2018厦门高二上理科数学市质检

合集下载

最新-福建省厦门市2018学年高二数学上学期期中考试试

最新-福建省厦门市2018学年高二数学上学期期中考试试

厦门大学附属科技中学2018-2018学年第一学期期中考试高二数学试卷(理)一、选择题1、数列}{n a 的前n 项和为n S ,若)1(1+=n n a n ,则5S 等于( ) A 、1 B 、65 C 、61 D 、301 2、已知ABC ∆中,已知60A =︒,30B =︒,3a =,求边b =( )A 、 3B 、 2C 、3D 、23、设α,β是方程0222=+-k x x 的两根,且α,αβ+,β成等比数列,则k 为( )A 、2B 、4C 、4±D 、2±4、在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且1a =,b =ABC S ∆=( )A 、2B 、3C 、23 D 、2 5、在一栋10米高的楼顶测得对面一塔吊顶的仰角为60°,塔基的俯角为45°,那么这座塔吊的高是( )A 、)331(10+ B 、)31(10+ C 、)26(5+ D 、)26(2+ 6、已知)0,0(235>>=+y x yx ,则xy 的最小值是( ) A 、12 B 、14 C 、15 D 、187、已知x 、y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则24x y +的最小值为( )A 、6B 、-6C 、12D 、-128、设集合}01|{<<-=m m P ,2{|440Q m R mx mx =∈+-<,对任意实数x 恒成立},则下列关系中成立的是( )A 、Q P ⊂B 、P Q ⊂C 、P Q =D 、∅=Q P9、某人从2018年起,每年1月1日到银行新存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款自动转为新的一定定期,到2018年1月1日将所有存款及利息全部取回,他可取的钱数为(单位为元)( )A 、5)1(r a +B 、)]1()1[(5r r r a +-+C 、6)1(r a +D 、)]1()1[(6r r r a +-+10、下列命题中,正确命题的个数是( )①22bc ac b a >⇒>②22bc ac b a ≥⇒≥③bc ac c b c a >⇒>④bc ac cb c a ≥⇒≥⑤a b >且0ac bc c >⇒>⑥a b ≥且0ac bc c ≥⇒≥ A 、2 B 、3 C 、4 D 、5二、填空题11、已知等差数列}{n a 满足2865=+a a ,则其前10项之和为____________.12、等比数列}{n a 的前n 项和n S ,又2132S S S +=,则公比q =____________.13、实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则x y W 1-=的取值范围是____________. 14、关于x 的不等式)0(01)11(2><++++-a aa x a a x 的解集为____________. 15、在ABC ∆中,已知6:5:4)(:)(:)(=+++b a ac c b ,给出下列结论:①由已知条件,这个三角形被唯一确定②ABC ∆一定是钝角三角形③sin :sin :sin 7:5:3A B C =④若8b c +=,则ABC ∆的面积是2315 、 其中正确结论的序号是____________.三、解答题16、在ABC ∆中,已知c =1b =,30B ︒=,(Ⅰ)求出角C 和A ;(Ⅱ)求ABC ∆的面积S 。

【全国市级联考】福建省厦门市2018届高三年级上学期期末质检数学(理)试题(原卷版)

【全国市级联考】福建省厦门市2018届高三年级上学期期末质检数学(理)试题(原卷版)

厦门市2018届高三年级第一学期期末质检理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.2. 命题“”的否定是()A. B.C. D.3. 实数满足,则()A. B. C. D.4. 若是两条不同的直线,是两个不同的平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5. 已知实数满足则目标函数的最大值等于()A. -7B.C. 2D. 36. 如图所示,函数的部分图象与坐标轴分别交于点,则的面积等于()...A. B. C. D.7. 已知正方形的边长为2,对角线相交于点,是线段上一点,则的最小值为()A. -2B.C.D. 28. 函数的大致图象是()A. B.C. D.9. 中,,是双曲线的左、右焦点,点在上,若,则的离心率为()A. B. C. D.10. 习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的()A. 100B. 140C. 190D. 25011. 若锐角满足,则函数的单调增区间为()A. B.C. D.12. 已知函数若,则的取值范围是()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 复数满足,则__________.14. 设等比数列满足,,则__________.15. 直线与抛物线交于两点,若,则__________.16. 某三棱锥的三视图如图所示,则它的外接球表面积为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,单位圆与轴正半轴的交点分别为,圆上的点在第一象限.(1)若点的坐标为,延长至点,使得,求的长;(2)圆上的点在第二象限,若,求四边形面积的最大值.18. 如图,直角梯形中,,,,等腰梯形中,,,,且平面平面.(1)求证:平面;(2)若与平面所成角为,求二面角的余弦值.19. 数列满足.(1)若数列为公差大于0的等差数列,求的通项公式;(2)若,求数列的前项和.20. 已知点,圆,点是圆上一动点,的垂直平分线与交于点.(1)求点的轨迹方程;(2)设点的轨迹为曲线,过点且斜率不为0的直线与交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.21. 已知函数.(1)若,函数的极大值为,求实数的值;(2)若对任意的,在上恒成立,求实数的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,为上两点,且,设射线,其中.(1)求曲线的极坐标方程;(2)求的最小值.23. 函数.(1)当时,求证:;(2)若的最小值为2,求实数的值.。

