光纤模块基本知识
光模块基础知识培训PPT共80页

光模块基础知识培训PPT共80页目录
1.光模块概述
1.1光模块定义
1.2光模块分类
2.光模块组成与结构
2.1光电转换模块
2.2光发射模块
2.3光接收模块
2.4光连接器和接口
3.光模块应用领域
3.1数据中心
3.2通信网络
3.3其他领域
4.光模块工作原理
4.1光电转换原理
4.2光信号调制与解调原理
4.3光信号传输原理
5.光模块参数及性能指标
5.1光功率
5.2光端口功率均衡
5.3波长稳定性
5.4接收灵敏度
5.5光折射率
5.6饱和输出功率
5.7脉冲电流
5.8热效应
5.9光模块亚临界工作
5.10环境适应性
6.光模块的安装与维护6.1光模块的安装步骤6.2光模块的维护方法
6.3光模块的故障排除
7.光模块的未来发展趋势7.1高速化
7.2高密度化
7.3低功耗化
7.4光模块的集成化
8.光模块的市场前景与挑战
8.1市场前景
8.2技术挑战
8.3行业竞争格局
9.Q&A
以上是一个光模块基础知识培训PPT的目录内容,总共包含80页。
每页平均约有1500/80=18.75字,所以整个文档应该有超过1500字的内容。
具体的每页内容可以根据实际情况编写,确保文档内容完整、准确、易懂、有条理。
光模块知识

光模块知识
光模块简介
光模块(Optical Module)是一种在电信通信系统中,由光纤连接各种电子设备的一种设备,用来降低线缆的负载,满足高带宽要求的无线传输,有效地提升传输速率。
光模块有各种不同类型,包括单模、多模、单纤、跳纤、光电转换、光电耦合等等,他们都可以用来满足特定的信号传输要求。
光模块的结构
光模块是由电子电路和光纤组成的。
电子电路主要是用来处理信号,可以检测信号,转换信号、滤波,扩展信号范围等功能。
光纤是作为信号传输的介质,它可以传输大量的数据,而且速度比普通线缆快得多。
光模块分类
1、单模光模块
单模光模块是一种常用的光模块,它具有体积小,结构简单,价格便宜的优点,特别适合低速度的传输,如电信接入网,宽带接入网,有线电视网和无线电缆网等。
2、多模光模块
多模光模块是一种在高速传输应用中使用的光模块,它具有高可靠性和高速传输的特点,能够满足高速的网络应用,如网络存储、网络视频传输、网络控制等。
3、单纤光模块。
光模块知识介绍

1.1 光纤系统简介
• 光纤通信主要是指利用激光作为信息的载体信号并通过光导纤维来传 递信息的通信系统,有以下优点:
– 宽的传输带宽 – 低的传输损耗 – 不受电磁干扰 – 成本低,重量轻
1.1 光纤系统简介
• 基本光纤系统的构架及其功能介绍: – 发送单元:把电信号转换成光信号; – 传输单元:载送光信号的介质; – 接收单元:接收光信号并转换成电信号; – 连接器件:连接光纤到光源、光检测以及其它光纤。
内径:单模9um 多模50/62.5um
多模光纤跳线的颜色为橙色 单模光纤跳线的颜色为黄色
125 9
125 50
12 62.5 5
1.4 光纤的基本知识
• 色散(Dispersion):光脉冲沿着光纤行进一段距离后造成 的 频宽变粗。它是限制传输速率的主要因素。 – 模间色散:不同模式的光沿着不同的路径传输。 – 材料色散:不同波长的光行进速度不同。 – 波导色散:发生原因是光能量在纤芯及包层中传输时, 会以稍有不同的速度行进。在单模光纤中,通过改变光 纤内部结构来改变光纤的色散非常重要。
,务必戴上防尘帽; 3、盘纤的直径不能少于6cm,如图表9所示; 4、光纤跳线每插拔5次,需清洁1次; 5、一根光纤跳线任意一端连接器最多插拔5000次; 6、跳接线在使用和转移过程中不许有锐角弯折以及甩动; 7、对于外观已经损坏的光纤跳线不予使用。
超详细的光模块介绍

超详细的光模块介绍光模块发展简述光模块分类按封装:1*9 、GBIC、SFF、SFP、XFP、SFP+、X2、XENPARK、300pin 等。
按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。
按波长:常规波长、CWDM、DWDM等。
按模式:单模光纤(黄色)、多模光纤(橘红色)。
按使用性:热插拔(GBIC、SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。
封装形式光模块基本原理光收发一体模块(Optical Transceiver)光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。
由两部分组成:接收部分和发射部分。
接收部分实现光-电变换,发射部分实现电-光变换。
发射部分:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。
接收部分:一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。
同时在输入光功率小于一定值后会输出一个告警信号。
光模块的主要参数1. 传输速率传输速率指每秒传输比特数,单位Mb/s 或Gb/s。
主要速率:百兆、千兆、2.5G、4.25G和万兆。
2.传输距离光模块的传输距离分为短距、中距和长距三种。
一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。
■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。
注意:• 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。
• 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。
光模块的基本原理

