简单几何体的表面积和体积(含答案)

合集下载

有关简单几何体的表面积与体积问题

有关简单几何体的表面积与体积问题
4c 1 n .

个几何 体 的正视 罔和侧 视 图是腰 长 为 l的等腰 二 三
r T 8 , 26 , 得 r 4所 以 球 的 半 径 是 r × =r  ̄ r 解 +r r r = .
角 形 . 视 图 是 一 个 圆及 其 网 心 . 这 个 几 何 体 的 体 俯 当 积 最 大 时 . 的 半 径 是 圆
表 面积 为6 2 / 中的三 视 图 问题 , 考
查 学生 的识 图能 力、 间想 象能力等 基本 能 力. 复 空 在
图 2
体积 为 1 x X / × 一 1 l 、 = .
选 B .
习时 . 同学们要 熟练 掌握 各种 几何 体 的表 面积公 式
空间几何体的体j 手 {
例 1 若 某 空 间 几 何 体
的三 视 图如 图 1 示 . 所 则该 几
空闯几何体的表面积
例 2 若 一 个 底 面 是 正 三 角
形 的 三 棱 柱 的 正 视 图 如 图 4所 示 , 则 其表 面积等 于 解 由正 视 图可知 , 三棱 柱是

参 考 答 案 C

球 面 上 , A = = A = , 若 B AC A 2 的 表 面 积 等 于 .
C 10 , 此 球 = 2 。则
有关体积l最值问题 『 9
例 4 在 正 四棱 锥 s B D 中 , = 、 3 , C 2 / 则
解 在 △AB 中 , B= = C A AC 2, 当 该 棱 锥 的 体 积 最 大 时 . 的 高 为 它 A. 1 解 B 、了 一 ./ C2 . D3 .
及 通 过 三 视 图确 定 原 几 何 体 的 形 状 .
小 结 已知 空 间 几 何 体 的 三 视 图 求 体 积 , 高 是

