2015年中考数学经典题专项训练
2015年九年级数学试题含答案

1F ABCD HEG ①②③④⑤ACD图2九年级数学试题(满分120分,时间120分钟)一、选择题:(共15小题,每题小3分,共计45分) 1. 下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分2. 某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A. ()22891256x -= B. ()22561289x -= C. 289(1-2x)=256 D.256(1-2x)=289 3. 若△ABC ~△DEF ,它们的面积比为4:1,则△ABC 与△DEF 的相似比为A .2:1B .1 :2C .4:1D .1:44.顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形5. 关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( )A .0B .8C .4±D .0或86. 如图,△ABC 中,BC = 2,DE 是它的中位线,下面三个结论:⑴DE=1;⑵△ADE ∽△ABC ;⑶△ADE 的面积与△ABC 的面积之比为 1 : 4。
其中正确的有( )A . 0 个 B.1个 C . 2 个 D.3个7.如图,是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的( )A.①②③④B.④①③②C.④②③①D.④③②①8.函数y=x m m )3(-是反比例函数,则m 必须满足 ( )A.m ≠3B.m ≠0或m ≠3C. m ≠0D.m ≠0且m ≠39.如图2,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是...( ) A .矩形 B .菱形 C .正方形 D .等腰梯形10.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC面积的14,那么点B ′的坐标是( ) A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)11. 关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 212. 如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( ) A.2 B. 3 C. 4 D.6 13、已知反比例函数xky =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限14. 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm(B )36cm (C )24cm (D )18cm15. 如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+B学校:____________ 班级: 姓名: 考号:_____________密 封 线 内 不 要 答 题2二、填空题:(共6小题,每小题3分,共18分)16. 已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是 17.如果函数y =222-+k k kx是反比例函数,那么k =________,此函数的解析式是 ;18. 如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A .B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是18题19. 如图,已知△ABC 的面积是3的等边三角形,△ABC ∽△ADE ,AB=2AD ,∠BAD=45°,AC 与DE 相交于点F ,则△AEF 的面积等于__________(结果保留根号).20.若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数xy 1-=的图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是 ;21. 如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 .三、解答题:(共7个大题,共57分)22. (每小题3分,共6分)(1)解方程x 2-4x +1=0(2)(x +1)(x -2)=x +123.(3分)(1)如图4,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .(2) (5分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆没增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?24、 (8分)如图,在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 与A D ,不重合),一直角边经过点C ,另一直角边AB 交于点E .我们知道,结论“Rt Rt AEP DPC △∽△”成立. ⑴当30CPD =∠时,求AE 的长;⑵是否存在这样的点P ,使DPC △的周长等于AEP △周长的2倍?若存在,求出DP 的长;若不存在,请说明理由.B F 图42l 1l325.(本小题满分8分)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张. (1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD 是平行四边形的概率26、(9分)如图3,点A是双曲线xky 与直线y=-x-(k+1)在第二象限内的交点, AB⊥x 轴于B ,且S△ABO =23. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.(3)根据图像直接写出反比例函数值大于一次函数值的X 的取值范围。
2015年中考数学专项训练--选择题(二)-1.doc

2015年中考数学专项训练--选择题(二)答案附:上表中共有20种可能的组合,相同组合(同种颜色表示相同组合)只算一种,余10种组合,其中1男1女的组合有6组,所以一男一女的概率()53106==一男一女P11.解:根据题意,画出树状图如下:一共有36种情况,当x=1时,y=﹣x 2+3x=﹣12+3×1=2,当x=2时,y=﹣x 2+3x=﹣22+3×2=2,当x=3时,y=﹣x 2+3x=﹣32+3×3=0,当x=4时,y=﹣x 2+3x=﹣42+3×4=﹣4,当x=5时,y=﹣x 2+3x=﹣52+3×5=﹣10,当x=6时,y=﹣x 2+3x=﹣62+3×6=﹣18, 所以,点在抛物线上的情况有2种, P (点在抛物线上)181362==故选A .21.解:作AE ⊥y 轴于E ,CF ⊥y 轴于F ,如图,∵四边形OABC 是平行四边形,∴S △AOB =S △COB ,∴AE =CF ,∴OM =ON , ∵S △AOM =21|k 1|=21OM •AM ,S △CON =21|k 2|=21ON •CN , ∴21k k CN AM,所以①正确; ∵S △AOM =21|k 1|,S △CON =21|k 2|, ∴S 阴影部分=S △AOM +S △CON =21(|k 1|+|k 2|),而k 1>0,k 2<0, ∴S 阴影部分=21(k 1﹣k 2),所以②错误; 当∠AOC =90°,∴四边形OABC 是矩形, ∴不能确定OA 与OC 相等, 而OM =ON ,∴不能判断△AOM ≌△CNO , ∴不能判断AM =CN ,∴不能确定|k 1|=|k 2|,所以③错误; 若OABC 是菱形,则OA =OC , 而OM =ON ,∴Rt △AOM ≌Rt △CNO ,∴AM =CN ,∴|k 1|=|k 2|,∴k 1=﹣k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,所以④正确. 故答选择C .22.解:过点C 作CE ⊥x 轴于点E ,过点D作DF ⊥x 轴于点F , 设OC =3x ,则BD =x , 在Rt △OCE 中,∠COE =60°,则OE =23x ,CE =233x , 则点C 坐标为(23x ,233x ), 在Rt △BDF 中,BD =x ,∠DBF =60°, 则BF =21x ,DF =23x , 则点D 的坐标为(x 215-,23x ), 将点C 的坐标代入反比例函数解析式可得:k =439x 2, 将点D 的坐标代入反比例函数解析式可得:243235x x k -=, 则2243235439x x x -=, 解得:x 1=1,x 2=0(舍去), 故43914392=⨯=k 故选择A24.解:如图,∵A 点坐标为(﹣1,1), ∴k=﹣1×1=﹣1,∴反比例函数解析式为xy 1-=, ∵OB=AB=1,∴△OAB 为等腰直角三角形,∴∠AOB=45°, ∵PQ ⊥OA ,∴∠OPQ=45°,∵点B 和点B ′关于直线l 对称,∴PB=PB ′,BB ′⊥PQ , ∴∠BPQ=∠B ′PQ=45°,即∠B ′PB=90°, ∴B ′P ⊥y 轴,∴B 点的坐标为(t1-,t ),∵PB=PB ′,∴t ﹣1=|﹣t 1|=t1,。
2015中考九年级数学检测试卷(有答案)

第5题图第2题图 第8题图九年级数学试题一、选择题 (本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列计算中,正确的是( ).A .2a +3b =5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 22.已知实数a b 、在数轴上对应的点如图所示,则下列式子正确的是( ).A .0ab >B .a b >C .0a b ->D .0a b +>3.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大, 多么大的经济总量,除以13亿,都会变得很小.”如果每人每天浪费0.01 千克粮食,我国13亿人每天就浪费粮食( ).A .1.3×105 千克 B. 1.3×106千克 C. 1.3×107千克 D. 1.3×108千克4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子 长为1.1m ,那么小刚举起的手臂超出头顶( ). A .0.5m B .0.55m C .0.6m D .2.2m5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角 形ABC 的边长为( ).ABC.D.6.某种品牌的同一种洗衣粉有A B C 、、三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A B C 、、三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A B C 、、三种包装的洗衣粉各1200千克,获得利润最大的是( ).A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ). A .15 B .29 C .14 D .5188.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2. A..6第12题图第10题图第9题图C..129.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相 应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( ).A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩ C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳 节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人, 每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8 人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长) 相等.设每人向后挪动的距离为x ,根据题意,可列方程( ).A .2π(6010)2π(6010)68x +++= B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯ 11.下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不等实数根;④ 若240b ac ->,则二次函数的图象与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 12.能分别是( ).A .y = k x ,y =kx 2-xB .y = kx,y =kx 2+x C .y = - k x ,y=kx 2+x D .y = - kx,y =-kx 2-x 二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.函数y =x 的取值范围是 .14.