第一型曲线积分与曲面积分的一些问题

合集下载

第一类曲线积分与曲面积分的计算

第一类曲线积分与曲面积分的计算
连续 一致连续任意接近两个自变量函数值任意接近
1/x,一致连续1/n不是确定的值,而某点连续是具体值,所以在某区间连续和一致连续不同
由n(具体)确定
两个任意小就看以谁先为有限值
而有界闭区域率先确定1/n中n有界,所以在有界闭区域连续则必一致连续,对于有界闭区域,一致连续受到了弱化
第一类曲线积分与曲面积分的计算
平面曲线的弧长公式s= 极坐标形式s= dɵ
空间s=
密度:f(x,y)平面曲线
f(x,y,z)空间曲线
曲面积分:S=
积分在物理上的应用
质心:对平面的静力矩等效mx是对yoz平面的静力矩
X0=Myz/m=
当密度均匀时,x0=
转动惯量:I=mr2Ix=
注意积分对变量x,y,z的轮换对称性G
飞行体受到地球引力
Gm
灵活运用积分方法
含参变量的积分
有限区间
闭区域:D={(x,y)ꞁa 上连续
一致连续 极限运算和积分运算可交换顺序
所谓一致连续,其定义为
该区间上 两个值x1,x2,当 < 时,就有 <
典型的不一致连续:1/x(1/n,1/(n+1))x2(n,n+1/n)

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。

(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。

②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。

(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。

例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。

第一型曲线积分与曲面积分的一些问题

第一型曲线积分与曲面积分的一些问题

第一型曲线积分与曲面积分的一些问题第1型曲线积分与曲面积分的1些问题摘要本文归纳研究了第1型曲线积分与曲面积分的物理背景,定义,性质及计算方法,并在此基础上给出了它们在特殊坐标变换下的计算公式及证明。

并且利用这个公式,推导出了当第1型曲线积分或曲面积分的被积函数为奇函数或偶函数,积分曲线或曲面是对称的时的几个重要的推论及证明。

关键字:第1型曲线积分与曲面积分;坐标变换;奇偶性;对称性。

Some questions about curve integral and surface integral of the firstkind A bstract In this article we induce and study the physical background ,definition, quality ,and calculating method of the curve and surface integral of the first kind ,and at the base of these , calculate formula and providence was proposed in the special coordinate transformation. Using this formula ,we get several important inference and prove that when the curve and surface integral of the first kin d’s integrand is odd function or even function and the integral curve or surface is symmetry.Key word: Curve integral and surface integral of the first kind; coordinate transformation; odevity; symmetry。

曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,具有广泛的应用领域。

本论文旨在介绍曲线积分和曲面积分的概念和计算方法,并讨论在实际应用中的一些应用情况。

曲线积分在微积分中,曲线积分用于计算沿一条曲线的函数的积分。

曲线积分有两种类型:第一类是沿曲线的弧长对函数进行积分,称为第一类曲线积分,第二类是对曲线上的函数在曲线元素上积分,称为第二类曲线积分。

第一类曲线积分第一类曲线积分表示为:$$ \\int_C f(x, y) ds $$其中,f(f,f)是曲线上的函数,ff表示沿曲线元素的弧长。

计算第一类曲线积分的方法通常包括参数化曲线和坐标变换两种。

例如,计算函数f(f,f)=f2+f2在曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 上的第一类曲线积分。

首先,通过参数化得到曲线的弧长元素:$$ ds = \\sqrt{\\left(\\frac{dx}{dt}\\right)^2 +\\left(\\frac{dy}{dt}\\right)^2} dt $$代入曲线方程得到:$$ ds = \\sqrt{\\left(-\\sin(t)\\right)^2 +\\left(\\cos(t)\\right)^2} dt = dt $$然后,将函数和弧长元素代入积分得到:$$ \\int_C f(x, y) ds = \\int_0^{2\\pi} (1) dt = 2\\pi $$第二类曲线积分第二类曲线积分表示为:$$ \\int_C \\mathbf{F} \\cdot d\\mathbf{r} $$其中,$\\mathbf{F}$ 是曲线上的向量函数,$d\\mathbf{r}$ 表示曲线元素。

计算第二类曲线积分的方法通常包括参数化曲线和曲线方程两种。

例如,计算向量函数 $\\mathbf{F}(x, y) = (x, y)$ 沿曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 的第二类曲线积分。

