL-4 loudspeakersThis experiment is best done in an anechoic chamber or outdoors in an open field, away from reflecting surfaces. It’s also advisable to apply a low-cut filter to remove information below about 500 Hz, where the MSL-4 starts to lose directionality.But don’t line arrays produce waves that only drop 3dB with every doubling of the distance from the array?This simplistic marketing claim appears to be a misapplication of classical line array theory to practical systems. Classical line array mathematics assumes a line of infinitely small, perfectly omni-directional sources that is very large compared with the wavelength of the emitted energy. Obviously, practical systems cannot approach these conditions, and their behavior is far more complex than some audio company marketers suggest.Modeling the behavior of a fifteen-inch woofer with Bessel functions (which describe a piston), Meyer Sound has written custom computer code to model line arrays with various numbers of loudspeakers at various spacings. This computation shows that it is theoretically possible to construct an audio line array that follows the theory a t low frequencies, but it requires more than 1,000 fifteen-inch drivers, spaced twenty inches center-to-center, to do it!A truncated continuous line array will produce waves that drop 3 dB per doubling of distance in the near field, but the extent of the near field depends on the frequency and the length of the array. Some would have us believe that, for a hybrid cone/wave guide system, the near field extends hundreds of meters at high frequencies. It can be shown mathematically that this is true for a line of 100 small omni-directional sources spaced an inch apart, but that is hardly a practical system for sound reinforcement and is not a model for the behavior of wave guides.Nor does the purely theoretical computation reflect the reality of air absorptio n and its effects at high frequencies. The table below shows the attenuation at various distances from an array of 100 one-inch pistons spaced one inch apart, as modeled using a Bessel function. A t 500 Hz and above, it also shows the total attenuation when air absorption is included using the calculation given in ANSI Standard S1.26-1995 (the conditions for this table are 20° C ambient temperature and 11% relative humidity). Note that, while at 16 kHz the array as modeled by the Bessel function is approaching 3 dB attenuation per doubling of distance, air absorption makes its actual behavior closer to 6 dB per distance doubling.Table 1. Attenuation in decibels for octave frequency bands at various distancesfrom a line array of 100 one-inch pistons spaced one inch apartWith a practical, real line array of sixteen cabinets (each using fifteen-inch low frequency cones), a slight "cylindrical wave" effect can be measured at about 350 Hz, where there is a 3 dB drop between two and four meters from the array. More than four meters from the array, however, the sound spreads spherically, losing 6 dB per distance doubling. This behavior can be confirmed with MAPP using the measured directionality of real loudspeakers.At frequencies below 100 Hz, the drivers in a practical line array will be omni-directional but the array length will be small compared with the sound wavelength, so the system will not conform to line array theory. Above about 400 Hz the low-frequency cones become directional, again violating the theory’s assumptions. And a t high frequencies, all practical systems use directional wave guides whose behavior cannot be descr ibed using line array theory.In short, the geometry of real audio line arrays is far too complicated to be modeled accurately by antenna theory. They can only be accurately modeled by a computational code that uses a high-resolution measurement of the complex directionality of actual loudspeakers, such as MAPP.That said, practical line array systems remain very useful tools, regardless of whether the continuous line array equation applies. They still achieve effective directional control, and skilled designers can make them behave very well in long-throw applications.How Do Practical Line Array Systems Handle High Frequencies?Figures 1 and 2 show that line array theory works best for low frequencies. As the sound wavelength decreases, more and more drivers, smaller in size and spaced more closely, are required to maintain directivity. This is why some line array systems cross over to eight-inch drivers for the midrange. Eventually, however, it becomes impractical to use, for example, hundreds of closely spaced one-inch cones.Practical line array systems therefore act as line arrays only in the low and mid frequencies. For the high frequencies, some other method must be employed to attain directional characteristics that match those of the lows and mids. The most practical method for reinforcement systems is to use wave guides (horns) coupled to compression drivers.Rather than using constructive and destructive interference, horns achieve directionality by reflecting sound into a specified coverage pattern. In a properly designed line array system, that pattern should closely match the low-frequency directional characteristic of the array: very narrow vertical coverage and wide horizontal coverage. (Narrow vertical coverage has the benefit that it minimizes multiple arrivals, which would harm intelligibility.) If this is achieved, then the wave guide elements can be integrated into the line array and, with proper equalization and crossovers, the beam from the high frequencies and the constructive interfere nce of the low frequencies can be made to align so that the resulting arrayed system provides consistent coverage.Can Line Array Loudspeakers Be Used Singly?No, the cone drivers in a line array loudspeaker need the other cones in the array to create dir ectionality. The