如图,∠1的正切值等于__________.15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在第14题图第15题图第16题图x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′ 的 位置.若OBtan ∠BOC =12,则点A′ 的坐标为_________. 16.如图,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径 为2,∠P =60°,则图中阴影部分的面积为 .17.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题(本大题共7题,共69分.解答应写出文说明、证明过程或推演步骤.) 18.(8分)网瘾低龄化问题已引起社 会各界的高度关注,有关部门在 全国范围内对12~35岁的网瘾人 群进行了抽样调查.下图是用来 表示在调查的样本中不同年龄段 的网瘾人数的,其中30~35岁的 网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人;(2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~ 17岁的网瘾人数约为多少人?19.(8分)如图,梯形ABCD 内接于⊙O ,BC ∥AD ,AC 与BD 相交 于点E ,在不添加任何辅助线的情况下:(1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一 对全等三角形进行证明.(2)若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.第1个图第2个图第3个图… 第17题图20.(10分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要 方法.善于学习的小明在学习了一次方程(组)、 一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 . 21.(10分)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000 m 2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m 2或乙种板材20 m 2.问:应分别安排多少人生产甲种板材和乙 种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间 问:这400间板房最多能安置多少灾民?一次函数与方程的关系 一次函数与不等式的关系1 第20题图第22题图22.(10分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对 角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交 BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.23.(11分)随着风筝城潍坊近几年城市建设的快速发展,对花木的需求量 逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预 测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花 卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资 量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?24.(12分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分 别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 图① 图②九年级数学试题答案一、选择题1.D 2. C 3. C 4. A 5. C 6. B 7. B 8. A 9. D 10. A 11. B 12. B 二、填空题 13.2x ≥ 14. 13 15. 34(,)55- 16.-43π 17 . 3n +1 三、解答题19.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ······ 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . · 8分20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:(1)设安排x 人生产甲种板材,则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.···················································· (6分)解得300m ≥. ······················································································· (7分) 又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························ (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ················································ (10分) 22.(本题满分10分)(1)证明:当90AOF ∠=时,AB EF ∥,又AF BE ∥,∴四边形ABEF 为平行四边形. ······································································· 3分 (2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴= ·································································································· 5分 (3)四边形BEDF 可以是菱形. ······································································ 6分 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形. ·················· 7分 在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,-------8分,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. ···································· 10分 23.(1)设1y =kx ,由图12-①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k 故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过 (2,2),所以222⋅=a ,21=a ABCD OF E故利润2y 关于投资量x 的函数关系式是221x y =…………………………4分 (2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x …………………6分当2=x 时,z 的最小值是14 ……………………………………………8分 因为80≤≤x ,所以622≤-≤-x所以36)2(2≤-x ,所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32; ………………………………………11分 24. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.…………………3分(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.…………………………6分(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,AB CD ER PM 2 1 A HQA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.…………………12分。
2015中考数学真题分类总汇编_二次函数填空选择精选50题(含解析汇报)(1)

2015中考数学真题分类汇编:二次函数(选择题)一.选择题(共30小题)1.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+2.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.下列四个函数图象中,当x>0时,y随x的增大而减小的是()A.B.C.D.4.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.5.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.6.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.2的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …)A.﹣11 B.﹣2 C.1 D.﹣58.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.9.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.10.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.11.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个12.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)13.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.414.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧15.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数16.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣217.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m 的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣118.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<019.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)20.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)221.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<022.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小23.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.424.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③25.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤26.二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.b2﹣4ac>0 D.a+b+c<027.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.428.如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个B.1个C.2个D.3个29.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.130.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2 B.3 C.4 D.5二.填空题(共21小题)1.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.2.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.3.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).4.