简单几何体的表面积与体积跟踪训练含答案

简单几何体的表面积与体积跟踪训练含答案

8.3简单几何体的表面积与体积跟踪训练(答案)一、选择题1、已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( B )A.2B.2 2C.4D.4 2解:设圆锥的母线长为l,因为该圆锥的底面半径为2,侧面展开图为一个半圆,所以2π×2=πl,解得l=2 2.2、现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为( D )A.3πB.3π2 C.5π2 D.5π解:设底面圆的半径为R,圆柱的高为h,依题意2R=h=2,∴R=1.∴圆锥的母线l=h2+R2=22+1=5,因此S圆锥侧=πRl=1×5π=5π.3、等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积为( B )A.2πB.2π或()1+2πC.22πD.22π或()2+2π解:如果绕直角边所在直线旋转,那么形成圆锥,圆锥底面半径为1,高为1,母线长就是直角三角形的斜边长2,所以所形成的几何体的表面积S=πrl+πr2=π×1×2+π×12=(2+1)π;如果绕斜边所在直线旋转,那么形成的是同底的两个圆锥,圆锥的底面半径是直角三角形斜边高为22,两个圆锥的母线长都是1,所以形成的几何体的表面积S=2×πrl=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π.故选B.4、对24小时内降水在平地上的积水厚度(mm)进行如下定义:0~1010~2525~5050~100小雨中雨大雨暴雨小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级( B )A.小雨B.中雨C.大雨D.暴雨解:由相似关系可得,雨水形成的小圆锥的底面半径r =20022=50(mm),故 V 小圆锥=13×π×502×150=503·π(mm 3),从而可得积水厚度h =V 小圆锥S 大圆=503·ππ·1002=12.5(mm),属于中雨.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( C )A .5-14B .5-12C .5+14D .5+12解:设正四棱锥的高为h ,底面正方形的边长为2a ,斜高为m ,依题意得h 2=12×2a ×m ,即h 2=am ①,易知h 2+a 2=m 2 ②,由①②得m =1+52a (舍负),所以m2a =1+52a 2a =1+54.故选C .6、已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π解:设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,所以S 表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B .7、已知圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( C )A .81πB .100πC .168πD .169π解:圆台的轴截面如图,设上底面半径为r ,下底面半径为R ,高为h ,母线长为l ,则它的母线长l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π, S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.8、正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( D )A.20+12 3B.28 2C.563D.2823解:连接该正四棱台上、下底面的中心,如图,因为该四棱台上、下底面的边长分别为2,4,侧棱长为2,所以该棱台的高h =22-(22-2)2=2,下底面面积S 1=16,上底面面积S 2=4,所以该棱台的体积V =13h (S 1+S 2+S 1S 2)=13×2×(16+4+64)=2823.9、已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( C )A.4B.6C.4 3D.6 3解:∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,∴AS ⊥平面ABC ,∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC =13×12×2×6×23=4 3. 10、如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是( C )A .23πB .324πC .223πD .22π解:如图所示,过点P 作PE ⊥平面ABC ,E 为垂足,点E 为等边三角形ABC 的中心,连接AE 并延长,交BC 于点D .AE =23AD ,AD =32, 所以AE =23×32=33, 所以PE =P A 2-AE 2=63.设圆柱底面半径为r ,则r =AE =33,所以圆柱的侧面积S =2πr ·PE =2π×33×63=22π3.11、已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( C )A .4B .6C .4 3D .6 3解:因为∠ABC =π2,AB =2,BC =6,所以AC =AB 2+BC 2=22+62=210.因为∠SAB =π2,AB =2,SB =4,所以AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,所以AC ⊥AS .又因为SA ⊥AB ,AC ∩AB =A ,所以AS ⊥平面ABC ,所以AS 为三棱锥S -ABC 的高,所以V 三棱锥S -ABC =13×12×2×6×2 3=4 3.12、(多选)已知正四棱锥的侧面与底面所成的锐二面角为θ,若θ=30°,侧棱长为21,则( AC )A.正四棱锥的底面边长为6B.正四棱锥的底面边长为3C.正四棱锥的侧面积为24 3D.正四棱锥的侧面积为12 3解: 如图,在正四棱锥S -ABCD 中,O 为正方形ABCD 的中心,SH ⊥AB ,设底面边长为2a (a >0),因为∠SHO =30°,所以OH =a ,OS =33a ,SH =233a ,在Rt △SAH 中,a 2+⎝ ⎛⎭⎪⎫233a 2=21,所以a=3,底面边长为6,侧面积为S =12×6×23×4=24 3.故选AC.二、填空题13、已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__39π______.解:设该圆锥的高为h ,则由已知条件可得13×π×62×h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π.14、一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为____13____cm.解:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=122+52=13(cm).15、已知圆锥的顶点为A,过母线AB,AC的截面面积是2 3.若AB,AC的夹角是60°,且AC与圆锥底面所成的角是30°,则该圆锥的表面积为___(6+43)π_____.解:如图所示,∵AB,AC的夹角是60°,AB=AC,∴△ABC是等边三角形,∴34×AC2=23,解得AC=2 2.∵AC与圆锥底面所成的角是30°,∴圆锥底面半径r=OC=AC cos 30°=22×32= 6.则该圆锥的表面积=π×(6)2+12×2π×6×22=(6+43)π.16、学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为__118.8____g.解:由题意得,四棱锥O-EFGH的底面积为4×6-4×12×2×3=12(cm2),其高为点O到底面EFGH的距离,为3 cm,则此四棱锥的体积为V1=13×12×3=12(cm3).又长方体ABCD-A1B1C1D1的体积为V2=4×6×6=144(cm3),所以该模型的体积V=V2-V1=144-12=132(cm3),因此模型所需原材料的质量为0.9×132=118.8(g).17、棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.解:如图,由正方体棱长为2及M,N分别为BB1,AB的中点,得S△A1MN =2×2-2×12×2×1-12×1×1=32,又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2,∴V A1-D1MN =V D1-A1MN=13·S△A1MN·D1A1=13×32×2=1.18、圆台的上、下底面半径分别为10 cm,20 cm,它的侧面展开图扇环的圆心角为180°,则圆台的表面积为___1 100π_____cm2.(结果中保留π)解:如图所示,设圆台的上底面周长为c cm,因为扇环的圆心角是180°,故c=π·SA=2π×10(cm),所以SA=20 cm.同理可得SB=40 cm,所以AB=SB-SA=20 cm,所以S表=S侧+S上底+S下底=π(10+20)×20+π×102+π×202=1 100π(cm2).故圆台的表面积为1 100π cm2.19、如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为___23_____.解:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH .则原几何体分割为两个三棱锥和一个直三棱柱.依题意,三棱锥E -ADG 的高EG =12,直三棱柱AGD -BHC 的高AB =1. 则AG =AE 2-EG 2=12-⎝ ⎛⎭⎪⎫122=32.取AD 的中点M ,则MG =22, 所以S △AGD =12×1×22=24,∴V 多面体=V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.20、如图,设正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,则此正三棱锥的表面积为________.解:如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.因为S 侧=2S 底, 所以12·3a ·h ′=34a 2×2. 所以a =3h ′.因为SO ⊥OE ,所以SO 2+OE 2=SE 2.所以32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.所以h ′=23,所以a =3h ′=6.所以S 底=34a 2=34×62=93,S 侧=2S 底=18 3. 所以S 表=S 侧+S 底=93+183=27 3.21、已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__39π______.解;设该圆锥的高为h ,则由已知条件可得13×π×62·h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π.22、如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为____23____.解: ∵ED ⊥平面ABCD 且AD ⊂平面ABCD ,∴ED ⊥AD . ∵在正方形ABCD 中,AD ⊥DC , 而DC ∩ED =D , ∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF . ∵V E -ABCD =ED ×S 正方形ABCD ×13=2×2×2×13=83,V B -EFC =BC ×S △EFC ×13=2×2×1×12×13=23,∴V ABCDEF =83+23=103.又V F -ABCD =FC ×S正方形ABCD×13=1×2×2×13=43,V A-DEF=AD ×S △DEF ×13=2×2×2×12×13=43,V A -BEF =103-43-43=23.23、若E ,F 是三棱柱ABC -A 1B 1C 1侧棱BB 1和CC 1上的点,且B 1E =CF ,三棱柱的体积为m ,则四棱锥A -BEFC 的体积为____m3____.解: 如图所示,连接AB 1,AC 1.因为B 1E =CF ,所以梯形BEFC 的面积等于梯形B 1EFC 1的面积. 又四棱锥A -BEFC 的高与四棱锥A -B 1EFC 1的高相等, 所以V A -BEFC =V A -B 1EFC 1=12V A -BB 1C 1C .又V A -A 1B 1C 1=13S △A 1B 1C 1·AA 1, V ABC -A 1B 1C 1=S △A 1B 1C 1·AA 1=m , 所以V A -A 1B 1C 1=m 3,所以V A -BB 1C 1C =V ABC -A 1B 1C 1-V A -A 1B 1C 1=2m3, 所以V A -BEFC =12×2m 3=m3, 即四棱锥A -BEFC 的体积是m3.24、现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3),所以仓库的容积V=V锥+V柱=24+288=312(m3).故仓库的容积是312 m3.25、如图所示,底面半径为1,高为1的圆柱OO1中有一内接长方体A1B1C1D1-ABCD.设矩形ABCD的面积为S,长方体A1B1C1D1-ABCD的体积为V,AB=x.(1)将S表示为x的函数;(2)求V的最大值.解:(1)连接AC(图略),因为矩形ABCD内接于⊙O,所以AC为⊙O的直径.因为AC=2,AB=x,所以BC=4-x2,所以S=AB·BC=x4-x2(0<x<2).(2)因为长方体的高AA1=1,所以V=S·AA1=x4-x2=x2(4-x2)=-(x2-2)2+4.因为0<x<2,所以0<x2<4,故当x2=2即x=2时,V取得最大值,此时V max=2.。