cones in a single cabinet have the same directional characteristics as comparable cone drivers in other types of loudspeakers. Inother words, each cabinet in a line array is not producing a "slice of a cylindrical wave." That is a marketing concept, not a scientific one.Can You Curve a Line Array to Get Wider Coverage?In practice, gently curving a line array (no more than five degrees of splay among cabinets) can aid in covering a broader area. Radically curving line arrays, however, introduces problems.First, if the high-frequency section has the narrow vertical pattern that’s required to make a straight array work, curving the array can produce hot spots and areas of poor high-frequency coverage. Second, while the curvature can spread high frequencies over a larger area, it does nothing to the low frequencies, which remain directional because the curvature is trivial at long wavelengths.Figure 4 illustrates these points. On the left is a series of MAPP plots for a curved array, and on the right are plots of a straight array. Both arrays are constructed of identical loudspeakers having a 12-inch cone low-frequency driver and a high-frequency horn with a 45-degree vertical pattern.Notable in the left-hand plots is that, while the wider horn aids in spreading the high frequencies, it also introduces pronounced lobing due to interference. At 1 k Hz and below, the array remains highly directional, following line array theory. In practice, this behavior would produce very uneven coverage, with the frequency response varying substantially across the coverage area and a large proportion of that area receiving almost no low-frequency energy.The right-hand series of plots reveals that a loudspeaker with a moderately wide-coverage horn designed for curved arrays behaves poorly in a straight array. While the array is highly directional, pronounced vertical lobing occurs at 1 kHz and above. These strong side lobes divert energy from the intended coverage area and would excite the reverberant field excessively, reducing intelligibility.Fig. 4. Directional characteristics of a curved (left) and straight (right) line array using a high-frequency horn with a 45-degree vertical patternCan You Combine Line Arrays With Other Types of Speakers?Yes, since linear waves pass through one another regardless of whether they are created by a direct radiator or a wave guide, it is possible to combine line array systems with other types of loudspeakers as long as their phase response matches that of the line array speakers. There is nothing special about the sound waves that line arrays create. They are merely the output of low-frequency cones, spaced using line array theory, and high-frequency wave guides.Therefore, skilled designers with the proper tools can flexibly integrate other compatible types of loudspeakers to cover short-throw areas.Fig. 5. A CQ-1 rigged under an M3D line array provides downfill coverageHow Do Line Arrays Behave in the Near and Far Field?As we have seen, practical "line array" systems as used in high-power applications are actually a combination of "classical" line arrays for the low frequencies and highly directive wave guides for the high frequencies. Because of this hybrid nature, it is difficult to apply predictions from classical line array theory across the whole audi o spectrum. Nonetheless, line array systems can be made to work reasonably well in both the far field and moderately close to the array.Seen from the far field, the outputs of the individual sources in a line array combine constructively, and appear to operate as one source. Figure 6 illustrates this concept. The figure shows the far-field frequency response for line arrays of two, four and eight omni-directional radiators (a single-omni response is included for reference) spaced 0.4 meters apart. Notice that each doubling of the number of elements results in a uniform 6 dB level increase across the full frequency range of operation. The high frequency response is smooth, but reflects a natural roll off due to air absorption (20 degrees C and 50% relative humidity).Fig. 6. Far-field frequency response for line arrays with various numbers of sources showing high-frequency loss due to air absorption and humidityThe near-field behavior of practical line arrays is more complex. Any given point in the near field is on axis of only one of the very directional high-frequency horns, yet "sees" the low-frequency energy from most of the cabinets in the array. For this reason, adding cabinets to the array boosts the near-field low-frequency energy, but the high frequencies remain the same.This explains why line array systems need high-frequency boost equalization. In the far field, the equalization effectively compensates for air loss. In the near field, it compensates for the constructive addition of the low frequencies and the proximity to the directional high-frequency wave guide.The Meyer 3D (M3D)Figure 7 illustrates how a low-frequency line array and high-frequency waveguides can be integrated to form a well-behaved, consistent system. I t shows the directional characteristics of a line array comprising sixteen Meyer 3D (M3D) Line Array Loudspeakers. By virtue of the M3D’s REM (ribbo n emulation manifold) and constant-Q horn, the high frequency radiation pattern closely matches the low frequencies.Note, also, the absence of any significant rear lobe at low frequencies. This illustrates the advantages of the M3D’s BroadbandQ low-frequency directional technology. There is virtually no vertical lobing at 500 Hz (as was seen in the omni array of Figure 1) because the 15-inch cone drivers and the high frequency horn are aligned in this region to work together and suppress off-axis energy.Fig. 7. Directional behavior of an eight meter long array of sixteen Meyer 3D (M3D) Line Array Loudspeakers。

相关文档
最新文档