华东师大版八年级上册数学全册复习试题

合集下载

2022-2023学年华东师大版八年级上册数学期末复习试卷+

2022-2023学年华东师大版八年级上册数学期末复习试卷+

2022-2023学年华东师大版八年级上册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.64的平方根为()A.8B.±8C.﹣8D.±42.若a x÷a n+1的运算的结果是a,则x为()A.3﹣n B.n+1C.n+2D.n+33.小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A.0.6B.6C.0.4D.44.下列命题中,是假命题的是()A.两点之间,线段最短B.3a3b的系数是3C.位似图形必定相似D.若|a|=|b|,则a=b5.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=7,b=25,c=24B.a=3,b=3,c=4C.a=6,b=8,c=10D.a=8,b=17,c=156.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36B.32C.28D.217.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB 于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②∠ADF=2∠ECD;③S△AEC :S△AEG=AC:AG;④S△CED=S△DFB;⑤CE=DF.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤8.在△ABC中,∠A=∠B=∠C,则△ABC()A.是锐角三角形B.是直角三角形C.是钝角三角形D.形状不能确定二.填空题(共6小题,满分18分,每小题3分)9.比较大小:3.10.分解因式:8m2n﹣6mn2+2mn=.11.如图,在等腰三角形ABC中,AB=AC,∠A=50°,直线MN垂直平分边AC,分别交AB,AC于点D,E,则∠BCD=.12.计算:4x3y2÷2xy=.13.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,∠APQ=度,∠B=度,∠BAC=度.14.如图,在Rt△ACB中,∠ACB=90°,BC=6,AC=9.折叠△ACB,使点A与BC的中点D重合,折痕交AB于E,交AC于点F,则CF=.三.解答题(共10小题,满分78分)15.(6分)计算:(1)(2)16.(6分)计算(1)4y•(﹣2xy2)(2)(﹣x2)•(﹣4x)(3)(3m2)•(﹣2m3)2(4)(﹣ab2c3)2•(﹣a2b)317.(6分)先化简,再求值:x(x2﹣x﹣)+4(x2+1)﹣x(﹣3x2+6x﹣1),其中x=﹣2.18.(7分)如图,已知C是线段AE上的一点,DC⊥AE,DC=AC,B是CD上一点,且CB=CE.(1)△ABC与△DEC全等吗?请说明理由.(2)若∠A=20°,求∠E的度数.19.(7分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长.(2)在图2中,画一个等腰三角形,使它的一条边长为2,另两边长为无理数;并写出你所画的三角形的三边长.写出每题的计算过程20.(8分)某区在今年四月开始了第一剂新冠疫苗接种,为了解疫苗的安全、有效情况,从全区已接种市民中随机抽取部分市民进行调查.调查结果根据年龄x(岁)分为四类:A类:18≤x<30;B类:30≤x<40;C类:40≤x<50;D类:50≤x≤59.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次随机抽取的市民中小于40岁的有人;(2)图2中D类区域对应圆心角的度数是度;(3)请补全条形统计图;(4)若本次抽取人数占已接种市民人数的5%,估计该区已接种第一剂新冠疫苗的市民有多少人?21.(8分)如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).22.(8分)如图,四边形ABCD中,AB∥CD,∠C=110°,E为BC的中点,直线FG 经过点E,DG⊥FG于点G,BF⊥FG于点F.(1)如图1,当∠BEF=70°时,求证:DG=BF;(2)如图2,当∠BEF≠70°时,若BC=DC,DG=BF,请直接写出∠BEF的度数;(3)当DG﹣BF的值最大时,直接写出∠BEF的度数.23.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.24.(12分)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P 在线段BC上以3cm/s的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C 是对应角,求t,a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵(±8)2=64,∴64的平方根是±8.故选:B.2.解:a x÷a n+1=a x﹣n﹣1=a,所以可得:x﹣n﹣1=1,x=2+n,故选:C.3.解:小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的有100﹣60=40次,所以反面朝上的频率为=0.4,故选:C.4.解:A、两点之间,线段最短,是真命题;B、3a3b的系数是3,是真命题;C、位似图形必定相似,是真命题;D、若|a|=|b|,则a=b或a=﹣b,原命题是假命题;故选:D.5.