生物反应器和比拟放大
生物反应器和比拟放大

微生物反应器:是生产中最基本也是最主要的设备, 其作用就是按照发酵过程的工艺要求,保证和控制各 种生化反应条件,如温度、压力、供氧量、密封防漏 防止染菌等,促进微生物的新陈代谢,使之能在低消 耗下获得较高的产量。 ①厌氧生物反应器:其反应器不需供氧,设备结构一 般较为简单。应用于乙醇、啤酒、丙酮、丁醇的生产。 ②好氧生物反应器:生产过程中需不断通入无菌空气, 因而其设备的结构比厌氧生物反应器复杂。应用于氨 基酸、有机酸、酶制剂、抗生素和单细胞蛋白SCP等 的生产。 根据反应器通风和搅拌的方式不同可分为三类:机械 搅拌通风式、自吸式和通风搅拌式。
24.03.2020
14
①优点:
节约空气净化系统中的空气压缩机、冷却器、 油水分离器、空气贮罐等设备,减少了厂房占 地面积,节省投资;通气质量是最好的,通入 发酵液中的2315m2气液接触面积/m3空气;动力 消耗低;设备便于自动化、连续化、降低了劳 动强度,减少劳动力。 ②缺点:
空气靠负压吸入到罐内,所以要求使用低阻力、 高除菌效率的空气净化系统;由于结构上的特 点,大型自吸式充气发酵罐的搅拌充气叶轮的 线速度在30m/s左右,在叶轮周围形成强烈的 剪切区域。充气搅拌叶轮的充气量随发酵液的 深度增大而减少,因此比拟放大有一最适范围。 罐压较低,对某些产品生产容易造成染菌。
二.生化反应器的特点 ㈠生化反应器的特点 ①生化反应与一般化学反应的不同主要在于其反 应皆由生物催化剂-酶来催化的。决定了酶反应 必须在比较温和的条件下进行,也就是在接近中 性的pH、较低的温度及近似细胞生理条件下进行。
6反应器比拟放大.

模式分析
在模式分析中,必须解决好3个问题: ①该系统是否由单个机理控制? ②起关键作用的是何模式? ③反应器规模改变时,此机理将如何变
化?
进行模式分析有多种方法,可分成实验 方法和理论方法两大类
(四)经验放大方法
以试验为基础,按照主导因素相等或接近的原 则进行放大的方法。
通气发酵罐放大准则
放大准则
对动量方程进行简化,即选择主要影响因素 即主要因素的主要影响方面,建立数学方程, 以得到反应器放大的主要参数。
对搅拌槽反应器或鼓泡塔,已有不少流动模 型的研究进展,其共同点是只考虑液流主体的 流动,而忽略局部如搅拌叶轮或罐壁附近的复 杂流动。其流型有三类即活塞流、带液体微元 分散的活塞流和完全混合流动等。
通常在摇瓶培养或10~50L反应器进行
②中试阶段
1)参考摇瓶的结果,用中小型的发酵反应器进 行生物培养或发酵,进一步确定最优的培养基 配方和培养条件;
2)进行环境因素的最佳操作条件的研究,以掌 握细胞生长动力学及产物生成动力学等特性;
3)试验影响溶氧速率的因素及其关系,发酵热 及其降温控制条件等反应器设计参数,为反应 器的工业化放大提供依据。
P0 VL
2NP n3Di5
Di3
据 P0/VL相等原则,
(P0/VL)1=(P0/VL)2
n2 n1
Di1 Di 2
2/3
放大步骤
按几何相似确定尺寸 计算放大罐的转速; 选择适当的通气速率,计算放大罐的轴搅拌
实际上却并不那样简单,虽然均相系统的 流动问题较易解决,但对于有传质和传热同 时进行的系统或非均质流动系统,问题就变 得复杂了。
生物反应器的因次分析放大过程
发酵工程名词解释