高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。

8.3 简单几何体的表面积与体积(3

8.3 简单几何体的表面积与体积(3
为5的正方形.取的中点E,连接, ,交于点,连接, ,


则 ⊥ ,如图所示,侧 = = × · = × × −

=
底 = 正方形 = = , 表面积 = 底 + 侧 = +
=


பைடு நூலகம்
题④ ——球的表面积与体积求解
①若一个球的大圆面积扩大为原来的2倍,那么这个球的体积扩大
为原来的多少倍?
球的大圆面积扩大为原来的2倍,则球的半径扩大为原来的 倍,那么
球的体积扩大为原来的 2 倍.
②若一个球的体积为 4 3 ,则它的表面积是多少?

设球的半径为 ,则 = ,所以 = , = ,
① 6是底面周长,4是三棱柱的高,

此时底面积 1 = × 2 × 3 = 3, 体积1 = 1ℎ1 = 4 3
② 4是底面周长,6是三棱柱的高,


此时底面积 2 = × ×
3

=
3
, 体积1

= 2ℎ2 =
3

将边长是1的正方形以其一边所在的直线为旋转轴旋
转一圈,所得几何体的表面积是多少?体积又是多少?
第8章 立体几何初步
8.3 简单几何体的表面积与体积(3)
题① ——柱体(棱柱、圆柱)的表面积与体积
[襄阳市2019高一期末]已知某个三棱柱的底面是正三角形,侧棱垂直于底
面,它的侧面展开图是边长分别为6和4的矩形,求它的体积.
由题意可知该三棱柱为正三棱柱,
∵ 正三棱柱的侧面展开图是边长分别为6和4的矩形,∴ 有如下两种情况:
易得 =
2

高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD ­-A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1­AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。

专题10简单几何体的表面积与体积(知识精讲)(解析版)

专题10简单几何体的表面积与体积(知识精讲)(解析版)