数学分析简明教程答案

数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。

解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。

曲线积分与曲面积分

曲线积分与曲面积分

释疑解难曲线积分与曲面积分问题1.如何认识多元函数的几种积分的定义?答:多元函数的几种积分的定义可以用统一形式给出,统称为几何形体上的积分:n『f(P)dP =lim 送f(P)KP ,其中i P 是将积分区域G 任意分割为n 块后的任一块G若G 为空间区域0 ,则是三重积分 Jff f (x, y,z)dv 。

Q若G 为曲线弧L ,则是对弧长的曲线积分JJ f (x, y,z)dS 。

IJPdx + Qdy = J (P cocs +Q cBsds)LL其中a ,P 为有向曲线弧L 的切向量的方向角。

对坐标的曲面积分JJ P dydz+Qdzdx+Rdxdy = JJ ( Pcos 。

+QcosP +RcosY)dS ,II其中a ,P ,Y 为有向曲面I :的法向量的方向角。

问题2.如何正确理解两类曲线积分和曲面积分的概念?答:由于实际需要,曲线积分与曲面积分为两种类型,有关质量、重心、转动惯量等 数量积分问题导出第一类线面积分;有关变力作功、流体流过曲面的流量等向量问题导出第二类线、面积分。

前者被积函数化为数量函数沿区域积分,无需考虑方向性,而后者被积函 数是向量函数,必须考虑方向。

因此,一个函数的积分可以由积分区域的有向或无向分为两 种类型的积分,在所学过的积分中:区域无向的积分有:重积分、第一类曲线积分和第一类曲面积分; 区域有向的积分有:定积分、第二类曲线积分和第二类曲面积分。

曲线的方向是由起点到终点(定积分)或切向量的方向来确定,曲面的方向则由曲面 上点的法向量所指向的侧来确定,我们常会把两类积分相互转换,转换时必须注意符号,它体现了有向积分的方向。

将 无向域的积分化为有向域的积分,如重积分化为累次积分(定积分),方向性体现为定积分的上、下限的确定, 而将有向域的积分化为无向域的积分,如第二型曲面积分化为二重积分或三重积分,第二型曲线积分化为二重积分等,必须注意符号的确定问题。

问题3.应用格林公式时应注意什么问题? 答:应用格林公式应注意以下几点:1.必须注意格林公式的条件是否满足,否则,就会出现错误。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分和曲面积分是微积分中两个重要的概念。

曲线积分是对曲线上的函数进行积分运算,而曲面积分是对曲面上的函数进行积分运算。

本文将详细介绍曲线积分和曲面积分的概念、计算方法以及应用。

一、曲线积分曲线积分是对曲线上的函数进行积分运算。

通常将曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分用于计算曲线上的标量场函数。

对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数f(x,y,z)在C上可微分,则第一类曲线积分的计算公式为:∫_[C]f(x,y,z)ds=∫_a^bf(x(t),y(t),z(t))∥r'(t)∥dt其中,ds表示曲线上的微元弧长,∥r'(t)∥表示曲线C的切向量的长度。

2. 第二类曲线积分第二类曲线积分用于计算曲线上的矢量场函数。

对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数F(x,y,z)在C上连续,则第二类曲线积分的计算公式为:∫_[C]F(x,y,z)·dr=∫_a^bF(x(t),y(t),z(t))·r'(t)dt其中,·表示矢量的点乘运算,dr表示曲线上的微元矢量。

二、曲面积分曲面积分是对曲面上的函数进行积分运算。

同样,曲面积分也分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分用于计算曲面上的标量场函数。

对于参数化曲面S:r(u,v)=(x(u,v), y(u,v), z(u,v)),其中(u,v)属于区域D,函数f(x,y,z)在S上可微分,则第一类曲面积分的计算公式为:∬_[S]f(x,y,z)dS=∬_Df(x(u,v),y(u,v),z(u,v))∥r_u×r_v∥dudv其中,dS表示曲面上的微元面积,r_u和r_v表示曲面S的参数方程关于u和v的偏导数,r_u×r_v表示两个偏导数的叉乘,∥r_u×r_v∥表示其长度。