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.5.对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).6.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y),点B(3,y2)都在抛物线上,则y1<y2;④a(m1﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)7.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)8.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.9.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.10.在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.11.当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为.12.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.13.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.14.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.15.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.16.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.17.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.18.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.19.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.20.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.21.如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是.参考答案与试题解析一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+考点:二次函数的定义.分析:根据二次函数的定义,可得答案.解答:解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c(a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.2.(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.3.(2015•衢州)下列四个函数图象中,当x>0时,y随x的增大而减小的是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:计算题.分析:利用一次函数,二次函数,以及反比例函数的性质判断即可.解答:解:当x>0时,y随x的增大而减小的是,故选B4.(2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象.解答:解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.点评:此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.5.(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选C.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.解答:解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.点评:本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.7.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5考点:二次函数的图象.分析:根据关于对称轴对称的自变量对应的函数值相等,可得答案.解答:解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.点评:本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.8.(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.考点:二次函数的图象.分析:根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.解答:解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.点评:本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.9.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.10.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解答:解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx 来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx 来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.点评:此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.11.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.12.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)考点:二次函数的性质.专题:压轴题.分析:直接利用顶点式的特点可写出顶点坐标.解答:解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.点评:主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.13.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.4考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.14.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧考点:二次函数的性质.分析:根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.2解答:解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的右侧.故选D.点评:本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.15.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数考点:二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析:求出一次函数和反比例函数的解析式,根据其性质进行判断.解答:解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.点评:本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质.分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.17.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1考点:二次函数的性质.分析:根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.解答:解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.18.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0考点:二次函数的性质;反比例函数图象上点的坐标特征.专题:计算题.分析:把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.解答:解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.点评:本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.19.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M 在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)考点:二次函数的性质.分析:根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.解答:解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.点评:本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x ﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.20.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2考点:二次函数的性质.分析:根据二次函数的性质求出各个函数的对称轴,选出正确的选项.解答:解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.点评:本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.21.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.22.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小考点:二次函数的性质;二次函数的图象.分析:A、将x=0代入y=x2﹣2x﹣3,求出y=﹣3,得出函数图象与y轴的交点坐标,即可判断;B、将一般式化为顶点式,求出顶点坐标,即可判断;C、将y=0代入y=x2﹣2x﹣3,求出x的值,得到函数图象与x轴的交点坐标,即可判断;D、利用二次函数的增减性即可判断.解答:解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,∴x<0时,y随x的增大而减小,故本选项说法正确;故选B.点评:本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键.23.(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.解答:解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.24.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:当x=﹣1时y>0,∴点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B点评:此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.25.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点.专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当。
中考2015年中考数学真题分类汇编 一次函数的应用