数学第二册讲练测(人教A版2019必修第二册)专题10简单几何体的表面积与体积知识点课前预习与精讲精析核心知识点1:多面体的表面积1.柱体的表面积(1)侧面展开图:棱柱的侧面展开图是平行四边形,一边是棱柱的侧棱,另一边等于棱柱的底面周长,如图①所示;圆柱的侧面展开图是矩形,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=2πrl,表面积S表=2πr(r+l).【知识微点评】表面积是几何体表面的面积,它表示几何体表面的大小,常把多面体展开成平面图形,利用平面图形求多面体的表面积,侧面积是指侧面的面积,与表面积不同.一般地,表面积=侧面积+底面积.2.锥体的表面积(1)侧面展开图:棱锥的侧面展开图是由若干个三角形拼成的,则侧面积为各个三角形面积的和,如图①所示;圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,扇形的弧长等于圆锥的底面周长,如图②所示.(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=πrl,表面积S表=πr(l+r).3.台体的表面积(1)侧面展开图:棱台的侧面展开图是由若干个梯形拼接而成的,则侧面积为各个梯形面积的和,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.(2)面积:台体的表面积S 表=S 侧+S 上底+S 下底.特别地,圆台的上、下底面半径分别为r ′、r ,母线长为l ,则侧面积S 侧=π(r +r ′)l ,表面积S 表=π(r 2+r ′2+rl +r ′l ).核心知识点2:多面体的体积1.柱体的体积(1)棱柱(圆柱)的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)柱体的底面积S ,高为h ,其体积V =Sh .特别地,圆柱的底面半径为r ,高为h ,其体积V =πr 2h .2.锥体的体积(1)棱锥(圆锥)的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离.(2)锥体的底面积为S ,高为h ,其体积V =13Sh .特别地,圆锥的底面半径为r ,高为h ,其体积V =13πr 2h . 3.台体的体积(1)圆台(棱台)的高是指两个底面之间的距离.(2)台体的上、下底面面积分别是S ′、S ,高为h ,其体积V =13(S +SS ′+S ′)h .特别地,圆台的上、下底面半径分别为r 、r ′,高为h ,其体积V =13π(r 2+rr ′+r ′2)h . 核心知识点3:球的表面积和体积1.球的体积球的半径为R ,那么它的体积V = 43πR 3. 2.球的表面积球的半径为R ,那么它的表面积S = 4πR 2.3.与球有关的组合体问题(1)若一个长方体内接于一个半径为R 的球,则2R =a 2+b 2+c 2(a 、b 、c 分别为长方体的长、宽、高),若正方体内接于球,则2R =3a (a 为正方体的棱长);(2)半径为R 的球内切于棱长为a 的正方体的每个面,则2R =a .【知识微点评】对球的表面积与体积公式的几点认识:(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有惟一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.1.已知正方体外接球的体积是,那么该正方体的内切球的表面积为.【解析】解:设正方体外接球的半径为R,∵正方体外接球的体积是π,∴πR3,解得R=2.设正方体的棱长为a,则a=4,解得a,∴该正方体内切球的半径r,∴该正方体内切球的表面积为S=4πr2=4ππ.故答案为:π.2.已知正三棱柱ABC﹣A1B1C1的高为6,AB=4,点D为棱BB1的中点,则四棱锥C﹣A1ABD的表面积是,正三棱柱的体积为.【解析】解:正三棱柱ABC﹣A1B1C1的高为AA1=6,AB=4,点D为棱BB1的中点,如图所示,则四棱锥C﹣A1ABD的表面积是:SS△ABC+S△BCD(6+3)×4423×46×44=36+42;.故答案为:36+42;.3.已知圆柱的侧面展开图是一个边长为4π的正方形,则这个圆柱的表面积和体积分别为.【解析】解:设圆柱的底面半径为r、母线长为l,∵圆柱的侧面展开图是一个边长为4π的正方形,∴2πr=l=4π,得r=2、l=4π,∴圆柱的表面积为S=2πr2+2πrl=8π+16π2;体积V=πr2l=π•22•4π=16π2,故答案为:8π+16π2,16π2.4.