曲线曲面积分部分难题解答43页word文档

曲线曲面积分部分难题解答43页word文档

曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+lds y x 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+l s d y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++lds z y x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰lzds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰|2arctan 035sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+=(ⅱ)解:()⎰+lds y x 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx x ds y x OA;.20,,0:≤≤⎩⎨⎧==x xx y OA ()()[]()dy y y ds y x AB 210222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y .10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.02102222=++=+⎰⎰dy y ds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO .3535+=++=⎰⎰⎰OA AB OB I (ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt a t a t a s d y x l 2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a ⎰=π20222sin 2.24dt t a ⎰=π2022sin 2.22cos 22sin 2202202|a t a t d t a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l ()().22,sin .cos sin ,cos cos :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds 22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l 2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b a b a[].433222222b a b a ++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by a x l 上,其密度().,y y x =μ求它的总质量. 解:不妨假设.b a >⎰⎰==14l lyds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l()()()().cos sin cos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sin sin 441+==⎰⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 2222014---=⎰()du u b a a b 222214--=⎰du u ba a ba b ⎰---=202222224π(公式) |102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u b a a u b a au b a a b a b .arcsin ..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b a b a b a a b 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明: ()().max .P f L ds P f lP l ∈≤⎰证明:由第一型曲线积分的定义()()i ni i d l s P f ds P f ∆=∑⎰=→.lim 1故 ()()i n i i d ls P f ds P f ∆=∑⎰=→.lim 1()i ni i d s P f ∆=∑=→.lim 1()i n i i d s P f ∆≤∑=→.lim 1()i ni lp d s P f ∆≤∑=∈→.max lim 1().max .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分 .⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧; (3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解:(1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.10=-=-⎰⎰⋂dx x x ydx xdy OA(2).1~0:,:x xx OA ⎩⎨=[].323224.|10312==-=-⎰⎰⋂x dx x x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OB BAOAydx xdy.1~0:,.,0:x x x y OB ⎩⎨⎧== ();000.10=-=-⎰⎰dx x ydx xdy OB.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.120=-=-⎰⎰dy y ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a x a y ; (2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解:(1) .~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l ⎰⎰+-=+π0cos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a .(2).~:,,0:a a x xx y l -⎩⎨⎧== ().00.0=+=+⎰⎰-dx x xdy ydx a al(3).2~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a .6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+ly x dy y x dx y x解:π2~0:,.sin :t t a y l ⎩⎨=,所以,()()⎰+--+l y x dy y x dx y x 22()()()()dt a t a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos .22022ππ-=-=⎰dt aa 7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()d y xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()d y y x dx y x l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx z y l⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l ()()d y xy y dx xy x l⎰-+-2222 ()()[]d x x x x x x x x⎰--+-=1124222..2.2 [].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dy y x dx y xL2222-++⎰()()dy y x dx y xOA2222-++=⎰()()dy y x dx y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dx x x x x dy y x dx y x OA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx x x x dy y x dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x 原式.343232=+=(ⅲ)()dz x yzdy dx z y l⎰-+-2222 ()[]d t t t t t t t t ⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t 8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明: ())....P L P f lP l ∈≤⎰证明:设()()(){}.,21P f P f P f = 由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i i i d l y P f x P f d P f 1210..lim .故 ()()()[]∑⎰=→∆+∆=ni i i i i d ly P f x P f P f 1210..lim .