发酵⼯程名词解释加速期:经过迟滞期后,细胞开始⼤量繁殖,进⼊⼀个短暂的加速期并很快到达对数⽣长期。
对数⽣长期:微⽣物经过迟滞期的调整后,进⼊快速⽣长阶段,使细胞数⽬喝菌体质量的增长随培养时间成直线上升。
Monod⽅程:菌体⽣长⽐速与限制性基质浓度的关系⽅程。
减速期:微⽣物群体不会长时间保持指数⽣长,因为营养物质的缺乏,代谢产物的积累,从⽽导致⽣长速率下降,进⼊减速期。
稳定⽣长期:微⽣物在对数⽣长后期,随着基质的消耗,基质不能⽀持微⽣物的下⼀次细胞分裂。
衰亡期:随着基质的严重缺乏,代谢产物的更多积累,细胞的能量储备消耗完毕以及环境条件如温度,PH,⽆机离⼦浓度的恶劣变化,使细胞⽣长进⼊衰亡期简单反应型:底物以恒定的化学计量转化为产物,没有中间产物的积累并⾏反应型:底物以不定的化学计量转化为⼀种以上的产物,⽽且产物⽣成速率随底物浓度⽽变化,⽆中间产物的积累。
串联反应型:底物形成产物前积累⼀定程度的中间产物。
分段反应型:底物形成产物前全部转化为中间产物,再由中间产物转化为最终产物。
复合反应型:⼤多数发酵反应即底物转化产物的过程是⼀个复杂的联合反应。
得率:⽣成的菌体或产物与消耗的基质的关系。
最⼤⽣产率:指发酵时间按从对数⽣长期开始⾄发酵结束计算得出的⽣产率。
开放式连续培养与发酵:指在连续培养与发酵系统中,微⽣物细胞随发酵液⼀起从发酵容器中流出,细胞的流出速率与新细胞的⽣成速率相等。
封闭式连续培养与发酵:指在连续培养与发酵系统中,只允许发酵液从发酵容器中流出,⽽使微⽣物细胞保留在发酵容器中。
单级式连续培养与发酵:采⽤单个发酵容器进⾏的连续培养与发酵系统。
多级式连续培养与发酵:采⽤多个发酵容器串联起来进⾏的连续培养与发酵系统。
恒浊器:指通过光电池检测发酵容器中发酵液的浊度,使发酵容器中的微⽣物细胞浓度保持恒定,从⽽保证微⽣物以最⼤的⽣长速率⽣长。
恒化器:通过⾃动控制系统使发酵容器中限制性基质的浓度保持恒定,从⽽保持微⽣物恒定的⽣长速率。
发酵工程名词解释

加速期:经过迟滞期后,细胞开始大量繁殖,进入一个短暂的加速期并很快到达对数生长期。
对数生长期:微生物经过迟滞期的调整后,进入快速生长阶段,使细胞数目喝菌体质量的增长随培养时间成直线上升。
Monod方程:菌体生长比速与限制性基质浓度的关系方程。
减速期:微生物群体不会长时间保持指数生长,因为营养物质的缺乏,代谢产物的积累,从而导致生长速率下降,进入减速期。
稳定生长期:微生物在对数生长后期,随着基质的消耗,基质不能支持微生物的下一次细胞分裂。
衰亡期:随着基质的严重缺乏,代谢产物的更多积累,细胞的能量储备消耗完毕以及环境条件如温度,PH,无机离子浓度的恶劣变化,使细胞生长进入衰亡期简单反应型:底物以恒定的化学计量转化为产物,没有中间产物的积累并行反应型:底物以不定的化学计量转化为一种以上的产物,而且产物生成速率随底物浓度而变化,无中间产物的积累。
串联反应型:底物形成产物前积累一定程度的中间产物。
分段反应型:底物形成产物前全部转化为中间产物,再由中间产物转化为最终产物。
复合反应型:大多数发酵反应即底物转化产物的过程是一个复杂的联合反应。
得率:生成的菌体或产物与消耗的基质的关系。
最大生产率:指发酵时间按从对数生长期开始至发酵结束计算得出的生产率。
开放式连续培养与发酵:指在连续培养与发酵系统中,微生物细胞随发酵液一起从发酵容器中流出,细胞的流出速率与新细胞的生成速率相等。