如图,有一滚筒是正六棱柱形(底面是正六边形,每个侧面都是矩形),两端是封闭的,长1.6m,底面外接圆半径是0.46m,制造这个滚筒需要m2铁板(精确到0.1m2).【解析】解:因为此正六棱柱底面外接圆半径为0.46m,所以正六边形的边长是0.46m.设正六边形的周长为C,所以.所以S表=S侧+2S底=4.416+20.462×6≈5.5.故制造这个滚筒约需要 5.5m2铁板.故答案为:5.5.5.用一张(4×8)cm2的矩形硬纸卷成圆柱的侧面,则该圆柱的表面积为.【解析】解:(1)若圆柱的高为4cm,则圆柱的底面半径rcm,故圆柱的表面积为32+2πr2=24(cm2),(2)若圆柱的高为8cm,则圆柱的底面半径rcm,故圆柱的表面积为32+2πr2=24(cm2),故答案为:32cm2或32cm2.必考必会题型1:柱体、锥体、台体的表面积与体积【典型例题】已知直三棱柱底面的一边长为2cm,另两边长都为3cm,侧棱长为4cm,它的侧面积为,体积为.【解析】解:如图,ABC﹣A1B1C1为直三棱柱,AB=AC=3,BC=2,AA1=4.它的侧面积为:4×(2+3+3)=32cm2.∴24=8cm3.故答案为:32cm2;8cm3.【题型强化】现有一个圆锥形的钢锭,底面半径为3,高为4.某工厂拟将此钢锭切割加工成一个圆柱形构件,并要求将钢锭的底面加工成构件的一个底面,则可加工出的圆柱形构件的最大体积为.【解析】解:设该圆锥形钢锭内接圆柱的底面半径为x(0<x<3),高为h(0<h<4),则,即h=4,所以内接圆柱的体积V=πx2(4)=4π(x2x3),(0<x<3),则V'=4π(2x﹣x2),令V'=0,解得x=2或x=0(舍去),当0<x<2时,V'>0,单调递增,当2<x<3时,V'<0,单调递减,故当x=2时,V取极大值也为最大值,所以可加工出的圆柱形构件的最大体积为.故答案为:.【收官验收】如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路线长为.【解析】解:正三棱柱的侧面展开图如图所示的矩形,矩形的长为3,宽为1,则其对角线AA1 的长为最短路程.因此蚂蚁爬行的最短路程为:.故答案为:.【名师点睛】1.求解棱锥的表面积和体积时,注意棱锥的四个基本量,即底面边长、高、斜高、侧棱,并注意高、斜高、底面边心距所成的直角三角形的应用.2.求解圆锥的表面积和体积时,除应用“圆锥的侧面展开图是扇形,扇形的弧长为圆锥的底面周长”求出母线长和底面半径外,还需注意“圆锥的轴截面是等腰三角形”的应用.1.求解正棱台的表面积和体积时,注意棱台的五个基本量(上下底面边长、高、斜高、侧棱),并注意两个直角梯形(高、侧棱与上下底面外接圆半径所成的直角梯形,高、斜高与上下底面边心距所成的直角梯形)的应用.常用两种解题思路:一是把基本量转化到直角梯形中解决问题;二是把正棱台还原成正棱锥,利用正棱锥的有关知识来解决问题.2.求解圆台的表面积和体积时,注意其轴截面是等腰梯形的应用.求圆台的表面积的关键在于求侧面积,“还台为锥”是解题的常用策略,利用侧面展开图将空间问题平面化也是解决问题的重要方法.必考必会题型2:球的表面积与体积【典型例题】如图,一个底面半径为R的圆柱形量杯中装有适量的水,若放入一个半径为r的实心铁球,水面高度恰好升高r,则.【解析】解:半径为r的实心铁球的体积是,由题意可知,升高的水的体积是:πR2r,则,∴,则.故答案为:.【题型强化】我国古代数学名著《九章算术》中相当于给出了已知球的体积V.求其直径d的一个近似公式d.规定:“一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差,相对误差指的是测量所造成的绝对误差与被测量[约定]真值之比.”那么用这个公式所求的直径d结果的相对误差是.【解析】解:设球的直径为d,则V,由近似公式求得的直径的近似值为,绝对误差为||d,相对误差为.故答案为:.【收官验收】把一个半径为R的实心铁球铸成三个小球(不计损耗),三个小球的体积之比为1:3:4,则其中最小球的半径为.【解析】解:原球的体积为:,把一个半径为R的实心铁球铸成三个小球(不计损耗),三个小球的体积之比为1:3:4,最小球的体积为:,设小球的半径为r,可得,所以rR.故答案为:.【名师点睛】计算球的表面积和体积的关键都是确定球的半径,要注意把握表面积公式()和体积公式()中系数的特征和半径次数的区别.必要时需逆用表面积公式和体积公式得到球的半径.注意:计算与球有关的组合体的表面积与体积时要恰当地分割与拼接,避免遗漏或重叠.