高一数学课件:人教版高一数学上学期第一章第1.1节集合-(1).PPT
合集下载
高一数学必修一全套课件 PPT课件 人教课标版1

思考2:对于一个给定的集合A,那么某元素a与集合A 有哪几种可能关系?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
高一数学:人教版高一数学上学期第一章) PPT课件 图文

其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}
高中数学第一章 1.1.1 第一课时 集合的含义优秀课件

3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.
高一数学必修一 第一章综合 教学课件PPT

(3)无序性是指任意改变集合中元素的排列次序,它们仍
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
高一数学集合ppt课件.pptx

第一节 集合
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
高一数学必修一课件1.1.1集合的含义与表示

教材习题答案
1.(1) ,,,;(2) ; (3) ;(4) ,; 2.(1){-3, 3};(2){2, 3, 5, 7}; (3){(1, 4)};(4){x x < 2}.
注意
例7中的集都不 ( 1 )在不致混淆的情况下,可以省去竖线及 可以用列表法吗? 左边部分. 显然不是,那么何 如:{直角三角形 }、{大于104的实数}. 时用列举法,何时 用描述法更容易一 (2)错误表示法:{实数集}、{全体实数}. 些呢?
知识要 点
有些集合的公共属性不明显,难以概 括,不便用描述法表示,只能用列举法. 有些集合的元素不能无遗漏地一一列 举出来,或者不便于、不需要一一列举出 来,常用描述法.
(2)设不超过30的非负偶数为x,且满足
x 2n且0 x 30 用描述法表示为
A = {x x = 2n且0 x 30,n Z}.
(3)设方程 2x +1 = 9 的实数根为x,且满 足条件 2x2 +1 = 9,用描述法表示为
2
A = {x R 2x + 1 = 9}.
课堂练习
1.用符号“∊”或∉Байду номын сангаас填空:
(1)设 A为所有亚洲国家组成的集合,则中国 __ A. ∊ A;英国__ ∊ A;美国__ ∉A;印度__ ∉ (2)若A={方程x² =1的解}则 1__A ∊ ; (3)若B={方程x² +x-6=0的解}则2__B ∊ ; (4)若C={满足1≤x≤10的自然数}则8 __ ∊ C; 9.5 __ ∉ C.
4.{(x, y) | x + y = 6, x N, y N}
用列举法表示为
{(0,6),(1,5),(2,4),(3,3),(6,0),(5,1),(4,2)}
高一数学新人教B版必修1教学课件:第1章 集合 1.1.2 集合的表示方法.ppt