厦门市2018届高中毕业班第二次质量检查理科数学参考答案_

厦门市2018届高中毕业班第二次质量检查理科数学参考答案_

3 3 D(0, 2,0) , M (0, , ) , B (1, 1,0) , 2 2 3 3 3 1 (8 分) C (2,0,0) , N ( , ,0) MN ( , 1, ) , 2 2 2 2 n PB 0 x 2 y 3z 0 设 平 面 PBC 的 法 向 量 为 n ( x, y , z ) , 取 x 1 , x y 0 n BC 0 (10 分) y 1, z 3 ,即 n (1, 1, 3) ,
18.本题考查立体几何中的线面关系,空间角,空间向量在立体几何中的应用等基础知识, 考查运算求解能力、空间想象能力、等价转化能力,考查数形结合思想、化归与转化、或然 与必然等数学思想.满分 12 分. (1) 【解析】取 AD 的中点 O ,连接 MO , NO , M 为 PD 的中点
OM // PA OM 平面 PAB , PA 平面 PAB OM //平面 PAB (2 分) 同理 பைடு நூலகம்N //平面 PAB , (3 分) 又 OM ON O , 平面 MNO //平面 PAB ,(4 分) MN 平面 OMN MN 平面 PAB (5 分) (2) (法一) AC 平面 PAD , AC AD , 以 A 为坐标 原点,以 AC , AD 分别为 x, y 轴,过 A 垂直于平面 ACD 的 直线为 z 轴,如图建立空间直角坐标系, (6 分) 在 Rt ACD 中, AC 2 , CD 2 2 AD 2 (7 分) P (0,1, 3) ,
2
即彼此横坐标相差半个周期,纵坐标相差 2 ,且 PMN 为等腰三角形. (1)由于 PMN 为直角三角形,且斜边上高为 2 ,则斜边长为 2 2 T 解得:

优质金卷:福建省厦门市2018届高三上学期期末质检理数试题【考试版】

优质金卷:福建省厦门市2018届高三上学期期末质检理数试题【考试版】

第1页 共6页 ◎ 第2页 共6页绝密★启用前福建省厦门市2018届高三上学期期末质检数学(理)试题一、单选题1.已知集合(){}10A x x x =+>, {B x y ==,则A B ⋂=( )A . {}0x x >B . {}1x x ≥C . {}01x x <≤ D . R2.命题“3200R,10x x x ∃∈-+≤”的否定是( )A . 32000R,10x x x ∃∈-+<B . 32000R,10x x x ∃∈-+≥C . 32R,10x x x ∀∈-+>D . 32R,10x x x ∀∈-+≤ 3.实数,x y 满足0x y >>,则( )A . 11x y> B .C . 1122x y⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D . 2x xy <4.若,m n 是两条不同的直线, ,αβ是两个不同的平面,则下列命题正确的是( ) A . 若,m αββ⊥⊥,则||m α B . 若||,m nm α⊥,则n α⊥C . 若||,||,,m n m n ααββ⊂⊂,则||αβ D. 若||,,m m n βααβ⊂⋂=,则||m n5.已知实数,x y 满足1,{20, 21,x y x x y -≤+≥+≤则目标函数2z x y =+的最大值等于( )A . -7B . 52-C . 2D . 3 6.如图所示,函数26y x π⎛⎫=+⎪⎝⎭的部分图象与坐标轴分别交于点,,D E F ,则DEF ∆的面积等于( )A .4πB . 2πC .π D . 2π7.已知正方形ABCD 的边长为2,对角线相交于点O , P 是线段BC 上一点,则OP CP ⋅的最小值为( )A . -2B . 12-C . 14-D . 2 8.函数()[]()2cos 2,21x xf x x x =∈-+的大致图象是( ) A .B .C .D .9.ABC ∆中, 23B π∠=, ,A B 是双曲线E 的左、右焦点,点C 在E 上,若()0BA BC AC +⋅=,则E 的离心率为( )A .1 B . 1 C .D . 10.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( )第3页 共6页 ◎ 第4页 共6页A . 100B . 140C . 190D . 250 11.若锐角ϕ满足sin cos ϕϕ-=,则函数()()2sin f x x ϕ=+的单调增区间为( ) A . ()52,2Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦ B . ()5,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦C . ()72,2Z 1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦ D . ()7,Z 1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦12.已知函数()()22log ,02,{ log 4,24,x x f x x x <≤=-<<若()12f a f a ⎛⎫≥+ ⎪⎝⎭,则a 的取值范围是( )A . 170,2,22⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ B . 1770,,242⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭C . 170,2,42⎛⎤⎡⎫⋃ ⎥⎪⎢ ⎣⎭⎝⎦D . 1770,,442⎛⎤⎡⎫⋃ ⎥⎪⎢⎣⎭⎝⎦ 二、填空题13.复数z 满足()1i 2i z -=,则z =__________.14.设等比数列{}n a 满足11a =, 356a a+=,则579a a a ++=__________. 15.直线()1y k x =-与抛物线24y x =交于,A B 两点,若163AB =,则k =__________.16.某三棱锥的三视图如图所示,则它的外接球表面积为__________.三、解答题17.如图,单位圆O 与,x y 轴正半轴的交点分别为,A D ,圆O 上的点C 在第一象限. (1)若点C 的坐标为12⎫⎪⎪⎝⎭,延长CD 至点B ,使得2DB =,求OB 的长; (2)圆O 上的点E 在第二象限,若23EOC π∠=,求四边形OCDE 面积的最大值.18.如图,直角梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平面BDFE ⊥平面ABCD . (1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.第5页 共6页 ◎ 第6页 共6页19.数列{}n a 满足122311111n n na a a a a a n ++++=+ . (1)若数列{}n a 为公差大于0的等差数列,求{}n a 的通项公式; (2)若()11nn n n b a a +=-,求数列{}n b 的前2n 项和2n S . 20.已知点()1F,圆(222:16F x y+=,点M 是圆上一动点, 1MF 的垂直平分线与2MF 交于点N . (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,过点()0,1P 且斜率不为0的直线l 与E 交于A , B 两点,点B 关于y 轴的对称点为'B ,证明直线'AB 过定点,并求'PAB ∆面积的最大值.21.已知函数()()()2R xf x ax x a e a -=++∈.(1)若0a ≥,函数()f x 的极大值为3e,求实数a 的值; (2)若对任意的0a ≤, ()()ln 1f x b x ≤+在[)0,x ∈+∞上恒成立,求实数b 的取值范围.22.在直角坐标系xOy 中,曲线C 的参数方程为,{,x y sin ϕϕ==(ϕ为参数).以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系, ,A B 为C 上两点,且OA OB ⊥,设射线:OA θα=,其中02πα<<.(1)求曲线C 的极坐标方程; (2)求OA OB ⋅的最小值.23.函数()12f x x x a =-++.(1)当1a =时,求证: ()13f x x +-≥; (2)若()f x 的最小值为2,求实数a 的值.。