封闭式连续培养与发酵:指在连续培养与发酵系统中,只允许发酵液从发酵容器中流出,而使微生物细胞保留在发酵容器中。
单级式连续培养与发酵:采用单个发酵容器进行的连续培养与发酵系统。
多级式连续培养与发酵:采用多个发酵容器串联起来进行的连续培养与发酵系统。
恒浊器:指通过光电池检测发酵容器中发酵液的浊度,使发酵容器中的微生物细胞浓度保持恒定,从而保证微生物以最大的生长速率生长。
恒化器:通过自动控制系统使发酵容器中限制性基质的浓度保持恒定,从而保持微生物恒定的生长速率。
第六章_生物反应器的比拟放大

从而求得(VVM)2
• 用不同的放大原则放大反应器的结果是不同的。举
例如下:
• 若V2/V1=125, D2=5D1,P2=1.5P1,则用上述三种不
• 内容:罐的几何尺寸,通风量,搅拌功率,传热
面积和其他方面的放大问题,这些内容都有一定 的相互关系。
二、比拟放大的依据
1、单位体积液体的搅拌消耗功率 2、搅拌雷诺准数 3、溶氧系数 4、搅拌桨末端线速度, 5、混合时间
三、比拟放大基本步骤:
• 首先,找出系统的各有关参数,把这些参数组成几
个具有一定物理含义的无因次数,并建立它们间的 函数式。
点 ,放大罐的涡轮转速要比小罐提高很多。但作为一 个校核指标,对某些体系确实必要。
• 恒混合时间指大罐的混合时间不要比小罐长太多。
• 降低混合时间较合理的措施是增加进液点。
• 例如ICI公司用1500 m3的气升内环流反应器以甲
醇为原料连续生产SCP ,为了解决甲醇浓度的分 布问题,在全反应器中采用了多达到3千只进甲 醇的喷嘴,使得稳态发酵液中的甲醇浓度保持为 2ppm。解除了甲醇对生产菌株的生长抑制。
第六章 生物反应器的比拟放大
• 学习要求:弄清楚生物反应器比拟放大的
定义及意义,掌握以KLa值等为基准的经验 放大方法。
• 重点: KLa 值等为基准的经验方法对生物
反应器进行比拟放大。
• 通常一个生物反应过程的开发,包括:
1)利用实验室规模的反应器进行种子筛选和 工艺试验; 2)在中间规模的反应器中试验(中试),确 定最佳的操作条件; 3)在大型生产设备中投入生产。
生物工程设备_第六章生物反应器的比拟放大

通风发酵罐的放大设计
机械搅拌通风发酵罐的经验放大 • 以体积溶氧系数kLa(或kd)相等为基准的放大法 高好氧发酵通常应用等kLa的原则进行反应器放大 通气搅拌发酵罐的主要参数及计算公式:
(1)不通气的搅拌功率P0=NPρN3Di5
(2)通气搅拌功率Pg=2.25×10-3( P0 NDi3/Q0.08)0.39
Di2 L 350/ 60(0.125 ) 1020 Re 4.13104 3 2.2510
2
故发酵系统属充分湍流,功率系数NP=6.0。故两组叶轮的不通气时搅拌功率为:
350 5 p0 2 N P 3 L Di5 2 6 (KW) 1020 0.125 74.1(W) 0.0741 60
放大问题 否 是
衡算方程知否
否 是 否 分析解有否 否 是 是
参数都知道
因次分析
计算机求解
求解衡算方程
确定模式
有关参数研究 初拟放大规则
小型装置研究
进一步研究
确定最终放大原则
模式分析
• 1)该系统由哪些机理控制? • 2)起关键作用的是何控制? 反应控制 传质控制 混合控制 …… • 3)反应器规模改变时,此机理作何变化?