一次函数的应用一.选择题(共10小题)1.(2015•哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是( ) A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据图象可以确定他家与学校的距离,公交车时间是多少,他步行的时间和公交车的速度和小明从家出发到学校所用的时间.解答:解:①小明从家出发乘上公交车的时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车的速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校的速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为10﹣7=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横、纵坐标表示的意义是解题的关键,注意,在解答时,单位要统一.2.(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是( ) A.小亮骑自行车的平均速度是12km/h B.妈妈比小亮提前0.5小时到达姥姥家 C.妈妈在距家12km处追上小亮 D.9:30妈妈追上小亮考点:一次函数的应用.分析:根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.解答:解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.3.(2015•连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( ) A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元 C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元考点:一次函数的应用.分析:根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.解答:解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.点评:本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.4.(2015•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( ) A.小明中途休息用了20分钟 B.小明休息前爬山的平均速度为每分钟70米 C.小明在上述过程中所走的路程为6600米 D.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.解答:解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25,小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.5.(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有( ) A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解答:解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④错误.故选C.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.6.(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( ) A. 1 B. 2 C. 3 D.4考点:一次函数的应用.分析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.解答:解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.7.(2015•随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是( ) A. 4 B. 3 C. 2 D.1考点:一次函数的应用.分析:根据题意结合横纵坐标的意义得出辆摩托车的速度进而分别分析得出答案.解答:解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,则,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有3个,故选:B.点评:此题主要考查了一次函数的应用,读函数的图象时首先要理解横纵坐标表示的含义是解题关键.8.(2015•鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有( ) A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.解答:解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,∴④正确;综上可知正确的有①②④共三个,故选C.点评:本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.9.(2015•荆门)在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t (秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是( ) A.甲的速度随时间的增加而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒时,两人相遇 D.在起跑后第50秒时,乙在甲的前面考点:一次函数的应用.分析:A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.解答:解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( ) A.购买A类会员年卡B.购买B类会员年卡 C.购买C类会员年卡D.不购买会员年卡考点:一次函数的应用.分析:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤50时,确定y的范围,进行比较即可解答.解答:解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤50时,1175≤y A≤1300;1100≤y B≤1200;1075≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.二.填空题(共6小题)11.(2015•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为 y=6+0.3x .考点:根据实际问题列一次函数关系式.分析:根据高度等于速度乘以时间列出关系式解答即可.解答:解:根据题意可得:y=6+0.3x(0≤x≤5),故答案为:y=6+0.3x.点评:此题考查函数关系式,关键是根据题中水位以每小时0.3米的速度匀速上升列出关系式. 12.(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 5 s能把小水杯注满.考点:一次函数的应用.分析:一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.解答:解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.点评:此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.13.(2015•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 2 元.考点:一次函数的应用.分析:根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.解答:解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.点评:本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB的函数解析式.14.(2015•黄石)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为 29 元.型号 A B单个盒子容量(升) 2 3单价(元) 5 6考点:一次函数的应用.分析:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.解答:解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.点评:本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.15.(2015•阜新)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 七 折.考点:一次函数的应用.分析:根据函数图象求出打折前后的单价,然后解答即可.解答:解:打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,=0.7,所以,在这个超市买10本以上的练习本优惠折扣是七折.故答案为:七.点评:本题考查了一次函数的应用,比较简单,准确识图并求出打折前后每本练习本的价格是解题的关键.16.(2015•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为 () .考点:一次函数综合题.分析:先用待定系数法求出直线AB的解析式,由对称的性质得出AP⊥AB,求出直线AP的解析式,然后求出直线AP与x轴的交点即可.解答:解:设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB的解析式为:y=x+2;∵点B与B′关于直线AP对称,∴AP⊥AB,∴设直线AP的解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP的解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().点评:本题是一次函数综合题目,考查了用待定系数法确定一次函数的解析式、轴对称的性质、垂线的关系等知识;本题有一定难度,综合性强,由直线AB的解析式进一步求出直线AP的解析式是解决问题的关键.三.解答题(共14小题)17.(2015•甘南州)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 15考点:一次函数的应用.专题:图表型.分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出方程,求x的值,再代入(1)求利润.解答:解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)=26400,解得x=360,∴每天至少获利y=5x+9000=10800.点评:根据题意,列出利润的函数关系式及成本的关系式,固定成本,可求A种品牌酒的瓶数,再求利润.18.(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?考点:一次函数的应用.分析:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.解答:解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤12时,y=x;当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y=.(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费47元.点评:本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.19.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数的应用.分析:(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.解答:解:(1)小敏去超市途中的速度是:3000÷10=300,在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.点评:本题考查了一次函数的应用,观察函数图象获取信息是解题关键.20.(2015•济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.解答:解:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,根据题意得:,解得:65≤x≤75,∴甲种服装最多购进75件;(2)设总利润为W元,W=(120﹣80﹣a)x+(90﹣60)(100﹣x)即w=(10﹣a)x+3000.①当0<a<10时,10﹣a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10﹣a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.点评:本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.21.(2015•日照)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离 1050 千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.考点:一次函数的应用.分析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.解答:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:1050.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.点评:本题考查了一次函数的应用,解决本题的关键是读懂图象,获取相关信息,用待定系数法求函数解析式.22.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:(1)设一个篮球x元,则一个足球(x﹣30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x个,足球(100﹣x)个,根据“篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元”,列出不等式组,求出x的取值范围,由x为正整数,即可解答;(3)表示出总费用y,利用一次函数的性质,即可确定x的取值,即可确定最小值.解答:解:(1)设一个篮球x元,则一个足球(x﹣30)元,由题意得:2x+3(x﹣30)=510,解得:x=120,∴一个篮球120元,一个足球90元.。