福建省厦门市2018届高三上学期期末质检理数试题【解析版】

福建省厦门市2018届高三上学期期末质检理数试题【解析版】

福建省厦门市2018届高三上学期期末质检数学(理)试题全析全解1.B【解析】由题意得{}{}{}10,101A x x x B x x x x =-=-≥=≥或, ∴{}1A B x x ⋂=≥.选B . 2.C【解析】由特称命题的否定可得,所给命题的否定为“32R,10x x x ∀∈-+>”.选C . 3.B综上选B . 4.D【解析】选项A 中, m 与α的关系是m α 或m α⊂,故A 不正确.选项B 中, n 与α的关系是n α⊥或n 与α相交但不垂直或n α .故B 不正确.选项C 中,α与β之间的关系是αβ 或相交.故C 不正确.选项D 中,由线面平行的性质可得正确. 选D . 5.C【解析】画出不等式组表示的可行域(如图阴影部分所示),由2z x y =+可得2y x z =-+,平移直线2y x z =-+,由图形得,当直线2y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值. 由题意得点A 的坐标为(1,0), ∴max 2102z =⨯+=.选C . 6.A7.C【解析】根据题意建立如图所示的平面直角坐标系,则()()1,1,2,2O C ,设()()2,02P t t ≤≤,则()()1,1,0,2OP t CP t =-=-,∴()()2231123224OP CP t t t t t ⎛⎫⋅=--=-+=-- ⎪⎝⎭ ,∴当32t =时, OP CP ⋅ 有最小值14-.选C .8.A【解析】∵()()()22cos()cos 11x x x xf x f x x x ---==-=-+-+, ∴函数()f x 为奇函数,故排除D . 又()()cos12cos210,2025f f =>=<,故排除B,C . 选A .点睛:已知函数的解析式判断函数图象的形状时,主要是按照排除法进行求解,可按照以下步骤进行: (1)求出函数的定义域,对图象进行排除; (2)判断函数的奇偶性、单调性,对图象进行排除; (3)根据函数图象的变化趋势判断;(4)当以上方法还不能判断出图象时,再选取一些特殊点,根据特殊点处的函数值进行判断. 9.D10.C【解析】由题意得,当输入10m =时,程序的功能是计算并输出2222221123149110222222S ---=++++++ .学科网计算可得()()118244880416366410019022S =++++++++=.选C . 11.B【解析】∵sin cos 4πϕϕϕ⎛⎫-=-=⎪⎝⎭,∴1sin 42πϕ⎛⎫-= ⎪⎝⎭. 又444πππϕ-<-<,∴46ππϕ-=, 512πϕ=. ∴()2515151sin 1cos 2cos 21226262f x x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 由5222,6k x k k Z ππππ≤+≤+∈, 得5,1212k x k k Z ππππ-+≤≤+∈, ∴函数的单调增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.选B .点睛:求正(余)弦型函数单调区间的注意点(1)将所给的函数化为形如()()sin f x A x ωϕ=+或()()cos f x A x ωϕ=+的形式,然后把x ωϕ+看作一个整体,并结合正(余)弦函数的单调区间求解.(2)解题时注意,A ω的符号对所求的单调区间的影响,特别是当A 或ω为负数时,要把x ωϕ+代入正(余)弦函数相对的单调区间内求解. 12.D【解析】画出函数()y f x =的图象(图中黑色部分),则函数()y f x =的图象向左平移12个长度单位,得到函数12y f x ⎛⎫=+⎪⎝⎭的图象(图中红色部分),设两图象交于点,A B ,且横坐标分别为12,a a .由图象可得满足()12f a f a ⎛⎫≥+⎪⎝⎭的实数a 的取值范围为][1270,,2a a ⎛⎫⋃ ⎪⎝⎭.对于1a ,由21211log log 2a a ⎛⎫-=+⎪⎝⎭,解得11112a a =+,所以211220a a --=,解得1a =或1a =. 对于2a ,由22221log log 42a a ⎡⎤⎛⎫=-+⎪⎢⎥⎝⎭⎣⎦,解得274a =. 综上可得实数a的取值范围为[77,42⎛⎫⋃ ⎪ ⎪⎝⎭.选D . 点睛:解答本题的技巧在于借助于数形结合增强了解题的直观性,利用图象的平移,将解不等式的问题转化为两函数图象的相对位置关系来处理,然后根据函数图象的交点情况,通过解方程的方法求得所求范围的端点值,最后根据图象写出不等式成立时参数的范围。