二 生物反应器放大方法
• 生物反应器的传递现象与控制受: 对流和扩散控制 • 对流传递过程的时间常数为: tf=L/v
• 式中 度,m/s L-反应器特征尺寸,m v----反应溶液对流运动速
• 反应器放大前后传递时间常数tf与反应转化常数tc(tc是基质浓度与反应 速度的比值)之比值维持不变,则放大前后反应器的性能可维持不变 • 对剪切敏感易受伤的细胞,放大过程还必须检测生物细胞对剪切作用的 影响
第七章 生物反应器及其工程放大7

7.6.2 通风发酵罐的放大 7-7生物反应器的比拟放大
例题:有一5m3 生物反应器,罐径为 1.4m,装液量4m3 ,液深2.7m,采用六弯叶涡 轮搅拌器,叶径为0.45m,搅拌转速 N=190r/min ,通风比 1:0.2 ,发酵液密度为 1040kg/m3 ,发酵液粘度为1.06×10-3Pa· s,现 需放大至 50m3 罐进行生产,试求大罐尺寸和 主要工艺条件。
PG 有Moo-Young提出的计算的kLa方程式 k a 0.025 L V L 可知,大小罐的气体空塔速度也相等。
0.4
w s 0.5
思考题
通用式发酵罐放大时,放大比例一般为10,若放大前后以 下参数中的一个保持一定不变,其余参数将如何变化? (1)Pg/VL(单位体积功耗);(2)N(搅拌转速);(3)NDi(搅 拌浆顶端线速度);(4)Di2Nρ/μ(搅拌雷诺准数)。
7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大
生物反应器放大的目的及方法 生物反应器放大的目的 一种生物制品的生产在实验室的小的生物反应器中取得 了好的成绩,如何将这种效果在大型反应器中实现,这就是 生物反应器放大要解决的问题。
7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大
7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大
计算流体力学法 任何流体的流动都服从动量、质量和能量守恒原理,这些 原理可由数学模型来表达。计算流体力学(Computational Fluid Dynamics-CFD)的方法就是用电子计算机和离散化的数值方法 对流体力学问题进行数值模拟和分析的一个流体力学新分支。 该方法具有与反应器规模及几何尺寸无关的潜在优点,并克服 了经验关联及流体结构模型所固有的缺点。但由于SBR中的流 动常具有三维性、随机性、非线性及边界条件的不确定性,使 得同时考虑气液固多相流动及其对生化反应的相互作用及实际 发酵物系的实验验证等存在很多困难。
第六章 生化反应器的比拟放大

放大后转数, r/min 107 85
方法 等传质系数 等叶端速度 等混合时间
放大后转数, r/min 79 50 1260
通气Pg/V相等
放大方法的比较
方法 等体积功率
非通气Po/V相等
放大后转数, r/min 107 85
方法 等传质系数 等叶端速度 等混合时间
放大后转数, r/min 79 50 1260
•
在现有科学技术水平上,还没有条件对所 有因素的影响进行综合全面的考虑和综合分 析,而只能选择其中最关键、最重要的参数 进行考虑。这些参数有功率消耗 、 溶氧系数、 功率消耗、 功率消耗 桨尖速度等。 • 但遗憾的是到今天为止,尚未得出一个 十分有效准确的放大关联式,所以生物反应 罐的放大技术还处于经验和半经验状态。本 章讨论的放大是指在模型罐和生产罐之间以 几何相似原则为前提。在生物反应罐放大中, 几何相似原则 主要解决放大后生产罐的空气流动、搅拌转 速和搅拌功率消耗等问题上。 • 本章重点讨论机械搅拌罐反应器的放大问 题。