2015年中考数学 走出题海之黄金30题系列(第01期)专题01 经典母题30题(含解析)

专题01 经典母题30题一、选择题1.的相反数是()A. B.﹣ C.2 D.﹣2【答案】B【解析】的相反数是﹣,添加一个负号即可.故选B.2.下列图形中是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】B.3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC【答案】C【解析】A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选C.4.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是()A.6 B.7 C.8 D.9【答案】C.【解析】将这组数据重新排序为6,7,8,9,9,∴中位数是按从小到大排列后第3个数为:8.故选C.5.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【答案】D.6.由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A. B. C. D.【答案】A.【解析】根据从上面看得到的图形是俯视图,可得:从上面看有两排,前排右边一个,后排三个正方形,故选A.7.不等式3x+2>﹣1的解集是()A.1x3-> B.1x3-< C.x1-> D.x1-<【答案】C.【解析】移项得,3x >﹣1﹣2,合并同类项得,3x >﹣3,把x 的系数化为1得,x >﹣1.故选C .8.将抛物线y=x 2平移得到抛物线y=(x+2)2,则这个平移过程正确的是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位【答案】A .【解析】根据图象左移加可得,将抛物线y=x 2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选A .9.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为( )A .18B .20C .24D .28【答案】C .【解析】设黄球的个数为x 个,根据题意得:311212=+x ,解得:x=24, 经检验:x=24是原分式方程的解;∴黄球的个数为24.故选C .10. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.x y 523x 2y 20+=⎧⎨+=⎩B.x y 522x 3y 20+=⎧⎨+=⎩C.x y 202x 3y 52+=⎧⎨+=⎩D.x y 203x 2y 52+=⎧⎨+=⎩【答案】D .【解析】本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:x y 203x 2y 52+=⎧⎨+=⎩. 故选D .11.如图,三棱柱的体积为10,其侧棱AB 上有一个点P 从点A 开始运动到点B 停止,过P 点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x 、y ,则下列能表示y 与x 之间函数关系的大致图象是( )A .B .C .D .【答案】A . 【解析】∵过P 点作与底面平行的平面将体积为10的三棱柱截成两个部分的体积分别为x 、y ,∴x+y=10,即y=﹣x+10(0≤x ≤10).∴函数图象是经过点(10,0)和(0,10)的线段.故选A .12.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3D E .将△ADE 沿A E 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .则下列结论:①△ABG ≌△AFG ;②BG=CG ;③AG ∥CF ;④S △EGC =S △AFE ;⑤∠AGB+∠AED=145°.其中正确的个数是( )A .2B .3C .4D .5【答案】C 【解析】①正确.理由:∵AB=AD=AF ,AG=AG ,∠B=∠AFG=90°,∴Rt △ABG ≌Rt △AFG (HL );②正确.理由: EF=DE=31CD=2,设BG=FG=x ,则CG=6﹣x .在直角△ECG 中,根据勾股定理,得(6﹣x )2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC ;③正确.理由:∵CG=BG ,BG=GF ,∴CG=GF ,∴△FGC 是等腰三角形,∠GFC=∠GCF .又∵Rt △ABG ≌Rt △AFG ;∴∠AGB=∠AGF ,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF ,∴∠AGB=∠AGF=∠GFC=∠GCF ,∴AG ∥CF ;④正确.理由:∵S △GCE =21GC •CE=21×3×4=6,∵S △AFE =21AF •EF=21×6×2=6,∴S △EGC =S △AFE ; ⑤错误.∵∠BAG=∠FAG ,∠DAE=∠FAE ,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=135°. 故选C .二、填空题13.分解因式:2a a - = .【答案】()a a 1-.【解析】()2a a a a 1-=-.14.计算:50°﹣15°30′= .【答案】34°30′.【解析】50°﹣15°30′=49°60′﹣15°30′=34°30′.15.在函数y=中,自变量x 的取值范围是 .【答案】x ≠﹣2【解析】由题意得,2x+4≠0,解得x ≠﹣2.16.如图,将边长为6的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在点Q 处,EQ 与BC 交于点G ,则△EBG 的周长是 cm .【答案】12【解析】由翻折的性质得,DF=EF ,设EF=x ,则AF=6﹣x ,∵点E 是AB 的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE ,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为12.17.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数kyx=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.【答案】y=2x.【解析】设OC=a,∵点D在kyx=上,∴CD=ka.∵△OCD∽△ACO,∴23OC AC OC aACCD OC CD k=⇒==. ∴点A的坐标为(a,3a k ).∵点B是OA的中点,∴点B的坐标为3a a,22k⎛⎫⎪⎝⎭.∵点B在反比例函数图象上,∴kaak223=,∴a2=2k. ∴点B的坐标为(a2,a).设直线OA的解析式为y=mx,则m·2a=a,∴m=2.∴直线OA的解析式为y=2x.18.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.【答案】160【解析】设这种商品每件的进价为x元,由题意得,240×0.8﹣x=20%x,解得:x=160,即每件商品的进价为160元.19.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.【答案】1或3【解析】如图所示:∵⊙O 的半径为2,弦BC=23,点A 是⊙O 上一点,且AB=AC ,∴AD ⊥BC ,∴BD=BC=3,在Rt △OBD 中,∵BD 2+OD 2=OB 2,即(3)2+OD 2=22,解得OD=1, ∴当如图1所示时,AD=OA ﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.20.如图,在△ABC 中,AC=BC=8,∠C=90°,点D 为BC 中点,将△ABC 绕点D 逆时针旋转45°,得到△A ′B ′C ′,B ′C ′与AB 交于点E ,则S 四边形ACDE = .【答案】28【解析】由题意可得:∠B=∠BDE=45°,BD=4,则∠DEB=90°,∴BE=DE=22,∴S △BDE =21×22×22=4,∵S △ACB =21×AC ×BC=32,∴S 四边形ACDE =S △ACB ﹣S △BDE =28. 21.分式方程x x 1x 2x -=+的解为x= . 【答案】2.【解析】去分母得:x 2=x 2﹣x+2x ﹣2,解得:x=2,经检验x=2是分式方程的解.22.如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…根据以上规律,请直接写出OM 2014的长度为 .【答案】21007.【解析】∵点M 0的坐标为(1,0),∴OM 0=1.∵线段OM 0绕原点O 逆时针方向旋转45°,M 1M 0⊥OM 0,∴△OM 0M 1是等腰直角三角形.∴OM 1OM 0同理,OM 21=2,OM 3OM 2=3,…,OM 2014OM 2013=2014=21007.三、解答题23.(1)计算:(1014sin4512-⎛⎫-︒-+ ⎪⎝⎭ (2)先化简,再求值:()()()2a a 3b a b a a b -++--,其中1a 1b 2==-,.【答案】(1)10;(2)54.【解析】(1)(1014sin45124112-⎛⎫-︒-+=--+ ⎪⎝⎭. (2)()()()2222222a a 3b a b a a b a 3ab a 2ab b a ab a b -++--=-+++-+=+. 当1a 1b 2==-,时,原式=2211511244⎛⎫+-=+= ⎪⎝⎭. 24.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点A (﹣2,2),B (0,5),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形.(2)平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),请画出平移后对应的△A 2B 2C 2的图形.(3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)旋转中心坐标(0,﹣2).【解析】(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).25.海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整;(2)随机调查的游客有人;在扇形统计图中,A部分所占的圆心角是度;(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有人.【答案】(1)补图见解析;(2)400, 72°;(3)420.【解析】(1)∵喜爱B产品的人数为60÷15%-80-72-60-76=112(人),∴将条形统计图补充完整如下:(2)400, 72°.(3)420.26.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.【答案】(1)y=6x ﹣100;(2)120吨;(3)100吨.【解析】(1)设y 关于x 的函数关系式y=kx+b ,∵直线y=kx+b 经过点(50,200),(60,260),∴50k b 20060k b 260+=⎧⎨+=⎩,解得k 6b 100=⎧⎨=-⎩.∴y 关于x 的函数关系式是y=6x ﹣100. (2)由图可知,当y=620时,x >50,∴6x ﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得,()x 6x 100x 8060020-+-=,化简得x 2+40x ﹣14000=0 解得:x 1=100,x 2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.27.如图,在平面直角坐标系中,⊙M 过原点O ,与x 轴交于A (4,0),与y 轴交于B (0,3),点C 为劣弧AO 的中点,连接AC 并延长到D ,使DC=4CA ,连接BD .(1)求⊙M 的半径;(2)证明:BD 为⊙M 的切线;(3)在直线MC 上找一点P ,使|DP ﹣AP|最大.