光模块(Optical Module)是一种集成了光电转换器件和光传输设备的组件,用于光纤通信系统中的光信号的发送和接收。
其基本原理如下:
1. 光电转换:光模块内部通常包含一个光电转换器件,如光电二极管(PD)或光电探测器(APD)。
当光信号通过光纤到达光模块时,光信号会被转换为电信号。
这个过程是通过光电转换器件中的半导体材料的光电效应实现的。
2. 光信号调制:在光模块中,光信号通常需要进行调制以便携带信息。
这种调制可以是强度调制、相位调制或频率调制。
调制的方法通常取决于具体的应用需求。
3. 光信号传输:光模块通过光纤将光信号传输到目标设备或接收光纤。
光模块通常包含光纤连接器,使其能够与其他光纤设备进行连接。
4. 光信号接收:在目标设备或接收光纤处,光模块使用光电转换器件将传输的光信号转换为电信号。
这个过程与光电转换相反,通过光电二极管或光电探测器将光信号转换为电信号。
总的来说,光模块的基本原理就是将光信号转换为电信号,或者将电信号转换为光信号,实现光纤通信系统中的光信号的发送和接收。
光模块基础知识

光模块基础知识光模块是一种将电信号转换为光信号的设备,通常用于光纤通信和光纤传感领域。
它是光通信系统中的重要组成部分,起着传输和接收光信号的作用。
本文将介绍光模块的基础知识,包括其类型、工作原理、应用场景等方面。
一、光模块的类型根据光模块的封装形式和工作波长,可以将光模块分为多种类型。
其中,常见的光模块类型包括:SFP、SFP+、QSFP、CFP、XFP等。
这些不同类型的光模块适用于不同的应用场景和需求。
例如,SFP 光模块适用于1Gbps的光纤通信,而SFP+光模块则适用于10Gbps的通信需求。
二、光模块的工作原理光模块的工作原理是将电信号转换为光信号,然后通过光纤进行传输。
首先,电信号经过电-光转换器,被转换为光信号。
然后,光信号经过光纤传输到目标地点。
最后,光信号再经过光-电转换器,被转换为电信号。
这样,光模块实现了电信号和光信号之间的互相转换。
三、光模块的应用场景光模块广泛应用于光通信系统和光纤传感领域。
在光通信系统中,光模块用于实现高速、远距离的光信号传输。
它被广泛应用于光纤通信、数据中心互联等领域。
在光纤传感领域,光模块可以用于实现光纤传感器的信号接收和传输。
例如,在石油工业中,光模块可以用于光纤传感器对温度、压力等参数的监测。
四、光模块的特点和优势光模块相比传统的电信号传输方式具有许多优势。
首先,光模块可以实现高速、远距离的信号传输,可以满足大带宽、长距离的通信需求。
其次,光模块具有低插损、低衰减的特点,可以保证信号的传输质量。
此外,光模块还具有抗电磁干扰、安全可靠等优势。
由于这些特点和优势,光模块在光通信和光纤传感领域得到了广泛应用。
五、光模块的未来发展趋势随着信息技术的不断发展和应用需求的增加,光模块也在不断演进和创新。
未来,光模块的发展趋势主要包括以下几个方面。
首先,光模块将实现更高的传输速率,如100Gbps、400Gbps等。
其次,光模块将实现更小尺寸的封装,以适应高密度集成的需求。
光模块光纤的常用知识.