• 1.表示集合的方法常用___描__述__法_、___列__举__法_、____维__恩__图__法. • 2.把集合中元素的___公__共__属__性_描述出来,写在大括号内表示集合的方法叫描
述法.描述法有两种形式: • (1)一般形式:{x∈A|p(x)}.例如:不大于100的自然数构成的集合可表示为
{0,1,2,3,4,5,6,7,8,9}. • (2)方程x2=x的实数根为0,1,设方程x2=x的所有实数根构成的集合为B,则B
={0,1}. • (3)设由1~20的所有质数构成的集合为C,则C={2,3,5,7,11,13,17,19}.
『规律方法』 对于元素个数较少的集合或元素个数不确定但元素间存在 明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,” 而不是用“、”隔开;②元素不能重复.
• 3.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集 合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个__________.于 是,集合A可以用它的特征性质p(x)描述为{x∈I|p(x)}.它表示特集征合性A质是由集合I 中具有性质p(x)的所有元素构成的.
A.0∈A
B.2∉A
C.-2∈A
D.0∉A
• [解析] ∵A={x|x(x-2)=0}={0,2},∴0∈A,2∈A,-2∉A,故选A.
3.直线 y=2x+1 与 y 轴的交点所组成的集合为@ziyuanku (
A.{0,1}
B.{(0,1)}
C.{-12,0}
D.{(-12,0)}
[解析] 由xy==02x+1 ,得xy= =01 ,故选 B.
(2)解方程组2x-x+y=y=18 ,得xy= =32 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.数字1,2,1,0能否构成一个集合? 答:不能!因为不具备互异性.
B能=力{A正提=升{奇x是数用8}=属的{于正1或约,不数3属},=于5{,符1…,号…2填,}空4,8}
• ①若A={x是8的正约数},则 1_ A、2 _A、 3 _A、4 _A、-1 _A、-2 _A、 -3 _ A;
引入
由确定的一些数、一些点、一些图形、
一些整式、一些物体、一些人组成的,我们 说,每一组对象的全体形成一个集合. 或者说, 某些指定的对象集在一起就成为一个集合, 也简称集. 集合中的每个对象叫做这个集合的 元素.
一般地,某些指定的对象集在一起就成 为一个集合.
重难点讲解
集合的有关概念:
• 1.集合:由一些确定的、互异的对象构成的 一个整体就叫做集合。简称集。
• 2.元素:集合里的各个对象叫做这个集合的 元素。
• 3.元素的三个属性:确定性、互异性、无序 性(任意性也是元素具有的一个性质,但一 般讲以上的三个属性).
重难点讲解
• 4.有限集:含有有限个元素的集合。 • 5.无限集:含有无限个元素的集合。 • 6.空集:不含有任何元素的集合。(即元素个
数为0,是有限集)。 • 7.单元素集:仅含有一个元素的集合。 • 8.点集:集合中的元素全部由点组成。 • 9.数集:集合中的元素全部由数组成。 • 10.解集:由方程或方程组、不等式或不等式
A _8、A _-8、A _-4.
• ②若B={正奇数},则 0 _B、1_B、2 _B、 3 _B、-1 _ B、-2 _ B、-3 _ B;B _5、
B _-5、B _7.
• ③φ为空集,则 0 _ φ、1 _ φ、 -1 _ φ; φ _ 0、φ _ 1、φ _ -1.
知识小结
集合的含义即表示
引入
观察下列对象: (1)2,4,6,8,10,12; (2)所有的直角三角形; (3)与一个角的两边距离相等的点的全体; (4)满足 x-3>2 的全体实数;
(5)本班全体男同学; (6)我国古代四大发明; (7)高一(1)班中个子较高的同学; (8)我们班的任课教师中身体较健元素、 属于、不属于;
2.集合元素的性质:确定性,互异 性,无序性;
3.常用数集的定义及规定字母记法.
本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
刚才的发言,如 有不当之处请多指
正。谢谢大家!
12
• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
特别规定
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
组的解作为元素构成的集合。
重难点讲解
• 11.集合的字母表示:通常用大写的拉丁字母A、 B、C、D、…表示集合。 如A={-1,1,0,34}、B={斜三角形}。
• 12.元素的字母表示:通常用小写的拉丁字母a、 b、c、d、…表示元素。
• 13.空集的符号表示:φ或{ }。特别注意的是 {φ}不是空集,而是一个单元素集合。
典型例题分析
1.用属于或不属于符号填空.
①1 N,0 N,-3 N,0.5 ②1 Z,0 Z,-3 Z,0.5
③1 Q,0 Q,-3 Q,0.5 ④1 R,0 R,-3 R,0.5
N, √2 N Z, √2 Z Q, √2 Q
R, √2 R
2.所有的秃头人能否构成一个集合? 答:不能!因为不具备确定性.
B能=力{A正提=升{奇x是数用8}=属的{于正1或约,不数3属},=于5{,符1…,号…2填,}空4,8}
• ①若A={x是8的正约数},则 1_ A、2 _A、 3 _A、4 _A、-1 _A、-2 _A、 -3 _ A;
引入
由确定的一些数、一些点、一些图形、
一些整式、一些物体、一些人组成的,我们 说,每一组对象的全体形成一个集合. 或者说, 某些指定的对象集在一起就成为一个集合, 也简称集. 集合中的每个对象叫做这个集合的 元素.
一般地,某些指定的对象集在一起就成 为一个集合.
重难点讲解
集合的有关概念:
• 1.集合:由一些确定的、互异的对象构成的 一个整体就叫做集合。简称集。
• 2.元素:集合里的各个对象叫做这个集合的 元素。
• 3.元素的三个属性:确定性、互异性、无序 性(任意性也是元素具有的一个性质,但一 般讲以上的三个属性).
重难点讲解
• 4.有限集:含有有限个元素的集合。 • 5.无限集:含有无限个元素的集合。 • 6.空集:不含有任何元素的集合。(即元素个
数为0,是有限集)。 • 7.单元素集:仅含有一个元素的集合。 • 8.点集:集合中的元素全部由点组成。 • 9.数集:集合中的元素全部由数组成。 • 10.解集:由方程或方程组、不等式或不等式
A _8、A _-8、A _-4.
• ②若B={正奇数},则 0 _B、1_B、2 _B、 3 _B、-1 _ B、-2 _ B、-3 _ B;B _5、
B _-5、B _7.
• ③φ为空集,则 0 _ φ、1 _ φ、 -1 _ φ; φ _ 0、φ _ 1、φ _ -1.
知识小结
集合的含义即表示
引入
观察下列对象: (1)2,4,6,8,10,12; (2)所有的直角三角形; (3)与一个角的两边距离相等的点的全体; (4)满足 x-3>2 的全体实数;
(5)本班全体男同学; (6)我国古代四大发明; (7)高一(1)班中个子较高的同学; (8)我们班的任课教师中身体较健元素、 属于、不属于;
2.集合元素的性质:确定性,互异 性,无序性;
3.常用数集的定义及规定字母记法.
本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
刚才的发言,如 有不当之处请多指
正。谢谢大家!
12
• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
特别规定
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
组的解作为元素构成的集合。
重难点讲解
• 11.集合的字母表示:通常用大写的拉丁字母A、 B、C、D、…表示集合。 如A={-1,1,0,34}、B={斜三角形}。
• 12.元素的字母表示:通常用小写的拉丁字母a、 b、c、d、…表示元素。
• 13.空集的符号表示:φ或{ }。特别注意的是 {φ}不是空集,而是一个单元素集合。
典型例题分析
1.用属于或不属于符号填空.
①1 N,0 N,-3 N,0.5 ②1 Z,0 Z,-3 Z,0.5
③1 Q,0 Q,-3 Q,0.5 ④1 R,0 R,-3 R,0.5
N, √2 N Z, √2 Z Q, √2 Q
R, √2 R
2.所有的秃头人能否构成一个集合? 答:不能!因为不具备确定性.