【答案】(1)52;(2)证明见解析;(3)取点A 关于直线MC 的对称点O ,连接DO 并延长交直线MC 于P ,此P 点为所求,且线段DO 的长为|DP ﹣AP|.【解析】(1)∵由题意可得出:OA 2+OB 2=AB 2,AO=4,BO=3,∴AB=5.∴圆的半径为52. (2)由题意可得出:M (2,32).∵C 为劣弧AO 的中点,由垂径定理且 MC=52,故 C (2,﹣1).如答图1,过 D 作 DH ⊥x 轴于 H ,设 MC 与 x 轴交于 N ,则△ACN ∽△ADH ,又∵DC=4AC ,∴ DH=5NC=5,HA=5NA=10.∴D (﹣6,﹣5).设直线BD 表达式为:y=ax+b ,则6k b 5b 3-+=-⎧⎨=⎩,解得:4k 3b 3⎧=⎪⎨⎪=⎩.∴直线BD 表达式为:y=43x+3. 设 BD 与 x 轴交于Q ,则Q (9,04- ).∴OQ=94.∴2515AQ ,BQ 44== . ∵222225625BQ ,AB 25,AQ 1616=== ,∴222BQ AB AQ +=.∴△ABQ 是直角三角形,即∠ABQ=90°. ∴BD ⊥AB ,BD 为⊙M 的切线.(3)如答图2,取点A 关于直线MC 的对称点O ,连接DO 并延长交直线MC 于P ,此P 点为所求,且线段DO 的长为|DP ﹣AP|的最大值.设直线DO 表达式为 y=kx ,∴﹣5=﹣6k ,解得:k=56.∴直线DO 表达式为 y=56x 又∵在直线DO 上的点P 的横坐标为2,∴y=53.∴P (2,53).此时|DP ﹣28.如图,在平面直角坐标系中,A 是抛物线21y x 2=上的一个动点,且点A 在第一象限内.AE ⊥y 轴于点E ,点B 坐标为(0,2),直线AB 交x 轴于点C ,点D 与点C 关于y 轴对称,直线DE 与AB 相交于点F ,连结BD .设线段AE 的长为m ,△BED 的面积为S .(1)当m =S 的值.(2)求S 关于()m m 2≠的函数解析式.(3)①若S AF BF 的值; ②当m >2时,设AF k BF=,猜想k 与m 的数量关系并证明.【答案】(1;(2)()S m m >0,m 2=≠ ;(3)①34;②21k m 4=,证明见解析. 【解析】(1)∵点A 是抛物线21y x 2=上的一个动点,AE ⊥y 轴于点E ,且AE m =,∴点A 的坐标为21m,m 2⎛⎫ ⎪⎝⎭.∴当m =A 的坐标为)1. ∵点B 的坐标为()0,2 ,∴BE=OE=1.∵AE ⊥y 轴,∴AE ∥x 轴. ∴△ABE ∽△CBO .∴AE BE CO BO=12=,解得CO =∵点D 与点C 关于y 轴对称,∴DO CO ==∴11S BE DO 122=⋅=⋅⋅.(2)①当0<m <2时,如图,∵点D 与点C 关于y 轴对称,∴△DBO ≌△CBO .∵△ABE ∽△CBO ,∴△ABE ∽△DBO .∴BE BOAE DO =.∴BE DO AE BO 2m ⋅=⋅= ∴11S BE DO 2m m 22=⋅=⋅=.②当m >2时,如图,同①可得11S BE DO AE OB m 22=⋅=⋅=综上所述,S 关于m 的函数解析式()S m m >0,m 2=≠ .(3)①如图,连接AD ,∵△BEDS m == A的坐标为32⎫⎪⎭ . 设ADFAEF BDF BEF S S AF k S S BF∆∆∆∆===,∴ADF BDF AEF BEF S kS ,S kS ∆∆∆∆== . ∴()BDF BEF ADE ADF AEF BDE BDF BEF BDF BEFk S S S S S k S S S S S ∆∆∆∆∆∆∆∆∆∆--===--.∴ADEBDE 13S AF 3k BF S 4∆∆===.②k 与m 的数量关系为21k m 4=,证明如下: 连接AD ,则 ∵ADF AEF BDF BEF S S AF k S S BF∆∆∆∆===,∴ADF BDF AEF BEF S kS ,S kS ∆∆∆∆== . ∴()BDF BEF ADE ADF AEF BDE BDF BEF BDF BEF k S S S S S k S S S S S ∆∆∆∆∆∆∆∆∆∆++===++. ∵点A 的坐标为21m,m 2⎛⎫ ⎪⎝⎭ ,∴()22ADEBDE 11m m S 122k m m >2S m 4∆∆⋅===.29.课本中有一道作业题:有一块三角形余料ABC ,它的边BC=120mm ,高AD=80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm ,4807mm ;(2)PN=60mm ,PQ 40=mm . 【解析】(1)设矩形的边长PN=2ymm ,则PQ=ymm ,由条件可得△APN ∽△ABC , ∴PN AE BC AD =,即2y 80y 12080-=,解得240y 7=,∴PN=2407×2=4807(mm ). 答:这个矩形零件的两条边长分别为2407mm ,4807mm. (2)设PN=xmm ,由条件可得△APN ∽△ABC , ∴PN AE BC AD =,即x 80PQ 12080-=,即2PQ 80x 3=-. ∴()()22S PN PQ x 80x x 80x x 602400=⋅=-=-+=--+.∴S 的最大值为2400mm 2,此时PN=60mm ,2PQ 8060403=-⨯=mm .30.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【答案】(1)购买一个台灯需要25元,购买一个手电筒需要5元;(2)荣庆公司最多可购买21个该品牌的台灯.【解析】(1)设购买该品牌一个手电筒需要x 元,则购买一个台灯需要(x+20)元.根据题意 得2116020400⨯=+x x 解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a ,则还需要购买手电筒的个数是(2a+8)由题意得 25a+5(2a+8)≤670解得 a ≤21所以 荣庆公司最多可购买21个该品牌的台灯.31.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x (单位:时),慢车与第一、第二列快车之间的距离y (单位:千米)与x (单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为 千米.(2)求图1中线段CD 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)请直接在图2中的( )内填上正确的数.【答案】(1)900;(2)y=75x (6≤x ≤12);(3)0.75,6.75.【解析】(1)由函数图象得:甲、乙两地之间的距离为900千米, 故答案为:900;(2)由题意,得:慢车速度为900÷12=75千米/时,快车速度+慢车速度=900÷4=225千米/时,快车速度=225﹣75=150千米/时,快车走完全程时间为900÷150=6小时快车到达时慢车与快车相距 6×75=450千米,∴C (6,450).设y CD =kx+b (k ≠0,k 、b 为常数)把(6,450)(12,900)代入y CD =kx+b 中,有⎩⎨⎧=+=+450690012b k b k ,解得:⎩⎨⎧==075b k .∴y=75x (6≤x ≤12); (3)由题意,得4.5﹣(900﹣4.5×75)÷150=0.75,4.5+6﹣(900﹣4.5×75)÷150=6.75.故答案为:0.75,6.75.32.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ).(1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】【解析】(1)x 2﹣7x+12=0,解得x 1=3,x 2=4,∵OA >OB ,∴OA=4,OB=3,过D 作DE ⊥y 于点E ,∵正方形ABCD ,∴AD=AB ,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE ,∵DE ⊥AE ,∴∠AED=90°=∠AOB ,∵DE ⊥AE ∴∠AED=90°=∠AOB ,∴△DAE ≌△ABO (AAS ),∴DE=OA=4,AE=O B=3,∴OE=7,∴D (4,7);(2)过点C 作CM ⊥x 轴于点M ,同上可证得△BCM ≌△ABO ,∴CM=OB=3,BM=OA=4,∴OM=7,∴C (7,3),设直线BC 的解析式为y=kx+b (k ≠0,k 、b 为常数),代入B (3,0),C (7,3)得,⎩⎨⎧=+=+0337b k b k , 解得⎪⎪⎩⎪⎪⎨⎧-==4943b k ,∴y=43x ﹣49; (3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).。
精品 2015年全国数学中考函数真题汇总88题共23页
精品2015年全国中考数学真题函数题汇总1.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程S关于时间t的函数图象,那么符合小明行驶情况的图象大致是( )2.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬上的速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面5.已知一个函数图像经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( )A.正比例函数B.一次函数C.反比例函数D.二次函数6.下列函数解析式中,一定为二次函数的是( )A.13-=x yB.c bx ax y ++=2C.1222+-=t t sD.xx y 12+= 7.已知直线y=kx+b ,若k+b=﹣5,kb=5,那该直线不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.平面直角坐标系中,过点(-2,3)的直线l 经过一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( )A.b a <B.3<aC.3<bD.2-<c9.在反比例函数x m y 31-=图象上有两点A(x 1,y 1)、B(x 2,y 2),x 1<0<y 1,y 1<y 2,则m 的取值范围是( ) A.m >31 B.m <31 C.m ≥31 D.m ≤31 10.下列关于二次函数y=ax 2﹣2ax+1(a >1)的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧11.若函数y=kx-b 的图象如图,则关于x 的不等式k(x-3)-b >0的解集为( )A.x <2B.x >2C.x <5D.x >5第11题图 第12题图 第13题图12.如图,直线y kx b =+与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足30a -≤<时,k 的取值范围是( )A.10k -≤<B.13k ≤≤C.1k ≥D.3k ≥13.如图,在平面直角坐标系中,点(1)A m-,在直线23y x =+上.连结OA ,将线段OA 绕点O 顺时针旋转90︒,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为( )(A )2- (B )1 (C )32(D )2 14.若抛物线2()(1)y x m m =-++的顶点在第一象限,则m 的取值范围为( )A.1m >B.0m >C.1m ->D.10m -<<15.设二次函数y 1=a(x −x 1)(x −x 2)(a ≠0,x 1≠x 2)的图象与一次函数y 2=dx+e(d ≠0)的图象交于点(x 1,0),若函数y=y 2+y 1的图象与x 轴仅有一个交点,则( )A.a(x 1−x 2)=dB.a(x 2−x 1)=dC.a(x 1−x 2)2=dD.a(x 1+x 2)2=d 16.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc <0;②a+b=0;③4a+2b+c <0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2.上述说法正确的是( )A.①②④B.③④C.①③④D.①②第16题图 第17题图 第18题图17.如图,观察二次函数y=ax 2+bx+c 的图象,下列结论:①a+b+c >0,②2a+b >0,③b 2﹣4ac >0,④ac >0.其中正确的是( )A.①②B.①④C.②③D.③④18.二次函数c bx ax y ++=2的图象如图,点C 在y 轴的正半轴上,且OA=OC ,则( )A. b ac =+1B. c ab =+1C. a bc =+1D. 以上都不是19.在同一直角坐标系中,一次函数k kx y -=与反比例函数)0(≠=k xk y 的图象大致是( )20.如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到△CBD ,若点B 的坐标为(2,0),则点C 的坐标为( )21.二次函数c x x y ++=2的图象与x 轴有两个交点A (1x ,0),B (2x ,0),且21x x <,点P (m ,n )是图象上一点,那么下列判断正确的是( )A.当0<n 时,0<mB.当0>n 时,2x m >C.当0<n 时,21x m x <<D.当0>n 时,1x m <22.