解:A、因为72+242=252,能构成直角三角形,此选项不符合题意;B、因为32+32≠42,不能构成直角三角形,此选项符合题意;C、因为62+82=102,能构成直角三角形,此选项不符合题意;D、因为82+152=172,能构成直角三角形,此选项不符合题意.故选:B.6.解:由题意得AB=BC,∠ABC=90°,AD⊥DE,CE⊥DE,∴∠ADB=∠BEC=90°,∴∠ABD+∠CBE=90°,∠BCE+∠CBE=90°,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD ≌△BCE (AAS );由题意得AD =BE =24cm ,DB =EC =12cm , ∴DE =DB +BE =36cm ,答:两堵木墙之间的距离为36cm . 故选:A .7.解:∵∠ACB =90°,CG ⊥AB ,∴∠ACE +∠BCG =90°,∠B +∠BCG =90°, ∴∠ACE =∠B .∵∠CED =∠CAE +∠ACE ,∠CDE =∠B +∠DAB ,AE 平分∠CAB , ∴∠CED =∠CDE ,①正确; ∴CE =CD ,又AE 平分∠CAB ,∠ACB =90°,DF ⊥AB 于F , ∴CD =DF .∵E 到AC 与AG 的距离相等, ∴S △AEC :S △AEG =AC :AG ,③正确; ∵CE =CD ,CD =DF , ∴CE =DF ,⑤正确.无法证明∠ADF =2∠FDB 以及S △CED =S △DFB . 故选:D .8.解:设∠A =x °,则∠B =x °,∠C =2x °, 根据三角形的内角和可得:x °+x °+2x °=180°, 解得:x =45,即∠A =45°,∠B =45°,∠C =90°, 所以△ABC 是直角三角形.故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:∵3=,∴<3.故答案为:<.10.解:原式=2mn(4m﹣3n+1),故答案为:2mn(4m﹣3n+1)11.解:∵AB=AC,∠A=50°,∴∠ACB=∠B=×(180°﹣∠A)=65°,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故答案为:15°.12.解:4x3y2÷2xy=2x2y故答案为2x2y.13.解:∵PQ=AP=AQ∴∠APQ=∠AQP=∠PAQ=60°.∵BP=QC=AP=AQ∴∠B=∠BAP=30°,∠C=∠CAQ=30°∴∠BAC=120°.故填60、30、120.14.解:∵D是BC的中点,BC=6,∴CD=3,∵折叠△ACB,使点A与BC的中点D重合,∴AF=FD,∵AC=9,设AF=x,则FC=9﹣x,DE=x,∵∠ACB=90°,在Rt△CDF中,x2=9+(9﹣x)2,∴x=5,∴CF=4,故答案为4.三.解答题(共10小题,满分78分)15.解:(1)==﹣(2)=﹣1+2×=﹣1+1=016.解:(1)原式=﹣8xy3.(2)原式=10x3.(3)原式=(3m2)•4m6=12m8.(4)原式=a2b4c6•(﹣a6b3)=﹣a8b7c6.17.解:原式=x3﹣x2﹣x+4x2+4+x3﹣2x2+x =2x3+x2+4,当x=﹣2时,原式=2×(﹣2)3+(﹣2)2+4=﹣16+4+4=﹣8.18.解:(1)△ABC≌△DEC,理由如下:∵DC⊥AE,∴∠ACB=∠DCE=90°,在△ABC与△DEC中,,∴△ABC≌△DEC(SAS);(2)∵△ABC≌△DEC,∴∠A=∠D=20°,∴∠E=90°﹣∠D=90°﹣20°=70°.19.解:(1)如图1所示:∵AB=3,BC=4,∴AC==5,故答案为:3,4,5(答案不唯一);(2)如图2所示:DF=DE==,EF==2,故答案为:,,2(答案不唯一).20.解:(1)本次随机抽取的市民中小于40岁的有20+20=40(人),故答案为:40;(2)根据题意可得,其他三类的百分比为1﹣25%=75%,其他三类的人数和为20+20+50=90(人),抽取的总数为90÷75%=120(人),图2中D类区域对应圆心角的度数是360°×=150°,故答案为:150;(3)抽取的C类市民有120×25%=30(人),补全条形统计图如下:(4)30÷25%÷5%=2400(人),答:估计该区已接种第一剂疫苗的市民有2400 人.21.解:∵∠ACB=90°,∴AC==≈109.7mm,答:两孔中心的垂直距离为109.7mm.22.(1)证明:若CH⊥FG,垂足为H,∵∠BEF=70°,∠BCD=110°,∴∠BEF+∠BCD=180°,∴FG∥CD,∵DG⊥HG,CH⊥HG,∴∠DGH+∠CHG=90°+90°=180°,∴DG∥CH,∴四边形CHGD是长方形,∴DG=CH,∵∠CHE=∠F,∠CEH=∠BEF,BE=CE,∴△BEF≌△CEH(AAS),∴BF=CH,∴DG=BF;(2)解:连接BD,∵DG=BF,DG∥BF,由平移的性质知得,BD∥FG,∴∠CBD=∠CEH,∵CB=CD,∠BCD=110°,∴∠CBD=(180°﹣110°)÷2=35°,∴∠BEF=∠CEH=∠CBD=35°;(3)解:由(2)知DG﹣CH≤CD,∴当DG﹣BF的值最大时,此时点D,C,G三点共线,∵∠BCD=110°,∴∠ECG=70°,∴∠CEG=20°,∴∠BEF=∠CEG=20°.23.解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.24.解:(1)CP的长为(8﹣3t)cm;(2)∵D为AB的中点,∴BD=5cm,∵AB=AC,∴∠B=∠C,∴当BD=CQ,BP=CP时,△BDP≌△CQP(SAS),即at=5,8﹣3t=3t,解得t=,a=;当BD=CP,BP=CQ时,△BDP≌△CPQ(SAS),即8﹣3t=5,3t=at,解得t=1,a=3;综上所述,t=,a=或t=1,a=3.。