()()[]∑=→∆+∆≤n i i i i i d y P f x P f 1210..lim ()()()()22122210.lim i i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.lim i i ni i d y x P ∆+∆==→)()())⎰∑=→=∆+∆≤li i ni d ds P y x P ..lim 221)P L =.9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22y x z +=被圆柱面x y x 222=+截下的那一部分; (ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=则dS dxdy ==.dxdy yx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122b br a a ra ardrd πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:y x z +=∑,得,2122dxdy dxdy y z x z dS =⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22y a x -=,则,22y a y yx--=∂∂,0=∂∂zx,所以,dydzya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz y a a S S yzD ⎰⎰-==22188 ⎰⎰--=2202208y a a dz y a a dy .8820a adz a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面; (ⅱ)()d S y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S dxdy dS =1, ()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++1010222111111dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111| 212ln -=; ,0:2=x S dydz dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++10102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=y y ; ,0:3=y S dzdx dS =3,()()()dz x dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++10102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||101-=+-+-=x x ;,1:4y x z S --= dxdy dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10101021113113| ().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ;()⎰⎰++S y x dS 21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S dxdy dS =1,()()rdr r d dxdy y x dS y x aD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = dxdy dS =2,()()rdr r d dxdy y x dS y x aD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a y x S =+其向yoz 面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22y a y yx --=∂∂,0=∂∂zx,所以, dydz ya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+= ()()dydz ya a y y a dS y x yz D S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz y a dy a 022312..2arcsin4303|h a a y h a aπ== 或者()..22..32232233h a ah a dS a dS y x S S ππ===+⎰⎰⎰⎰()⎰⎰++S y x dS21()++=⎰⎰122S dS y x ()++⎰⎰222S y x()d S y xS ⎰⎰+322().22223344h a a h a a a +=++=ππππ(ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dS x SdS y S ⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a u f dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面0=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有 其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则 ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)得: ()22221uw v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=' ;112222u w v u E u u u-='+'+'= ;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du c b a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量.解:由公式 ()d Sy x J S⎰⎰+=22由对称性 ()d S y x J S ⎰⎰+=1228其中 2221:y x a z S --=,则z z x y ∂∂==∂∂,所以,dS ==.因此 ()dxdy yx a a y x S S xyD ⎰⎰--+==222221.88rdr ra r d a a.8022220⎰⎰-=πθ极()rdr ra a a ra a .4022222⎰-+-=πrdr r a a a.4022⎰--=πrdr ra a a.140223⎰-+π()22022.2r a d r a a a--=⎰π()220223.12r a d ra a a ---⎰π()|232232.2a r a a -=π|02232.2ar a a --π434a π-=44a π+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z y x S 的下侧,求曲面积分d S.⎰⎰,其中{}.,,z y x =解:⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz S d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222y x y y x x z z yx ,所以{}.cos ,cos ,cos 21,2,222220γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==y x y y x x n 故⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz d .()⎰⎰++=SdS z y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=S dS z y x y yx x 222222222 ⎰⎰⎪⎪⎭⎫ ⎝⎛-+=S dS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .02222222 14(P217,第2题)沿椭球面1222222=++cz b y a x 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫⎝⎛++S z dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:b y a x c z S --=(上侧);222221:by a x c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by a x D xy故 dxdy b ya x c z dxdyxyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.sin ,cos θθbr y ar x由二重积分的换元法 dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y r yxrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D 所以=⎰⎰1S zdxdy dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d c ab ⎰⎰-=πθ2010211dr r rd c ab ⎰⎰-=πθ2010211所以, ().212111|1022102πππcab r c ab r d r c ab =⎥⎦⎤⎢⎣⎡--=---=⎰ 由轮换对称性,知: πa bc x dzdy S4=⎰⎰; .4πb ac y dzdx S=⎰⎰ 故⎰⎰⎪⎪⎭⎫⎝⎛++Sz dxdy y dzdx x dydz +=⎰⎰S z dxdy +⎰⎰S x dzdy⎰⎰Sy dzdx+=πc ab 4πa bc 4().44222222a c c b b a abcb ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故 ()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换: ⎩⎨⎧+=+=.sin ,cos θθr b y r a x由二重积分的换元法()()[]rdr r R c dxdy b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y r yxrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D 所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()dr r rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R r R c c R⎰-+-+=02222222πrdr r R c rdr c R R ⎰⎰-+=02202222ππ()rdr r R R⎰-+0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cR R c πππ++=(1)同理()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221()dr r r R c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ200222()rdr r R c R 20222⎰---=πrdr r R c rdr cRR⎰⎰-+-=0222222ππ()r dr r R R⎰--0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cR R c πππ-+-= =⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cR dxdy z S π=⎰⎰ ; 由轮换对称性,知: =⎰⎰Sdydz x 2338aR π; =⎰⎰Sdzdx y 2.383bR π 故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydz x 2⎰⎰Sdzdxy 2⎰⎰Sdxdy z2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分 ⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此 =⎰⎰Sxyzdxdy +⎰⎰1S xyzdxdy ⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy ⎰⎰-xyD dxdy xy 0.c b a ydy xdx c ab.40022⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫⎝⎛=+12222b y a x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI x xL-+-=⎰cos sin ,(m 为常数) 其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆周.