下标1为模型罐,下标2为放大罐
• (3)以体积传质系数 La相等的原则放大 以体积传质系数K 以体积传质系数
• 由于气液接触过程中,传质系数的关联式较多,以 福田秀雄的关联式为放大基准
• Kd=(2.36+3.30Ni) · (Pg/V)0.56*Vs0.7*N0.7*10-9 KLa∝(Pg/V) 0 . 56Vs0.7N0.7 因Pg/V ∝ N3.15 ·D2.346 / Vs0.252 KLa ∝N2.45 Vs0 . 56 D1.32 按 (KLa)2 =(KLa)1 原则 N2 = N1 [Vs]1/(Vs)2]0.23 (D1/D2)0.533 (pg)2 =(pg)1[Vs]2/(Vs)1]0.067(D2/D1)3.667
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06.03.2021
6
06.03.2021
7
机械搅拌发酵罐的基本条件
①发酵罐应具有适宜的高径比。一般高径比为 2.5~4。
②发酵罐能承受一定的压力。由于发酵罐在消毒 和正常工作时,罐内有一定的压力和温度,因 此罐体各部件要有一定的强度,能承受一定的 压力。
③发酵罐的通风搅拌装置要能使气泡分散细碎, 气液充分混合,保证发酵液必须的溶解氧,提 高氧的利用率。
06.03.2021
11
06.03.2021
12
(二)自吸式发酵罐 原理:
它是由充气搅拌叶轮或循环泵来完成对发酵液 的搅拌、充气的。自吸式发酵罐的主要构件是 自吸搅拌器和导轮,简称为转子及定子。转子 由罐底向上升入的主轴带动,当转子转动时空 气则由导气管吸入。在转子启动前,先用液体 将转子浸没,然后启动马达使转子转动,由于 转子高速旋转,液体或空气在离心力的作用下, 被甩到叶轮外缘,在这个过程中,流体便获得 能量,在转子中心处形成了负压,转子转速愈 快,所造成的负压也愈大,由于转子的空膛用 管子与大气相通,因此大气的空气不断地被吸 入,甩向叶轮的外缘,通过导向叶轮而使气液 均匀分布。
06.03.2021
14
①优点:
节约空气净化系统中的空气压缩机、冷却器、 油水分离器、空气贮罐等设备,减少了厂房占 地面积,节省投资;通气质量是最好的,通入 发酵液中的2315m2气液接触面积/m3空气;动力 消耗低;设备便于自动化、连续化、降低了劳 动强度,减少劳动力。 ②缺点:
空气靠负压吸入到罐内,所以要求使用低阻力、 高除菌效率的空气净化系统;由于结构上的特 点,大型自吸式充气发酵罐的搅拌充气叶轮的 线速度在30m/s左右,在叶轮周围形成强烈的 剪切区域。充气搅拌叶轮的充气量随发酵液的 深度增大而减少,因此比拟放大有一最适范围。 罐压较低,对某些产品生产容易造成染菌。
D。装设6~4块挡板,可满足全增加罐内附件,轴功率仍 保持不变。要达到全挡板条件必须满足下式要求:
(W/D)Z=0.5 D------------罐的直径 Z------------挡板数 W-----------挡板宽度
06.03.2021
10
③轴封 轴封的作用是防止泄漏和染菌。常用的轴 封有填料函和端面轴封。 填料函由填料箱体、底衬套、压盖和压紧 螺栓等零件组成。 端面轴封的作用是靠弹性元件的压力使垂直于轴 线的动环和静环光滑表面紧密地相互贴合,并作 相对运动而达到密封。