华东师大版八年级上册数学试题:第13章全等三角形复习题

华东师大版八年级上册数学试题:第13章全等三角形复习题

1 / 3第13章复习 全等三角形一、选择题:1、只用无刻度的直尺就能作出的图形是( )A.延长线段AB 至C ,使BC =ABB.过直线L 上一点A 作L 的垂线C.作已知角的平分线D.从点O 再经过点P 作射线OP 2、下列命题中,真命题是( )A.相等的角是直角B.内错角相等C.两直线平行,同位角互补D.经过两点有且只有一条直线3、如图1所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.54、已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( ) A.6cm B.7cm C.8cm D.9cm5、如图2所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( )A 、AB =DE B 、∠ACE =∠DFBC 、BF =ECD 、∠ABC =∠DEF6、用尺规作已知角的角平分线,其根据是构造两个三角形全等,它所用到的判别方法是( ) A.SAS B.ASA C.AAS D.SSS7、如图3,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACDB.∠B =∠CC.AD 是 BAC 的平分线D.△ABC 是等边三角形图1FECBA图3图4图22 / 38、如图4,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E , AB =10,△BCD 的周长为18,则BC 的长为( ) A.8 B.6 C.4 D.2二、填空:1、如果等腰三角形的一个角为90°,那么其余两个角分别是________和_________。

2、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为_____________。

3、把“互为邻补角的两个角的平分线互相垂直”写成“如果……,那么……”的形式为_______________.4、如图所示,在△ABC 和△DEF 中,AB=DE ,∠B=∠E ,要使△ABC ≌△DEF ,•需要补充的一个条件是____________.5、如图所示,△ABC 中,∠C=90°,AD 平分∠CAB ,BC=8cm ,BD=•5cm ,则D 点到直线AB 的距离是______cm .三、解答题:1、判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.2、如图,作出线段AB 的垂直平分线EF ,作出∠BCD 的平分线CN .(利用尺规作图,不写作法,但要保留作图痕迹)3 / 33、如图,已知△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F ,求证: 点F 在∠DAE 的平分线上.4、牧童在点A 处放牛,其家在点B 处,B A ,到河岸l 的距离分别为BD AC ,,且m BD AC 300==,测得m CD 800=.(1)牧童从A 处牵牛到河边饮水后再回家,是否有最近的路线可走?若有,请通过作图说明在何处饮水,所走的路线最短,并标出路线. (2)若有最短路线,请求出牧童走的最短路程.。

最新华师大版八年级数学上册单元测试题全套

最新华师大版八年级数学上册单元测试题全套

最新华师大版八年级数学上册单元测试题全套题目:最新华师大版八年级数学上册单元测试题全套数学是现代社会中不可或缺的一门学科,它的重要性在我们的日常生活和未来的职业发展中扮演着重要的角色。

作为学生,掌握好数学知识,提高数学能力是我们必须努力的方向。

因此,华师大版八年级数学上册的单元测试题是我们检验自己学习成果和弥补知识漏洞的重要工具。

本文将为大家提供最新华师大版八年级数学上册单元测试题全套。

一、单元测试题1:数与式1. 简答题:解释数和式的定义。

2. 选择题:a) 若a = 2,b = 3,则a^2 + b^2 =?A. 2B. 3C. 5D. 13b) 已知a/b = 2/3,求3a + 5b的值为多少?c) 化简表达式:3x + 2 - (x - 4)。

3. 计算题:a) 求(-7) + 6 - (-3) + (-4) - 8的值。

b) 将方程7x + 11 = 3(x + 5)化简成一元一次方程。

二、单元测试题2:图形的认识1. 简答题:解释平面图形和立体图形的概念,并举例说明。

2. 选择题:a) 下列图形中,既是凸多边形又是正多边形的是?A. 正方形B. 长方形C. 直角三角形D. 不规则四边形b) 如图所示,直线AB与直线CD分别为平面α和平面β的交线,交点为O。