福建省厦门市2018_2019学年高二数学上学期期末质量检测试题理(含解析)

福建省厦门市2018_2019学年高二数学上学期期末质量检测试题理(含解析)

厦门市2018-2019学年度第一学期高二年级质量检测数学(理科)试题一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题“”为真,“”为真,则下列说法正确的是()A. 真真B. 假真C. 真假D. 假假【答案】B【解析】【分析】根据逻辑或真假判断的真值表, p是假命题,又“”为真命题,进而可得q是真命题.【详解】解:命题“”和命题“非”均为真命题,为假命题,为真命题,故选:B.【点睛】本题考查的知识点是复合命题的真假判断,熟练掌握复合命题真假判断的真值表是解答的关键.2.双曲线的渐近线方程是()A. B. C. D.【答案】B【解析】【分析】利用双曲线的方程直接求解渐近线方程即可.【详解】解:双曲线即,其中a=2,b=1,故其渐近线方程是:.故选:B.【点睛】本题考查双曲线的简单性质,渐近线方程的求法,是基础题.3.记为等差数列的前项和,若,,则的公差等于()A. -2B. 0C. 1D. 2【答案】D【解析】【分析】根据题意,由等差数列的前项和公式可得,解可得,又由,可得,由等差数列的通项公式分析可得答案.【详解】解:根据题意,等差数列中,若,即,则,又由,则,则等差数列的公差;故选:D【点睛】本题考查等差数列的性质以及前项和的性质,注意等差数列通项公式的应用,属于基础题.4.若实数,满足约束条件则的最大值是()A. -7B. -1C. 1D. 3【答案】C【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.【详解】解:作出不等式组对应的平面区域如图:(阴影部分),由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大.由,解得,解得,代入目标函数得.即目标函数的最大值为1.故选:C.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.5.若,且,则下列不等式成立的是()A. B. C. D.【答案】A【解析】【详解】根据基本不等式,,又a b,;由a>b,易知a+b<a+a=2a,故.故选:A.【点睛】本题考查了基本不等式的应用,属于简单题.6.如图,在平行六面体中,为的中点,设,,,则()A. B. C. D.【答案】A【解析】【分析】根据空间向量的几何运算可得结果.【详解】根据向量的三角形法则得到.故选:A.【点睛】本题考查空间向量以及线性运算,属于基础题.7.在中,,,,则的面积是()A. B. C. 或 D. 或【答案】C【解析】【分析】先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选:C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.8.已知,,若是的必要条件,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】根据是的必要条件,列不等式方程确定实数的取值范围.【详解】解:设满足p的实数集合为M,满足q的实数集合为N,是的必要条件,即解得.故选:D.【点睛】本题考查必要条件的定义,属于基础题.9.已知,则的最小值是()A. 4B. 8C. 9D. 10【答案】C【解析】【分析】进行等式变换后,根据基本不等式求解.【详解】由,根据基本不等式,.当且仅当,即时有最小值9.故选:C.【点睛】本题主要考查基本不等式的运用.属于基础题.10.记为数列的前项和,若,,则的最大值为()A. -1B.C. 1D. 2【答案】C【解析】【分析】由,将已知项变形得=,同除以,可得出为等差数列,从而得出,再利用单调性即可得解.【详解】解:=,等号两侧同除以,得到,又,是以11为首项,以-2为公差的等差数列.故,,由单调性可知,当n=6时,的最大值为1.故选:C.【点睛】本题考查了数列与的关系和运算能力,考查了函数单调性,属于中档题.11.如图,在四棱锥中,平面,,,,,点是棱的中点,与平面交于点,设,则()A. B. C. D.【答案】C【解析】【分析】将平面ABE延展,再利用三角形相似得出点F位置,从而得解.【详解】解:过点D作垂直于平面ABCD的直线交AE延长线于点M,连接MP、MB,由题意知平面,PA=AD,且E为DP中点,所以四边形MPAD为正方形,,M,P,B,C四点共面,MB与PC交与点F.,F为PC三等分点(靠近点C)又,.故选:C.【点睛】本题考查平面延展和三角形相似,属于中档题.12.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点,的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为()A. B. C. D.【答案】B【解析】【分析】根据椭圆和双曲线的定义,分别列出关系式再做差,得出椭圆双曲线“复合”光学装置中光线路程;然后计算单椭圆光学装置中光线路程,两者相比可得出椭圆长半轴和双曲线实半轴的关系,即可得两离心率的关系.【详解】解:如图,由双曲线定义得:①,由椭圆定义得:②,②-①得:;所以椭圆双曲线“复合”光学装置中,光线从出发到回到左焦点走过的路程为对于单椭圆光学装置,光线经过2次反射后回到左焦点,路程为;由于两次光速相同,路程比等于时间比,所以,所以.所以.故选:B.【点睛】本题考查对圆锥曲线的定义的掌握与应用能力、识图能力、阅读及文字理解能力,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分.13.对任意,都有,则实数的取值范围是______.【答案】【解析】【分析】根据不等式转化为方程,根据判别式求解.【详解】根据题意,m需满足方程=0无解,即,故答案为:.