已知抛物线y=ax 2+bx +c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )A.只能是x=-1B.可能是y 轴C.在y 轴右侧且在直线x=2的左侧D.在y 轴左侧且在直线x=-2的右侧23.对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x ;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0); ④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .424.已知二次函数y=x 2+(m-1)x+1,当x >1时,y 随x 的增大而增大,而m 的取值范围是( )A.m=﹣1B.m=3C.m ≤﹣1D.m ≥﹣1 25.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A.2 B.4 C.22 D.42第25题图 第26题图 第27题图26.如图,在平面直角坐标系xOy 中,直线y=x 经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD .若点B 的坐标为(2,0),则点C 的坐标为( ) A . (﹣1,) B . (﹣2,) C . (﹣,1) D . (﹣,2)27.在平面直角坐标系中,直线y =-x +2与反比例函数1y x =的图象有唯一公共点. 若直线y x b =-+与反比例函数1y x=的图象有2个公共点,则b 的取值范围是( ) (A) b ﹥2.(B) -2﹤b ﹤2. (C) b ﹥2或b ﹤-2. (D) b ﹤-2.28.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数y= (x<0)图象上一点,AO 的延长线交函数y= (x>0,k 是不等于0的常数)的图象于点C ,点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,连接CC ′,交x 轴于点B ,连结AB ,AA ′,A ′C ′,若△ABC 的面积等于6,则由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于( )A. 8B. 10C. 3D. 429.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是( ) A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)30.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成。
广东省各市2015年中考数学试题分类汇编(解析版)专题3:方程(组)问题
广东省各市2015年中考数学试题分类解析汇编(20专题)专题3:方程(组)问题1. (2015年广东佛山3分)若()()221x x x mx n +-=++,则m n +=【 】A. 1B. 2-C. 1-D. 2 【答案】C.【考点】求代数式的值;整体思想的应用.【分析】∵()()221x x x mx n +-=++,即222x x x mx n +-=++,∴2mx n x +=-. 令1x =得1m n +=-. 故选C.2. (2015年广东佛山3分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为202m 的矩形空地,则原正方形空地的边长是【 】A. 7mB. 8mC. 9mD. 10m 【答案】A.【考点】一元二次方程的应用(几何问题). 【分析】设原正方形空地的边长是xm ,根据题意,得()()3220x x --=,化简,得25140x x --=,解得127,2x x ==- (不合题意,舍去).∴原正方形空地的边长是7m . 故选A.3. (2015年广东广州3分)已知,a b 满足方程组51234a b a b +=⎧⎨-=⎩,则a b +的值为【 】A. 4-B. 4C. 2-D. 2 【答案】B.【考点】解二元一次方程组;求代数式的值;整体思想的应用.【分析】由51234a b a b +=⎧⎨-=⎩两式相加,得4416a b +=,∴4a b +=. 故选B.4. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =.∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2. ∴三角形ABC 的周长为14. 故选B.5. (2015年广东深圳3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为【 】元.A. 140B. 120C. 160D. 100 【答案】B.【考点】一元一次方程的应用(销售问题). 【分析】设商品进价为x 元,根据题意,得2000.840x ⋅-=,解得120x =. ∴商品进价为120元. 故选B.6. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.7. (2015年广东珠海3分)一元二次方程2104x x ++=的根的情况是【 】 A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 无法确定根的情况【答案】B.【考点】一元二次方程根的判别式. 【分析】∵对于方程2104x x ++=有2114104D =-创=, ∴方程2104x x ++=有两个相等的实数根. 故选B.1. (2015年广东佛山3分)分式方程132x x=-的解是 ▲ . 【答案】3x =. 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()2x x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:()1332362632x x x x x x x x=⇒=-⇒=-⇒-=-⇒=-, 经检验,3x =是原方程的解, ∴原方程的解是3x =.2. (2015年广东4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x ,解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .1. (2015年广东梅州9分)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a .(2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.2. (2015年广东佛山8分)某景点的门票价格如下表:购票人数/人 1-50 51-100 100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】解:(1)设七年级(1)有x 名学生,七年级(2)有y 名学生,若两班人数多于50人且少于100人,有()1210111810816x y x y +=⎧⎪⎨+=⎪⎩,解得15169.4x y =⎧⎨=⎩,不合题意,舍去.若两班人数多于100人,有()121011188816x y x y +=⎧⎪⎨+=⎪⎩,解得4953x y =⎧⎨=⎩.答:七年级(1)有49名学生,七年级(2)有53名学生. (2)∵()()49128196,53108106⨯-=⨯-= ,∴团体购票与单独购票相比较,七年级(1)节约了196元,七年级(2)节约了106元.【考点】二元一次方程组的应用;分类思想的应用.【分析】(1)方程组的应用解题关键是找出等量关系,列出方程级求解. 本题设七年级(1)有x 名学生,七年级(2)有y 名学生,等量关系为:“两班都以班为单位单独购票,一共支付1118元”和“两班联合起来作为一个团体购票,需花费816元”.注意,就分两班人数多于50人且少于100人和两班人数多于100人两种情况讨论.(2)分别计算出两个班单独购票与团体购票费用之差即可.3. (2015年广东广州9分)解方程:()534x x =-.【答案】解:去括号,得5312x x =-,移项,得5312x x -=-, 合并同类项,得212x =-, 化x 的系数为1,得6x =-, ∴原方程的解为6x =-.【考点】解一元一次方程.【分析】按去括号、移项、合并同类项、化x 的系数为1的步骤循序进行.4. (2015年广东广州12分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 【答案】解:(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,根据题意,得()2250013025x +=, 解得,120.1, 2.1x x ==- (舍去), ∴年平均增长率为0.110%=.答:2013年至2015年该地区投入教育经费的年平均增长率为10%. (2)()3025110%3327.5+=,答:2016年该地区将投入教育经费3327.5万元.【考点】一元二次方程的应用(增长率问题).【分析】(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,2014年该地区投入教育经费为()25001x +,2015年该地区投入教育经费为()()()225001125001x x x ++=+. 据此列出方程求解.(2)根据()3025110%+计算即可.5. (2015年广东广州12分)4件同型号的产品中,有1件不合格品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回, 多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少? 【答案】解:(1)∵从4件产品中随机抽取1件进行检测,∴抽到的是不合格品的概率是11134=+. (2)记不合格品为B ,合格品为1,2,3A A A ,画树状图如下:∵随机抽取2件进行检测的所有等可能结果有12种,抽到的都是合格品的情况有6种,∴抽到的都是合格品的概率为61122=. (3)根据题意,得30.954xx+=+, 解得16x =,经检验,合适. 答:x 的值大约是16.【考点】画树状图法或列表法;概率;频数、频率和总量的关系;方程思想的应用.【分析】(1)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.(2)画树状图或列表,求出随机抽取2件进行检测的所有等可能结果和抽到的都是合格品的情况,二者的比值就是其发生的概率.(3)根据频数、频率和总量的关系列方程求解.6. (2015年广东深圳6分)解方程:542332x x x +=--. 【答案】解:去分母,得()()()()3252342332x x x x x -+-=--,去括号,得22321015245224x x x x x -+-=-+, 移项、合并同类项,得2720130x x -+=, 因式分解,得()()17130x x --=,解得12131,7x x ==. 经检验,12131,7x x == 是原方程的解,∴原方程的解为12131,7x x == .【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()()2332x x --,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元二次方程,最后检验即可求解.7. (2015年广东深圳8分)下表为深圳市居民每月用水收费标准,(单位:元/m 3).用水量单价剩余部分(1)某用户用水10立方米,共交水费23元,求a 的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米? 【答案】解:(1)由题意,得1023a =,解得 2.3a =,∴a 的值为2.3.(2)设该用户用水x 立方米备,若22x ≤,则2.371x =,解得2030>2223x =,舍去. 若>22x ,则()()2.322 2.3 1.12271x ⨯++-=,解得28x =,适合. 答:用户用水28立方米.【考点】一元一次方程的应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题等量关系为:⨯=用水量单价水费.(2)分22x ≤和>22x 两种情况列方程求解. 8. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想).9. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元. (2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.10. (2015年广东汕尾9分)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a .(2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.11. (2015年广东珠海6分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012年至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷? 【答案】解:(1)设该镇2012年至2014年绿地面积的年平均增长率为x ,根据题意,得()257.5182.8x+=,解得,120.2, 2.2x x ==- (不合题意,舍去).