(提示:作辅助线后用格林公式). 解:cos ,cos x x P Qe y m e y y x∂∂=-=∂∂. 所以,由格林公式:221...428AO OA D DQ P a dxdy mdxdy m ma x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰.所以,2220.888AO OAma ma ma I πππ⋂==-=-=⎰⎰ (因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有xQ y P ∂∂=∂∂即 ()()x f x x f x '+=34 化简,得 ()()241x x f xx f =+' (1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214().1134xc x c x x +=+=代入条件()21=f ,得 .1=c故 ().13xx x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,=在闭区域D 上具有连续的二阶偏导数且记2222yux u u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dl udxdy ds n u其中()()yu x u n u ,cos ,cos ∂∂+∂∂=∂∂ 表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos 、()y ,cos ,则有 ()()y x ,,τ=,()().,,x y τπ-=故 ()()y x ,cos ,cos τ=,()().,cos ,cos x y τ-=()()ds x y uy xu ds n u l l ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx y udy x u l ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u y x u x =⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰D dxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 证明:仿上题 ()()ds xy uy x u u ds n u ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yuu dy x u ul ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u u y u y u x u u x u x u 2222....dxdy y u x u u dxdy y u x u D D ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdy u dxdy y u x u D D ∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22 移项,即得 .22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: ds vu n v n u dxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明: ()()ds x y u y xu v ds n u vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yuv dy x u vl ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=D D dxdy y u x u v dxdy y v y u x v x u 22.....⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DD udxdy v dxdy y v y u x v x u (1)由轮换对称性,知 ds nv ul⎰∂∂...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DD vdxdy u dxdy y v y u x v x u(2)于是ds n v u n uv ds vun vnul l ⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂ ⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰D D udxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰D D vdxdy u dxdy y v y u x v x u .. ()⎰⎰∆-∆=Ddxdy v u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分()(b a I =,其中l 为简单(光滑)闭合曲线,为不在l 上的点()b a ,到l 上动点()y x ,的向量,而为l 上动点()y x ,处的法向量.解:设为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x ,,τ=,()().,,x y τπ-= 又设()(){}y x n ,cos ,,cos 0= ,{}b y a x --=,,则()()()()()()().,cos .,cos .,cos ,cos 2200b y a x y b y x a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]d s y b y x a x b y a x b a I l,cos ,cos .1,22-+--+-=⎰()()()()()()[]d s x b y y a x b y a x l,cos ,cos .122----+-=⎰ ()()()().22⎰-+----=lb y a x dx b y dy a x 记 ()()(),,22b y a x b y y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y y P-+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xoy 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:()()()()⎰-+----l b y a x dx b y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dy a x I 22()()⎰---=εεldx b y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x . 24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式dxdy yx zx yz z y x dxdy dzdx dydz2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=,.31,33,330⎭⎬⎫⎩⎨⎧-=n )()()()dS dxdy dz y x dy z x dx y z I l ⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u (){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -= 因为xQx y y x y P ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈ 所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos 22()dy y x x y sin cos 22-是某一个函数()y x u ,的全微分. 故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dy y x x y dx x x yx ⎰⎰-+-=0202sin cos 2sin 00cos 2.cos cos 22y x x y +=则,所求的位势为 ().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y e x z xe f y y --=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xe z y x P y y -=-==--x Q xe y P y ∂∂=-=∂∂-2;y R z z Q ∂∂=-=∂∂sin ;.0zP x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,{}z y e x z xe f y y sin ,cos ,22--=--为定义在全空间上的保守场.所以,+-dx xe y 2()zdz y dy e x z y sin cos 2---是某一个函数()z y x u ,,的全微分.(二)现取()()()()zdz y dy e x z dx xe z y x u y z y x y sin cos 2,,2,,0,0,0--+=--⎰取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是()()⎰⎰⎰-+-+=--z yyxzdz y dy ex dx xe z y x u 00200sin 0cos 2,,[]|||022cos zy yx z y e x y x+++=-()[]()y z y x e x y x y-+-++=-cos 222.cos 2z y e x y +=-则,所求的位势为 ().cos ,,2c z y e x c z y x u y ++=+- 26(P238第2题)证明式(14-31),并由此求下面的曲线积分: ()();).1(2,11,22⎰-xxdyydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l ,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰(1)则可证明()y x v ,也是f 在D 内的一个势函数.