【点睛】本题考查了一元二次不等式及其方程与判别式的关系,属于基础题.14.如图,从气球上测得正前方的河流的两岸,的俯角分别为和,如果这时气球的高是30米,则河流的宽度为______米.【答案】【解析】【分析】由题意画出图形,利用特殊角的三角函数,可得答案.【详解】解:由题意可知,,,,.故答案为:.【点睛】本题给出实际应用问题,着重考查了三角函数的定义,属于简单题.15.已知点,,分别是轴、轴上的动点,且满足.若点满足,则点的轨迹方程是______.【答案】【解析】【分析】设点M,N,P三点坐标,根据平面向量垂直特性,列出方程可得结果.【详解】解:设点M坐标(a,0),N坐标(0,b),点P坐标(x,y),则=(-1,b),=(-a,b),,而=,=,,代入可得.故答案为:.【点睛】本题考查了平面向量垂直的乘积和点的轨迹方程的求法,属于简单题.16.记为数列的前项和,若,,,则等于______. 【答案】131【解析】【分析】根据计算得出,再依次计算出的值,遂得出的值.【详解】解:根据,,,,,从而,.故答案为:131.【点睛】本题考查了数列递推式的运用和运算能力,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在中,角所对的边分别是,.(1)求角的大小;(2)是边上的中线,若,,求的长.【答案】(1)(2)【解析】【分析】(1)由正弦定理化简已知等式可得:,由于,可得:,结合范围,可求的值.(2)由三角形面积公式可求,进而利用余弦定理可得,即可解得的值.【详解】解:(1)在中,,由正弦定理得,∵,∴,∴,即,∵,∴.(2)在中,,,,∴,∴,∵是的中线,∴,在中,由余弦定理得.【点睛】本题主要考查了正弦定理,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.记为等比数列的前项和,,.(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1)(2)【解析】【分析】(1)由已知得到的值,再利用得出q的值,进而得到的值,即得到数列的通项;(2)由(1)可得到,再利用错位相减,可得解.【详解】解:(1)∵,,∴,∴,∴,即,∴数列的通项公式为.(2)由得,即,∴,∴,①,②由①-②得,∴.【点睛】本题考查等比数列的通项、错位相减数列求和等知识,属于基础题.19.如图,四边形是矩形,,,且,,(1)证明:平面;(2)求二面角的余弦值.【答案】(1)详见解析(2)【解析】【分析】(1)根据勾股定理,求得AC长度,结合FA,FC长度,从而证明FA AC,又由FA BA,故FA 平面ABCD;(2)建立空间直角坐标系,根据条件求出平面和平面的法向量,利用法向量夹角余弦值可得二面角余弦值.【详解】解:(1)∴,∴,即,∴,即.∵四边形为矩形,∴.∵,,,∴.(2)∵,,∴,∵,,∴,∴,,两两互相垂直,建立如图空间直角坐标系,则,,,,,∴,∵,∴平面的一个法向量设平面的一个法向量为,则,即,取,则,,,∴,∴二面角的余弦值为.【点睛】本题主要考査直线与平面位罝关系,利用空间向量法求二面角,考查空间想象能力、推理论证能力和运算求解能力,考査数形结合思想、转化与化归思想.20.设为坐标原点,抛物线的焦点为,点在上,.(1)求的方程;(2)过点的直线与交于,两点,若与圆相切,求的面积【答案】(1)(2)16【解析】【分析】(1)结合已知条件,根据抛物线定义列出方程可得解;(2)设出直线方程,与抛物线联立,结合面积公式和韦达定理即可得解.【详解】解:(1)由抛物线定义,点到准线的距离①∵点在抛物线上,∴②由①②解得,∴抛物线方程为.(2)设直线方程为,,,∵直线与圆相切,∴,即由,得,∴.【点睛】本题主要考查抛物线的定义与标准方程,直线与抛物线、圆的位置关系,考查运算求解能力、推理论证能力,考查数形结合、函数与方程思想,属于基础题.21.某公司计划在办公大厅建一面长为米的玻璃幕墙.先等距安装根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为米的玻璃造价为元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为元(总造价=立柱造价+玻璃造价).(1)求关于的函数关系式;(2)当时,怎样设计能使总造价最低?【答案】(1)且;(2)安装8根立柱时,总造价最小. 【解析】【分析】(1)分析题意,建立函数关系模型,即可得出函数关系式;(2)由(1)将函数解析式变形,根据基本不等式,即可求出最值.【详解】解:(1)依题意可知,所以,(2)∵,且,∴.∴,当且仅当,即时,等号成立,又∵,∴当时,.所以,安装8根立柱时,总造价最小.【点睛】本题主要考查函数、基本不等式等知识:考查运算求解能力、数学应用意识;考查函数与方程、化归转化等数学思想,属于中档题.22.已知椭圆的左焦点为,右顶点为,.(1)求的方程;(2)过点且与轴不重合的直线与交于,两点,直线,分别与直线交于,两点,且以为直径的圆过点.(ⅰ)求的方程;(ⅱ)记,的面积分别为,,求的取值范围.【答案】(1);(2)(ⅰ);(ⅱ).【解析】【分析】(1)根据椭圆的定义,根据条件列出方程求解即可;(2)(ⅰ)设M,N坐标分边为,,直线的方程为,结合椭圆方程可得BM、BN方程,并得出点P、Q坐标的表达式,根据圆过点,故向量,列方程可得m的值;(ⅱ)由(ⅰ),将,的面积,转换为、的表达式,相比可得出的取值范围.【详解】解:(1)依题意得,即,∴,解得,∴椭圆的方程为.(2)(ⅰ)设,,直线的方程为.由得,显然,且,,直线方程为,直线方程为,令,得,,∵以为直径的圆过点,∴,∴,∴,解得或(舍去),∴的方程为.(ⅱ)由(ⅰ),,∴.【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位罝关系、三角形面积公式等知识,考查运算求解能力、推理论证能力:考查数形结合、函数与方程、转化与化归等数学思想.。