必考必会题型3:球的切、接问题【典型例题】设正方体的表面积为24,那么其外接球的体积是.【解析】解:正方体的表面积为24,设正方体的列出为a,所以6a2=24,解得a=2,所以正方体的体对角线的长度为2,外接球的半径为.所以外接球的体积:4.故答案为:4.【题型强化】在正四棱锥P﹣ABCD中,,若四棱锥P﹣ABCD的体积为,则该四棱锥外接球的体积为.【解析】解:设AC,BD的交点为E,球心为O,设AB=a,∵,则AEa,P Aa,∴PEa,∵四棱锥P﹣ABCD的体积为,∴•a2•PE⇒a=4,在RT△OBE中,OB2=OE2+EB2⇒R2=(8﹣R)2+16⇒R=5,∴该四棱锥外接球的体积为:π.故答案为:.【收官验收】已知一个球的体积是,则它的内接正方体的表面积为.【解析】解:由题意,正方体的体对角线的长度,是外接球的直径,球的体积是,所以4,解得R,正方体的体对角线的长度为2,所以正方体的棱长为:a,则,所以a=2,所以正方体的表面积为:6×2×2=24.故答案为:24.【名师点睛】球与几何体的切、接问题的解题思路1.球外接于几何体,则几何体的各顶点均在球面上,解题时要认真分析图形,一般需依据球和几何体的对称性,明确接点的位置,根据球心与几何体特殊点间的关系,确定相关的数量关系,并作出合适的截面进行求解.2.解决几何体的内切球问题,应先作出一个适当的截面(一般作出多面体的对角面所在的截面),这个截面应包括几何体与球的主要元素,且能反映出几何体与球的位置关系和数量关系.必考必会题型4:实际应用问题【典型例题】“中国天眼”是我国具有自主知识产权、世界最大单口径、最灵敏的球面射电望远镜(如图),其反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆为底,垂直于圆面的直径被截得的部分为高,球冠表面积S=2πRh,其中R为球的半径,h球冠的高),设球冠底的半径为r,周长为C,球冠的面积为S,则的值为(结果用S、C表示)﹒【解析】解:如图,由(R﹣h)2+r2=R2,可得h=R,由已知可得,①,C=2πr,得C2=4π2r2②,①②两式对应相除得,可得,设,得,整理得,,即m,∴.故答案为:.【题型强化】早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36°按计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于.【解析】解:由图知正二十面体的外接球即为上方正五棱锥的外接球,设其半径为R,正五边形的外接圆半径为r,正二十面体的棱长为l,则,得,所以正五棱锥的顶点到底面的距离是,所以R2=r2+(R﹣h)2,即,解得.所以该正二十面体的外接球表面积为,而该正二十面体的表面积是,所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于.故答案为:.【收官验收】《九章算术》是古代中国的第一部自成体系的数学专著,与古希腊欧几里得的《几何原本》并称现代数学的两大源泉.《九章算术》卷五记载:“今有刍甍(音:刍chú甍méng),下广三丈,表四丈,上袤二丈,无广,高一丈.问积几何?”译文:今有如图所示的屋脊状楔体PQ﹣ABCD,下底面ABCD是矩形,假设屋脊没有歪斜,即PQ中点R在底面ABCD上的投影为矩形ABCD的中心点O,PQ∥AB,AB=4,AD=3,PQ=2,OR=1(长度单位:丈).则楔体PQ﹣ABCD的体积为(体积单位:立方丈).【解析】解:将楔体PQ﹣ABCD分成一个三棱柱、两个四棱锥,则V三棱柱3立方丈,2V四棱锥2立方丈,故V楔体PQ﹣ABCD=V三棱柱+2V四棱锥=3+2=5立方丈.故答案为:5立方丈.【名师点睛】解体积、表面积的实际应用题的关键点对于实际应用问题,解题的关键是正确建立数学模型,然后利用表(侧)面积或体积公式即可求解.另外,正确作出截面图,找出其中的等量关系也是常用的方法.与球有关的实际应用问题一般涉及容积问题,解题的关键是正确作出截面图,找出其中的等量关系.另外,利用总体积不变,正确建立等量关系,也是常用的方法.11/11。

高中数学简单几何体的表面积与体积考点及例题讲解

高中数学简单几何体的表面积与体积考点及例题讲解

简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ­ABCD 与三棱锥E ­FBC 的体积之和,而四棱锥E ­ABCD 的体积等于13×(5×2)×3=10,三棱锥E ­FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。

相关文档
最新文档