故 ()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立(2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============Θ又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(x xdyydx 中,()2,x y y x P =,().1,2x xx y x Q -=-= 因为 xQx y P ∂∂==∂∂21,().0,,2≠∈x R y x 所以,2xxdyydx -是某一个函数()y x u ,的全微分. 故可取()()()⎰-=y x x xdy ydx y x u ,0,12,dy x dx y x ⎰⎰⎪⎭⎫ ⎝⎛-+=0110.x y -=所以 ()()()().2321121,22,12,11,22-=⎪⎭⎫ ⎝⎛---=-=-⎰u u x xdyydx()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为x Q z y P ∂∂==∂∂;y R x z Q ∂∂==∂∂;.zPy x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是 ()⎰⎰⎰++=zyxxydz dy x dx z y x u 000.00,, .xyz =所以 ()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u xydz zxdy yzdx 27(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dy y xy x dx y xy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQy P ∂∂==∂∂3,是全微分方程.故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰ ()()dy y x dx x yx ⎰⎰-++=004302[]||02223yx y xy x-+=.2322y xy x -+=通解为:c y xy x =-+2223.()().03223).2(2222=+--+-dy y xy x dx y xy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x y P ∂∂=+-=∂∂22,所以方程是全微分方程. 故:()()()()()dy y xy x dx y xy x y x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx x yx⎰⎰-+-+=022023203[]||03223yx yxy y xx-+-+=.3223y xy y x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.28(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1) 显然,()()()().1,0A u f B u f ==(2)且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3)于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01()()=3Θ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ ()..,,000z z y y x x gradu ∆+∆+∆+=ξξξ (4)由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ29(P238第7题)求向量场⎪⎭⎫ ⎝⎛=x y grad f arctan 沿下列曲线l 的环量: (ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算).解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x x y x y (ⅰ) 2222.y x xdyy x ydx d f l l +++-=⎰⎰(格林公式)dxdy y x y y y x x x D⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222()().022********=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy y x x y y x x y D (ⅱ)⎰⎰+-=ll y x ydx xdy d f 22.[].22.241412ππ==-=⎰l ydx xdy 30(P238第8题)求,f rot 其中().2,3,32x y z x y z f ---= 解:⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R f rot ,,{}.6,4,2= 31(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ y uR f rot ,, ,,{⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P z P u z u Q z Q u y u R y R u },⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u Q xQu⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y u P x u Q z u P x u R z u Q y u R ,.f gradu f urot ⨯+= 31(P246第1题)利用奥-高公式计算下列各曲面积分:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz ,沿球面()()()2222R c z b y a x =-+-+-外侧;(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333,沿正方体()10,10,10≤≤≤≤≤≤z y x 外表面;(ⅲ)()()()[]d S z z y y x x S⎰⎰++,cos ,cos ,cos 222,沿锥面()h z y x S ≤=+22的下侧;(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.解:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz (奥-高公式)()()()⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=dv z z y y x x .434.3333R R dv ππ===⎰⎰⎰Ω(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333(奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=333()⎰⎰⎰Ω++=dxdydz z y x 2223=3(ⅲ)若取h z S =:1(上侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥-高公式,便得:()()()[]d S z n z y n yx n x S S ⎰⎰+++1,cos ,cos ,cos 222dxdy z dzdx y dydz xS S 2221++=⎰⎰+ (奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=222()⎰⎰⎰Ω++=dxdydz z y x 2⎰⎰⎰Ω=zdxdydz 2(=⎰⎰⎰Ωxdxdydz 0=⎰⎰⎰Ωydxdydz )dz z rdr d h h r⎰⎰⎰=πθ202()dr r h r d h⎰⎰-=πθ20022212 .24πh = 所以 ()()()[]d S z n z y n y x n x S⎰⎰++,cos ,cos ,cos 222dxdy z dzdx y dydz x h S 222212++-=⎰⎰π=-=⎰⎰dxdy h h xyD 222π.2.22222πππh h h h =-=(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.若取0:1=z S (下侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥—高公式,便得:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一型曲线积分与曲面积分的一些问题
第1型曲线积分与曲面积分的1些问
题摘要本文归纳研究了第1型曲线积分与曲面积分的物理背景,定义,性质及计算方法,并在此基础上给出了它们在特殊坐标变换下的计算公式及证明。

并且利用这个公式,推导出了当第1型曲线积分或曲面积分的被积函数为奇函数或偶函数,积分曲线或曲面是对称的时的几个重要的推论及证明。

关键字:第1型曲线积分与曲面积分;坐标变换;奇偶性;对称性。

Some questions about curve integral and surface integral of the first
kind A bstract In this article we induce and study the physical background ,definition, quality ,and calculating method of the curve and surface integral of the first kind ,and at the base of these , calculate formula and providence was proposed in the special coordinate transformation. Using this formula ,we get several important inference and prove that when the curve and surface integral of the first kin d’s integrand is odd function or even function and the integral curve or surface is symmetry.Key word: Curve integral and surface integral of the first kind; coordinate transformation; odevity; symmetry。

相关文档
最新文档