厦门2018届高三上学期期末质检数学(理)

厦门2018届高三上学期期末质检数学(理)

厦门2018届高三第一学期期末质检理科数学一、选择题:1.已知集合(){}10A x x x =+>,{B x y ==,则A B =I ( )A .{}0x x > B .{}1x x ≥ C .{}01x x <≤ D .R2.命题“32000,10x x x ∃∈-+≤R ”的否定是( )A .32000,10x x x ∃∈-+<RB .32000,10x x x ∃∈-+≥RC .32,10x x x ∀∈-+>RD .32,10x x x ∀∈-+≤R 3.实数,x y 满足0x y >>,则( )A .11x y > BC .1122x y⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .2x xy <4.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若,m αββ⊥⊥,则m α∥ B .若,m n m α⊥∥,则n α⊥C .若,,,m n m n ααββ⊂⊂∥∥,则αβ∥D .若,,m m n βααβ⊂=∥I ,则m n ∥5.已知实数,x y 满足1,20,21,x y x x y -≤⎧⎪+≥⎨⎪+≤⎩则目标函数2z x y =+的最大值等于( )A .-7B .52-C .2D .3 6.如图所示,函数26y x π⎛⎫=+ ⎪⎝⎭的部分图象与坐标轴分别交于点,,D E F ,则D E F ∆的面积等于( )A .4π B .2πC .πD .2π 7.已知正方形ABCD 的边长为2,对角线相交于点O ,P 是线段BC 上一点,则OP CP ⋅uu u r uu r 的最小值为( )A .-2B .12-C .14- D .2 8.函数()[]()2cos 2,21x xf x x x =∈-+的大致图象是( )A .B .C .D .9.ABC ∆中,23B π∠=,,A B 是双曲线E 的左、右焦点,点C 在E 上,若()0BA BC AC +⋅=uu r uu u r uuu r,则E 的离心率为( )A 1B 1CD 10.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( ) A .100 B .140 C .190 D .25011.若锐角ϕ满足sin cos ϕϕ-=,则函数()()2sin f x x ϕ=+的单调增区间为( ) A .()52,21212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z B .()5,1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()72,21212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z D .()7,1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 12.已知函数()()22log ,02,log 4,24,x x f x x x ⎧<≤⎪=⎨-<<⎪⎩若()12f a f a ⎛⎫≥+ ⎪⎝⎭,则a 的取值范围是A .170,2,22⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭U B .1770,,242⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭UC.72,2⎛⎡⎫ ⎪⎢ ⎣⎭⎝⎦U D.77,42⎛⎡⎫ ⎪⎢ ⎣⎭⎝⎦U 二、填空题13.复数z 满足()1i 2i z -=,则z = .14.设等比数列{}n a 满足11a =,356a a +=,则579a a a ++= . 15.直线()1y k x =-与抛物线24y x =交于,A B 两点,若163AB =,则k = . 16.某三棱锥的三视图如图所示,则它的外接球表面积为 .三、解答题17.如图,单位圆O 与,x y 轴正半轴的交点分别为,A D ,圆O 上的点C 在第一象限.(1)若点C 的坐标为12⎫⎪⎪⎝⎭,延长CD 至点B ,使得2DB =,求OB 的长; (2)圆O 上的点E 在第二象限,若23EOC π∠=,求四边形OCDE 面积的最大值.18.如图,直角梯形BDFE 中,EF BD ∥,BE BD ⊥,EF =ABCD 中,AB CD ∥,AC BD ⊥,24AB CD ==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.19.数列{}n a 满足122311111n n na a a a a a n ++++=+L . (1)若数列{}n a 为公差大于0的等差数列,求{}n a 的通项公式; (2)若()11nn n n b a a +=-,求数列{}n b 的前2n 项和2n S . 20.已知点()1F,圆(222:16F x y +=,点M 是圆上一动点,1MF 的垂直平分线与2MF 交于点N . (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,过点()0,1P 且斜率不为0的直线l 与E 交于,A B 两点,点B 关于y 轴的对称点为B ',证明直线AB '过定点,并求PAB '∆面积的最大值.21.已知函数()()()2xf x ax x a e a -=++∈R .(1)若0a ≥,函数()f x 的极大值为3e,求实数a 的值; (2)若对任意的0a ≤,()()ln 1f x b x ≤+在[)0,x ∈+∞上恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C的参数方程为,sin ,x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,,A B 为C 上两点,且OA OB ⊥,设射线:OA θα=,其中02πα<<.(1)求曲线C 的极坐标方程; (2)求OA OB ⋅的最小值. 23.选修4-5:不等式选讲函数()12f x x x a =-++.(1)当1a =时,求证:()13f x x +-≥; (2)若()f x 的最小值为2,求实数a 的值.厦门2018届高三第一学期期末质检理科数学参考答案及评分标准一、选择题1-5:BCBDC 6-10:ACADC 11、12:BD二、填空题13.28 15..1003π三、解答题17.解:(1)由点1,22C ⎛⎫⎪ ⎪⎝⎭在单位圆上,可知30AOC ∠=︒,由图象可得60COD ∠=︒;在CDB ∆中,1OD =,120CDB ∠=︒,2DB =; 由余弦定理得2222cos120OB OD DB OD DB =+-⋅⋅︒;解得OB ; (2)设62COD ππθθ⎛⎫∠=<<⎪⎝⎭,23DOE πθ∠=-1sin 2COD S θ∆=,12sin 23EOD S πθ∆⎛⎫=- ⎪⎝⎭四边形OCDE 的面积()112sin sin 22362EOD COD S S S πππθθθθ∆∆⎛⎫⎛⎫=+=+-<< ⎪⎪⎝⎭⎝⎭113sin sin sin 22244θθθθθ⎡⎤=++=+⎢⎥⎣⎦6πθ⎛⎫=+ ⎪⎝⎭ ∵62ππθ<<,∴2363πππθ<+<;当62ππθ+=,即3πθ=时,四边形OCDE 的面积S 18.证明:(1)∵平面BDFE ⊥平面ABCD ,BE BD ⊥,平面BDFE I 平面ABCD BD = ∴BE ⊥平面ABCD ,又AC ⊂平面ABCD ,∴AC BE ⊥, 又∵AC BD ⊥,且BE BD B =I , ∴AC ⊥平面BDFE .