答:该镇2012年至2014年绿地面积的年平均增长率为20%. (2)∵()82.8120%99.36<100?=,∴年增长率保持不变,2015年该镇绿地面积不能达到100公顷.【考点】一元二次方程的应用(增长率问题).【分析】(1)设该镇2012年至2014年绿地面积的年平均增长率为x ,2013年该镇绿地面积为()57.51x +,2014年该镇绿地面积为()()()257.51157.51x x x++=+,又2014年该镇绿地面积82.8公顷,据此列出方程求解.(2)由(1)得到的年平均增长率,计算出2015年该镇绿地面积,与100公顷比较即可.12. (2015年广东珠海9分)阅读材料:善于思考的小军在解方程组2534115 ①②x y x y ì+=ïí+=ïî时,采用了一种“整体代换”的解法:解:将方程②变形:4105x y y ++= 即()2255x y y ++= ③把方程①代入③得:235y ?= ∴1y =-把1y =-代入①得,4x =,∴方程组的解为41x y ì=ïí=-ïî.请你解决一下问题:(1)模仿小军的“整体代换”法解方程组3259419①②x y x y ì-=ïí-=ïî;(2)已知,x y 满足方程组22223212472836①②x xy y x xy y ì-+=ïíï++=î (i )求224x y +的值; (ii )求112x y+的值. 【答案】解:(1)将方程②变形:96219x y y -+= 即()332219x y y -+= ③ ,把方程①代入③得:35219y ?=,∴2y = 把2y =代入①得,3x =,∴方程组的解为32x y ì=ïí=ïî.(2)(i )由①得:()2234472x yxy +=+,即2247243xyx y ++=③ , 把方程③代入②得:4722363xyxy +?=,解得,2xy =.∴把2xy =代入③得,22417x y +=.(ii )∵2xy =,22417x y +=,∴()22224417825x y x y xy +=++=+=.∴25x y +=?.∴1125224x y x y xy ++==?. 【考点】阅读理解型问题;解二元方程组;求代数式的值;整体思想的应用. 【分析】(1)模仿小军的“整体代换”法解方程组即可.(2)(i )模仿小军的“整体代换”法求出2xy =和22417x y +=.(ii )由22417x y +=求出25x y +=?,从而根据11222x yx y xy++=求解即可.。
2015中考数学试题及答案
2015中考数学试题及答案一、选择题1. 两点P(2,3)、Q(5,1)在直角坐标系中分别表示为(4个选项)答案:D2. 下列四个点(2,-1)、(-1,7)、(-3,4)、(4,-2)连成的图形是(4个选项)答案:C3. 一只小猫在房间中跳跃,它每次跳跃的高度是原来的2倍,这只小猫第一次跳跃的高度是1米,第二次跳跃的高度是2米,第三次跳跃的高度是4米,则它第n次跳跃的高度是(4个选项)答案:A4. 小明买了一本数学书,原价80元,打八折后再打五折,那么小明实际支付的金额是(4个选项)答案:B5. 右三角形ABC中,BC=12cm,AC=16cm,则∠B的正弦值等于(4个选项)答案:C二、填空题6. 一个矩形的长和宽的比是5:3,若矩形的周长是40cm,则矩形的长是______答案:25cm7. 若x/3 = 5/4,则x的值是______答案:15/48. 半径为10cm的圆的周长是______答案:20πcm9. 直接三角形中,已知一条直角边的长为4cm,斜边的长为10cm,则另一条直角边的长为______答案:6cm10. 如果一个角的角度数是30°,则这个角的补角的角度数是______答案:150°三、解答题11. 已知三角形ABC,∠C=90°,AB=5cm,BC=12cm,求∠A和∠B的大小。
答案:由三角形的内角和为180°可得∠A=90°,∠B=180°-∠C-∠A= 180°-90°-90° = 0°。
12. 已知等差数列的第一项为a1,等差为d,若a4 = 10,a6 = 16,求a1和d的值。
答案:由等差数列的通项公式an=a1+(n-1)d,代入a4=10和a6=16,可得到两个方程式:a1+3d=10和a1+5d=16。
求解这两个方程组,得到a1=4和d=2。
13. 在一个两边分别为5cm和7cm的直角三角形中,画一个高到斜边上。
2015年全国中考数学试卷分类汇编-专题题42综合性问题9458
综合性问题一.选择题1.(2015·湖北省武汉市,第10题3分)如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM 长的最小值是()A.32-B.13+C.2D.13-**【解析】先考虑让△EFG和△BCA重合,然后把△EFG绕点D顺时针旋转,连结AG、DG,根据旋转角相等,旋转前后的对应线段相等,容易发现∠ADG=∠FDC,DA=DG,DF=DC,故∠DFC=∠DCF=∠DAG=∠DGA.又根据等腰三角形的“三线合一”可知∠FDG=90°,所以∠DFG+∠DGF=90°,即∠DFC+∠CFG+∠DGF=90°. 所以∠AMC=∠MGF+∠CFG=∠AGD+∠DGF+∠CFG=∠DFC+∠DGF+∠CFG=90°.故点M始终在以AC为直径的圆上,作出该圆,设圆心为O,连结BO与⊙O相交于点P,线段BP的长即为线段BM长的最小值.BP=AO3-1,故选D.-OP=【难点突破】本题发现点M始终在以AC为直径的圆上是解题的重要突破口.考虑让△EFG 和△BCA重合,然后把△EFG绕点D顺时针旋转,借助旋转的性质找出解题思路是分析有关旋转问题的重要方法.2 .(2015•广东佛山,第10题3分)下列给出5个命题:①对角线互相垂直且相等的四边形是正方形②六边形的内角和等于720°③相等的圆心角所对的弧相等④顺次连接菱形各边中点所得的四边形是矩形⑤三角形的内心到三角形三个顶点的距离相等.其中正确命题的个数是()A.2个B.3个C. 4个 D. 5个考点:命题与定理.分析:根据正方形的判定方法对①进行判断;根据多边形的内角和公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据三角形中位线性质、菱形的性质和矩形的判定方法对④进行判断;根据三角形内心的性质对⑤进行判断.解答:解:对角线互相垂直且相等的平行四边形是正方形,所以①错误;六边形的内角和等于720°,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;顺次连接菱形各边中点所得的四边形是矩形,所以④正确;三角形的内心到三角形三边的距离相等,所以⑤错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.(2015•甘肃武威,第6题3分)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.4. (2015•浙江嘉兴,第10题4分)如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是(▲)(A)①(B)②(C)③(D)④考点:二次函数综合题..分析:①根据二次函数所过象限,判断出y的符号;②根据A、B关于对称轴对称,求出b的值;③根据>1,得到x1<1<x2,从而得到Q点距离对称轴较远,进而判断出y1>y2;④作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.求出D、E、D′、E′的坐标即可解答.解答:解:①当x>0时,函数图象过二四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;②二次函数对称轴为x=﹣=1,当a=﹣1时有=1,解得b=3,故本选项错误;③∵x1+x2>2,∴>1,又∵x1<1<x2,∴Q点距离对称轴较远,∴y1>y2,故本选项正确;④如图,作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.当m=2时,二次函数为y=﹣x2+2x+3,顶点纵坐标为y=﹣1+2+3=4,D为(1,4),则D′为(﹣1,4);C点坐标为C(0,3);则E为(2,3),E′为(2,﹣3);则DE==;D′E′==;∴四边形EDFG周长的最小值为+,故本选项错误.故选C.点评:本题考查了二次函数综合题,涉及函数与不等式的关系、二次函数的对称轴、函数图象上点的坐标特征、轴对称﹣﹣最短路径问题等,值得关注.5.(2015·深圳,第12题分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:○1⊿ADG≌⊿FDG;○2GB =2AG ;○3⊿GDE ∽BEF ;○4S ⊿BEF =572。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共10小题,1~4小题,每小题2分;5~10小题,每小题3分,共26分) 1、列说法中,正确的是( ) A. 当x <1时,
有意义 B. 方程x 2
+x ﹣2=0的根是x 1=﹣1,x 2=2
C.
的化简结果是 D. a ,b ,c 均为实数,若a >b ,b >c ,则a >c 2、以下四个命题正确的是( )
A. 任意三点可以确定一个圆
B. 菱形对角线相等
C. 直角三角形斜边等于斜边上的中线的2倍
D. 平行四边形的四条边相等
3、. 已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a 等于( ) A. 1 B. 2 C. 3 D. 4
4、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ) A. ①② B. ②③ C. ①③ D. ②④
5、抛物线y =322
+-x x 与坐标轴交点为 ( )
A .二个交点
B .一个交点
C .无交点
D .三个交点
D
O
6、如图,在平面直角坐标系xOy 中,A (2,0),B (4,0),动点C 在直线x y l 3
3
:=
上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是( ) A .1 B .2 C .3 D .4
7、如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .已知
C 8、如图3,四边形OABC 为菱形,点A 、B 在以点O 为圆心的弧DE 上,若OA =3,∠1=∠2,则扇形ODE 的面积为( )
A.
3π2 B. 2π C.5
π2
D. 3π 9、如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 。
C 分别在x 轴、y 轴上,反比例函数)0,0(>≠=
x k x
k
y 的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN 。
下列结论:①△OCN ≌△OAM ;②
ON=MN ; ③四边形DAMN 与△MON 面积相等;④若∠MON=450
,MN=2,则点C 的坐标为(0,12+),。
其中正确的个数是( ) A .1 B .2 C .3 D .4 10、把所有正偶数从小到大排列,并按如下规律分组:(2,4),(6,8,10,12),(14,16,18,20,22,24),…,现用等式A M =(i ,j )表示正偶数M 是第i 组第j 个数(从左往右数),如A 10=(2,3),则A 2014=(
)
A
.(31,15) B .(31,16) C .(32,15) D .(32,16) 二、填空题(本大题共4小题,每小题3分,共12分) 11、如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=_________.
(第11题) (第12题) ( 第13题) ( 第14题)
12、如图,矩形ABCD 中,AB =8,点E 是AD 上的一点,有AE =4,BE 的垂直平分
线交BC 的延长线于点F ,连结EF 交CD 于点G ,若G 是CD 的中点,则BC 的长是 .
13、如图,AB 是⊙O 的一条弦,点C 是⊙O 优弧AB 上一动点,且∠ACB=45°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,则GE+FH 的最大值为 .
14、如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE ,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为_______.
三、解答题(本大题共3小题,共32分)
15、先化简,再求值:÷﹣,其中x=﹣4.
16、某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?17、如图,将Rt△OAB沿斜边OB折叠后,点A落在第一象限内的点C
处,抛物线2
y x
=-+经过点O,A,点C是抛物线的顶点,抛物线的对称轴与线段OB交于点D,与x轴交于点H。
(1)求∠AOB的度数;
(2)求抛物线的对称轴与线段OB交点D的坐标;
(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E 重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由。
(1)30(2)
1)。
(3)(
3
4
3
3
4
,)。