光模块/光纤的常用知识以太网交换机常用的光模块有SFP,GBIC,XFP,XENPAK:SFP: Small Form-factor Pluggable transceiver ,小封装可插拔收发器GBIC :GigaBit Interface Converter,千兆以太网接口转换器XFP: 10-Gigabit small Form-factor Pluggable transceiver 万兆以太网接口小封装可插拔收发器XENPAK: 10 Gigabit EtherNet Transceiver PAcKage万兆以太网接口收发器集合封装光纤连接器光纤连接器由光纤和光纤两端的插头组成,插头由插针和外围的锁紧结构组成。
根据不同的锁紧机制,光纤连接器可以分为FC型、SC型、LC型、ST型和MTRJ型。
FC连接器采用螺纹锁紧机构,是发明较早、使用最多的一种光纤活动连接器。
SC是一种矩形的接头,由NTT研制,不用螺纹连接,可直接插拔,与FC连接器相比具有操作空间小,使用方便。
低端以太网产品非常常见。
LC是由LUCENT开发的一种Mini型的SC连接器,具有更小的体积,已广泛在系统中使用,是今后光纤活动连接器发展的一个方向。
低端以太网产品非常常见。
ST连接器是由AT&T公司开发的,用卡口式锁紧机构,主要参数指标与FC和SC连接器相当,但在公司应用并不普遍,通常都用在多模器件连接,与其它厂家设备对接时使用较多。
MTRJ的插针是塑料的,通过钢针定位,随着插拔次数的增加,各配合面会发生磨损,长期稳定性不如陶瓷插针连接器。
光纤知识光纤是传输光波的导体。
光纤从光传输的模式来分可分为单模光纤和多模光纤。
在单模光纤中光传输只有一种基模模式,也就是说光线只沿光纤的内芯进行传输。
由于完全避免了模式射散使得单模光纤的传输频带很宽因而适用与高速,长距离的光纤通迅。
在多模光纤中光传输有多个模式,由于色散或像差,这种光纤的传输性能较差,频带窄,传输速率较小,距离较短。
光模块知识(2.0)_PHOTON讲稿