解:(2)设AC BD O =I ,∵四边形ABCD 为等腰梯形,2DOC π∠=,24AB CD ==,∴OD OC ==OB OA ==∵FE OB ∥,∴四边形BOFE 为平行四边形, ∴OF BE ∥,又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角, ∴4FBO π∠=,又∵2FOB π∠=,∴OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,则()B,()0,D,(0,0,F,()C,()A(DF =uuu r,)CD =uu u r ,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0,设平面DFC 的一个法向量为(),,n x y z =r,由0,0,DF n CD n ⎧⋅=⎪⎨⋅=⎪⎩uuu r r uu u r r得0,0,+== 令2x =得,()2,2,1n =-r,2cos ,3n AC ==r uuu r . ∴二面角B DF C --的余弦值为23. 19.解:(1)由已知:122311111n n na a a a a a n ++++=+L 当1n =时,12112a a =①,即122a a = 当2n =时,12231123a a a a +=② ②-①,得23116a a =;即236a a = 设等差数列{}n a 公差为d ,由122326a a a a =⎧⎨=⎩,有()()222226a d a a d a -=⎧⎪⎨+=⎪⎩因为0d >,解得221a d =⎧⎨=⎩,则()22n a a n d n =+-= (2)由已知:122311111n n na a a a a a n ++++=+L ③ 当2n ≥时,122311111n n n a a a a a a n--+++=L ④ ③-④得:当2n ≥时,111n n na a n +=+,即()11n n a a n n +=⋅+, 结合122a a =,得:()()11n n a a n n n +=⋅+∈*N()()()1111n nn n n b a a n n +=-⋅=-+()()()2121212221n n b b n n n n -+=-⋅-⋅+⋅+()221214n n n n =+-+= ()()()21234212n n n S b b b b b b -=++++++L 484n =+++L()()44212n n n n +==+20.解:(1)由已知得:1NF NM =,所以1224NF NF MN NF +=+=又12F F =N 的轨迹是以12,F F 为焦点,长轴长等于4的椭圆,所以点N 的轨迹方程是22142x y +=. (2)设直线():10AB y kx k =+≠,()11,A x y ,()22,B x y ,则()22,B x y '-,联立直线AB 与椭圆得22241x y y kx ⎧+=⎨=+⎩,得()2212420k x kx ++-=,∴()21221228140,4,12212k k x x k x x k ⎧∆=+>⎪⎪-⎪+=⎨+⎪-⎪=⎪+⎩∴1212AB y y k x x '-=+,所以直线()121112:y y AB y y x x x x -'-=-+,所以令0x =,得122112x y x y y x x +=+,()()122112121211212x kx x kx kx x x x x x +++==+=++,所以直线AB '过定点()0,2Q , 所以PAB '∆的面积12221212PQB PQA k S S S x x k'∆∆=-=+=+2122k k=≤+,当且仅当2k =±时,等号成立.所以PAB '∆面积的最大值是2. 21.解:(1)由题意,()()()221x xf x ax e ax x a e --'=+-++ ()2121x e ax a x a -⎡⎤=-+-+-⎣⎦()()11xe x ax a -=--+-. (ⅰ)当0a =时,()()1xf x e x -'=--,令()0f x '>,得1x <;()0f x '<,得1x >, 所以()f x 在(),1-∞单调递增,()1,+∞单调递减. 所以()f x 的极大值为()131f e e=≠,不合题意. (ⅱ)当0a >时,111a-<, 令()0f x '>,得111x a -<<;()0f x '<,得11x a<-或1x >,所以()f x 在11,1a ⎛⎫-⎪⎝⎭单调递增,1,1a ⎛⎫-∞- ⎪⎝⎭,()1,+∞单调递减. 所以()f x 的极大值为()2131a f e e+==,得1a =. 综上所述1a =. (2)令()()2xx g a exx a xe --=++,(],0a ∈-∞,当[)0,x ∈+∞时,()20xex x -+≥,则()()ln 1g a b x ≤+对(],0a ∀∈-∞恒成立等价于()()()0ln 1g a g b x ≤≤+, 即()ln 1xxeb x -≤+,对[)0,x ∈+∞恒成立.(ⅰ)当0b ≤时,()0,x ∀∈+∞,()ln 10b x +<,0xxe ->,此时()ln 1xxeb x ->+,不合题意.(ⅱ)当0b >时,令()()ln 1xh x b x xe -=+-,[)0,x ∈+∞,则()()()2111x x xxb be x h x e xe x x e--+-'=--=++,其中()10x x e +>,[)0,x ∀∈+∞, 令()[)21,0,xp x be x x =+-∈+∞,则()h x 在区间[)0,+∞上单调递增,①1b ≥时,()()010p x p b ≥=-≥,所以对[)0,x ∀∈+∞,()0h x '≥,从而()h x 在[)0,+∞上单调递增, 所以对任意[)0,x ∈+∞,()()00h x h ≥=, 即不等式()ln 1xb x xe -+≥在[)0,+∞上恒成立.②01b <<时,由()010p b =-<,()10p be =>及()p x 在区间[)0,+∞上单调递增, 所以存在唯一的()00,1x ∈使得()00p x =,且()00,x x ∈时,()00p x <. 从而()00,x x ∈时,()0h x '<,所以()h x 在区间()00,x 上单调递减, 则()00,x x ∈时,()()00h x h <=,即()ln 1xb x xe -+<,不符合题意.综上所述,1b ≥.22.解:(1)将1C的方程化为直角坐标方程为221y +=,即2212x y +=.将cos x ρθ=,sin y ρθ=代入可得()()22cos sin 12ρθρθ+=化简得2221sin ρθ=+(2)根据题意:射线OB 的极坐标方程为2πθα=+或2πθα=-.1OA ρ==2OB ρ===则12OA OB ρρ⋅=⋅==22241sin 1cos 32αα≥=+++,当且仅当22sin cos αα=,即4πα=时,取得最小值43. 故OA OB ⋅的最小值为43. 23.解:(1)依题意:()1121f x x x x +-=-++12221x x x +-=-++()()22213x x ≥--+=,当且仅当()2221x x -=-+,即14x =时,等号成立. (2)①当12a >-,即2a >-时,()31,,21,1,231,1,a x a x a f x x a x x a x ⎧-+-≤-⎪⎪⎪=++-<<⎨⎪+->⎪⎪⎩则当2a x =-时,()min 112222a a a f x f ⎛⎫=-=--=+= ⎪⎝⎭,故2a =.②当12a <-,即2a <-时,()31,1,1,1,231,,2x a x a f x x a x a x a x ⎧⎪-+-≤⎪⎪=---<<-⎨⎪⎪+-≥-⎪⎩则当2a x =-时,()min 112222a a a f x f ⎛⎫=-=--=--= ⎪⎝⎭,故6a =-. ③当12a=-时,即2a =-时,()31f x x =-有最小值0,不符合题意,舍去.。