(三)气升式生化反应器 工作机理: 是在罐外装设上升管,上升管两端与罐底及罐上 部相连接,构成一个循环系统。在上升管的下部 装设空气喷嘴,空气喷嘴以250~300(m/s)的 高速度喷入上升管借喷嘴的作用而使空气泡分割 细碎,与上升管的发酵液密切接触。由于上升管 内的发酵液轻。加上压缩空气的喷流动能,因此 使上升管的液体上升,罐内的液体下降而进入上 升管,形成反复的循环,供给发酵液所耗的溶解 气量,使发酵正常进行。分内循环和外循环两种。
④发酵罐应具有足够的冷却面积。
⑤发酵灌内应抛光,尽量减少死角,避免藏垢积 污,使灭菌彻底,避免染菌。
⑥搅拌器的轴封严密,尽量减少泄漏。
机械搅拌罐结构 设备主要部件包括罐身、搅拌器、轴封、消泡器 中间轴承,空气喷射器、挡板、冷却装置、人孔 ①罐体由圆柱体及椭圆形或碟形封头焊接成,材 料为碳钢或不锈钢。为满足工艺要求,罐需承受 一定压力,通常灭菌压力0.25MPa(绝对大气压) ②搅拌器和挡板 涡轮式搅拌器的叶片有平叶式、弯叶式、箭叶式 三种,其主要是打碎气泡,加速和提高溶氧。平 叶式功率消耗较大,弯叶式较小,箭叶式又次之。 挡板的作用是防止液面中央产生旋涡,促使液体 激烈翻动,提高溶氧。挡板宽度约为(0.1~0.12)
二.生化反应器的特点 ㈠生化反应器的特点 ①生化反应与一般化学反应的不同主要在于其反 应皆由生物催化剂-酶来催化的。决定了酶反应 必须在比较温和的条件下进行,也就是在接近中 性的pH、较低的温度及近似细胞生理条件下进行。
②生物的酶系是非常复杂的,在活细胞中它们是 相互协调而处于最优化的状态,故活细胞常被用 来合成一些代谢产物如多糖及蛋白质等。由于反 应的环境会随着时间的进程而改变,就产生了一 个如何控制反应过程使其最优化的问题。
③对生长细胞来说,要考虑到如何维持发酵的最 佳条件,主要包括细胞营养、代谢的调控以及 反应产物的干扰。
④由于酶作用对底物的高度特异性,它可以定向 的产生一些用一般化学方法难以甚至无法得到 的产品
⑤大多数生化反应都在水相中进行,相对来说产 物浓度较低,这就产生了一个产物回收工艺及 成本的问题。
三. 生化反应器的种类及选择与操作
一. 概述 生化反应器(生物反应器)就是为适应 生化反应(生物反应)的特点而设计的 反应设备。生化反应器的实质也就是 酶反应器。包括酶反应器、微生物反 应器(发酵罐)和动植物细胞培养用 反应器。
微生物反应器:是生产中最基本也是最主要的设备, 其作用就是按照发酵过程的工艺要求,保证和控制各 种生化反应条件,如温度、压力、供氧量、密封防漏 防止染菌等,促进微生物的新陈代谢,使之能在低消 耗下获得较高的产量。 ①厌氧生物反应器:其反应器不需供氧,设备结构一 般较为简单。应用于乙醇、啤酒、丙酮、丁醇的生产。 ②好氧生物反应器:生产过程中需不断通入无菌空气, 因而其设备的结构比厌氧生物反应器复杂。应用于氨 基酸、有机酸、酶制剂、抗生素和单细胞蛋白SCP等 的生产。 根据反应器通风和搅拌的方式不同可分为三类:机械 搅拌通风式、自吸式和通风搅拌式。
按生化反应是在一个相或是在多个相内进行,可 分为均相反应器和非均相反应器。发酵工业中的 绝大多数都属于非均相反应器。
(一)机械搅拌式生化反应器
它是借搅拌涡轮输入混合以及相际传质所需要的 功率。这种反应器的适应性最强,从牛顿型流体 直到非牛顿型的丝状菌发酵液,都能根据实际情 况和需要,为之提供较高的传质速率和必要的混 合速度。缺点是机械搅拌器的驱动功率较高,一 般2~4kw/m3,这对大型的反应器来说是个巨大 负担。