0.35
0.3
minimum
0.25
0.2
1200
1300
1400
1500
1600
1700
Wavelength (nm)
G.652A and B
传输距离的计算(Tranceiver )
1,对单模光纤( 不考虑色散) 传输距离=(总光功率预算-插损-传输代价)/衰减系数
总光功率预算= Transmitter最坏光功率-Receiver接收最坏灵敏度 插 损 = 光路系统决定 传输代价 = Transceiver所决定
2.材料色散
含有不同波长的光脉冲通过光纤传输时,不同波长的电磁波会导致玻璃折射率不相同,传 输速度不同就会引起脉冲展宽,导致色散。
3.波导色散
它是由光纤的几何结构决定的色散,其中光纤的横截面积尺寸起主要作用。光在光纤中通 过芯与包层界面时,受全反射作用,被限制在纤芯中传播。但是,如果横向尺寸沿光纤轴发 生波动,除导致模式间的模式变换外,还有可能引起一少部分高频率的光线进入包层,在包 层中传输,而包层的折射率低、传播速度大,这就会引起光脉冲展宽,从而导致色散。
G.984.2 规定的上行 光信号的眼图模板
−y10
x1 x2
x3 x4 1
1UI
155.52Mbps
622.08Mbps
1244.16Mbps
x1/x.28/0.72
x2/x3 x3-x2 y1/y2
0.36/0.65 --
0.20/0.80
0.40/0.60 --
Vcc
PIN
i
Rf
A
u o =iR f
跨阻放大器原理图
在高速率光模块中,通常都是将PIN(或 者APD)光电二极管TIA组装在一个密 封的金属外壳内,这就构成了光接收组 件(ROSA)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤模块基本知识光纤模块基本知识光纤模块只有短波(SX)、长波(LX)和超长波(ZX)之分,没有单模多模之分!只有光纤才分单模多模!短波光纤模块:发光口大,传输距离近长波和超长波光纤模块:发光口小,传输距离远多模光纤:纤芯直径大,传输距离近单模光纤:纤芯直径小,传输距离远短波模块-单模光纤-短波模块:不可行!因为短波模块的发光口大于单模光纤的纤芯直径,部分光信号无法进入光纤长波模块-多模光纤-长波模块:一般可行,因为长波模块的发光口小于多模光纤的纤芯直径,所有光信号能够进入光纤。
但传输距离受多模光纤限制,只有几百米,而且本人见过连通性不稳定甚至连不通的情况!长波模块-多模光纤-短波模块:不可行!两端波长必须相同!如果传输距离较远,必须选择长波模块-单模光纤-长波模块!光纤主要分为两类:单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。
多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。
光纤使用注意!光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色要一致。
一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。
光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。
光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。
单模多模1. 光纤是如何工作的?通讯用光纤由外覆塑料保护层的细如毛发的玻璃丝组成。
玻璃丝实质上由两部分组成:核心直径为9到62.5μm,外覆直径为125μm的低折射率的玻璃材料。
虽然按所用的材料及不同的尺寸而分还有一些其它种类的光纤,但这里提到的是最常见的那几种。
光在光纤的芯层部分以“全内反射”方式进行传输,也就是指光线进入光纤的一端后,在芯层和包层界面之间来回反射,进而传输到光纤另一端。
芯径为62.5μm,包层外径为125μm的光纤称为62.5/125μm 光纤。
2. 多模和单模的区别是什么?多模:几乎所有的多模光纤尺寸均为50/125μm或62.5/125μm,并且带宽(光纤的信息传输量)通常为200MHz到2GHz。
多模光端机通过多模光纤可进行长达5公里的传输。
以发光二极管或激光器为光源。
单模:单模光纤的尺寸为9-10/125μm,并且较之多模光纤具有无限量带宽和更低损耗的特性。
而单模光端机多用于长距离传输,有时可达到150至200公里。
采用LD或光谱线较窄的LED作为光源。
区别与联系:单模光纤价格便宜,但单模设备较之同类的多模设备却昂贵很多。
单模设备通常既可在单模光纤上运行,亦可在多模光纤上运行,而多模设备只限于在多模光纤上运行。
3. 使用光缆时传输损耗如何?这取决于传输光的波长以及所使用光纤的种类。
850nm波长用于多模光纤时: 3.0分贝/公里1310nm波长用于多模光纤时: 1.0分贝/公里1310nm波长用于单模光纤时: 0.4分贝/公里1550nm波长用于单模光纤时: 0.2分贝/公里光模块1、何为GBIC?GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。
GBIC设计上可以为热插拔使用。
GBIC是一种符合国际标准的可互换产品。
采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场分额。
2、何为SFP?SFP是SMALL FORM PLUGGABLE的缩写,可以简单的理解为GBIC的升级版本。
SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。
SFP模块的其他功能基本和GBIC一致。
有些交换机厂商称SFP模块为小型化GBIC(MINI-GBIC)。
SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。
SFP模块的其他功能基本和GBIC相同。
网络连接设备接口类型BNC接口BNC接口是指同轴电缆接口,BNC接口用于75欧同轴电缆连接用,提供收(RX)、发(TX)两个通道,它用于非平衡信号的连接。
光纤接口光纤接口是用来连接光纤线缆的物理接口。
通常有SC、ST、LC、FC等几种类型。
对于10Base-F连接来说,连接器通常是ST类型,另一端FC连的是光纤步线架。
FC是Ferrule Connector的缩写,其外部加强方式是采用金属套,紧固方式为螺丝扣。
ST接口通常用于10Base-F,SC接口通常用于100Base-FX和GBIC,LC通常用于SFP 。
LC-FC1、光纤分类光纤按光在其中的传输模式可分为单模和多模。
多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。
单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。
故有62.5/125μm、50/125μm、9/125μm等不同种类。
光纤的工作波长有短波850nm、长波1310nm和1550nm。
光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长 1.65μm以上的损耗趋向加大。
由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。
2、单模光纤单模光纤(SingleModeFiber):单模光纤只有单一的传播路径,一般用于长距离传输,中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
后来发现在1310nm 波长处,单模光纤的总色散为零。
从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。
这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。
1310nm 常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
900~1300nm和1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。
目前美国康普公司提供的TeraSPEEDTM 零水峰单模光缆,正解决了此问题,TeraSPEED系统通过消除了1400nm水峰的影响因素,从而为用户提供了更广泛的传输带宽,用户可以自由使用从1260nm到1620nm的所有波段,因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM 粗波分复用技术打下了坚实的基础,TeraSPEED解决方案为园区/城市级理想的主干光纤系统。
3、多模光缆多模光纤(MultiModeFiber)-芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
因此,多模光纤传输的距离就比较近,一般只有几公里。
提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。
因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。
OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。
采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm更可支持40公里传输)。
如Gigac的XFP 万兆光模块850nm可以传输330米,单模1550nm可以传输80km.因此,如果要选择多模光缆应从以下几点进行考虑:A.从未来的发展趋势来讲,水平布线网络速率需要1Gb/s带宽到桌面,大楼主干网需要升级到10Gb/s速率带宽,园区骨干网需要升级到10Gb/s或100Gb/s的速率带宽。
目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆。
B.从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模62.5/125);由于OM3光缆使用低价的VCSEL和850nm光源设备,使万兆传输造价大大降低。
如果距离不超过150米,选用LazrSPEED150(OM250/125支持万兆150米);LazrSPEED300是300米万兆传输最好的选择;LazrSPEED550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统。
4、光纤传输距离1 传输速率1Gb/s,850nma、普通50μm多模光纤传输距离550m,b、普通62.5μm多模光纤传输距离275m,c、新型50μm多模光纤传输距离1100m。
2 传输速率10Gb/s,850nm,a、普通50μm多模光纤传输距离250m,b、普通62.5μm多模光纤传输距离100m,c、新型50μm多模光纤传输距离550m。
3.传输速率2.5Gb/s,1550nm,a、g.652单模光纤传输距离100km,b、g.655单模光纤传输距离390km(ofs truewave)。
4 传输速率10Gb/s,1550nm,a、g.652单模光纤传输距离60km,b、g.655单模光纤传输距离240km(ofs truewave)。
5 传输速率在40Gb/s,1550nm,a、g.652单模光纤传输距离4km,b、g.655单模光纤传输距离16km(ofs truewave)。
ofs truewave:ofs公司出品的真波光纤。