福建省厦门市2018届高三上学期期末质检数学(理)试题+PDF版含答案

福建省厦门市2018届高三上学期期末质检数学(理)试题+PDF版含答案

厦门市2018届高三年级第一学期期末质检理科数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.1~5:6~10:11~12:二、填空题:本大题共4小题,每小题5分,共20分.13.14.15.16.三、解答题:本大题共6小题,共70分.17.本题考查三角函数定义、图形分析、余弦定理、图形的分割、三角恒等变换、辅助角公式、三角函数有界性等基础知识。

本题考查学生三角函数概念的形成过程、图象分析能力、运算求解能力,其中渗透静止与运动观点、化归与转化、数形结合的思想。

解:(1)由点C在单位圆上,可知,1分由图象可得;2分在中,,,;3分由余弦定理得;4分解得;5分(2)设,6分,7分四边形的面积=+8分10分,;11分当,即时,四边形的面积的最大值为.12分(其他解法酌情给分)18.本题主要考查空间线线、线面、面面垂直的判定与性质,线面角的定义以及二面角的求法,考查空间想象能力、推理论证能力、运算求解能力.证明:(1)∵平面平面,,平面平面∴平面,2分又平面,∴,3分又∵,且,∴平面.5分解:(2)法一:设,∵四边形为等腰梯形,,,∴,,∵,∴四边形为平行四边形,∴,6分又∵平面,∴平面.∴为与平面所成的角,∴,7分又∵,∴以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,,,,,,8分∵平面,∴平面的法向量为,9分设平面的一个法向量为,由得令得,,10分.11分∴二面角的余弦值为.12分法二:同法一得平面,.7分过作,垂足为点,连结,∵平面,平面,∴,8分又∵,∴平面,∵平面,∴,故即为二面角的平面角.9分在中,求得,10分∴,∴.∴二面角的余弦值为.12分19.本题考查数列等差数列,通项公式与前项和关系,数列并项求和方法,裂项相消法;考查计算求解能力、推理论证能力;考查方程思想.解:法一:(1)由已知:当时,①,即1分当时,②②-①,得;即2分设等差数列公差为,由,有3分因为,解得,5分则6分(1)法二:设等差数列公差为,,2分3分,则,,因为,5分解得,则且6分(2)由已知:③当时,④③-④,得:当时,即,7分结合,得:()8分10分11分12分20.本题考查椭圆的定义、图形的分析、图形的分割、图像的运动过程中的不变量,面积的求解等基础知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档