则以下结论正确的是?图片描述:(图片描述直线AB与直线CD相交于点O)A. 直线AB与直线CD在平面α和平面β内都存在交点。

B. 直线AB与直线CD在平面α和平面β外都存在交点。

C. 直线AB与直线CD在平面α内不存在交点,在平面β内存在交点。

D. 直线AB与直线CD在平面α内存在交点,在平面β内不存在交点。

c) 在平行四边形ABCD中,若∠ABC = 60°,则∠ADC = ?3. 计算题:a) 已知正方形ABCD的边长为6cm,求其对角线的长度。

b) 如图所示,正方体的棱长为5cm,求其体积和表面积。

图片描述:(图片描述正方体)三、单元测试题3:代数式的计算1. 简答题:解释代数式的含义和计算方法。

华东师大版八年级数学上册期中压轴题复习练习题

华东师大版八年级数学上册期中压轴题复习练习题

华东师大版八年级上期数学期中考试压轴题训练1、已知x,y为实数,且y=﹣+4,则+=.2、已知非零实数a,b满足|2a﹣4|+|b+2|++4=2a,则a+b等于()A.﹣1B.0C.1D.23、已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形4、公式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2].(1)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为()A.0B.1C.2D.3(2)已知实数x,y,z,a满足x+a2=m,y+a2=m+1,z+a2=m+2,且xyz=108.求代数式的值.5、已知x,y,z是正整数,x>y,且x2﹣xy﹣xz+yz=23,则x﹣z等于()A.﹣1B.1或23C.1D.﹣1或﹣236、已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.7、若x﹣2y+z=0,则代数式x2+2xz+z2﹣4y2﹣3的值为.8、问题:若(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设(8﹣x)=a,(x﹣6)=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2,∴(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10;请仿照上例解决下面的问题:问题发现:(1)若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值.(2)若x满足(2022﹣x)2+(x﹣2023)2=2021,求(2022﹣x)(x﹣2023)的值.(3)如图,在四边形ABCD中,对角线AC⊥BD于点O,且BD﹣AC=2,BD2+AC2=100,则四边形ABCD的面积为.(4)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是5,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).(5)如图,长方形ABCD的周长是12cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为20cm2,求长方形ABCD的面积.9、如图①是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②.请你直接写出下列三个式子:(a+b)2、(a﹣b)2、ab之间的等量关系式为;(2)若m、n均为实数,且m+n=﹣2,mn=﹣3,运用(1)所得到的公式求m﹣n的值;(3)如图③,S1、S2分别表示边长为x、y的正方形的面积,且A、B、C三点在一条直线上,若S1+S2=20,AB=x+y=6,求图中阴影部分的面积.10、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=度.11、如图,过边长为8的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连接PQ交AC边于D,则DE的长为.12、已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.13、如图,在等边△ABC中,点D为线段BC上一点(不含端点),AP平分∠BAD交BC于点E,PC与AD的延长线交于点F,连接EF,且∠PEF=∠AED,以下结论:①EB=EF;②△ABE≌△CPE;③△AFC是等腰三角形;④连结PB,∠BPF=120°;⑤AP=PF+PC.其中正确的有.(请写序号)14、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)①求证:△BOC≌△ADC;②当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当∠1为多少度时,△AOD是等腰三角形?15、如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定16、我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题如图,在△ABC中,D为△ABC外一点.(1)若AC平分∠BAD,CE⊥AB于点E,∠B+∠ADC=180°,求证:BC=CD;(2)若∠ACB=90°,AC=BC,F是AC上一点,AD⊥BF交BF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF17、(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC 上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.18、如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.19、如图,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y 轴于点F,求点F的坐标用含m的式子表示).。

华东师大版数学八年级上册复习题(课件)

华东师大版数学八年级上册复习题(课件)
做垂线4种
重合反证法
线段相等 联 想 等腰三角形
构造等腰三角形
㈠当这个角为直角时,两个三角形全等——已研究; ㈡当这个角为钝角时,这两个三角形全等——已研究; ㈢当这个角为锐角时,这两个三角形全等吗?——待研究。
已知:△ABC和△A1B1C1,∠A=∠A1<90°,AB=A1B1,BC=B1C1, △ABC与△A1B1C1全等吗?
请欣赏谢雅礼老师的示范课《全等三角形 复习习题课——对“SSA”的深入探究》
探究是数学教学的生命线!学习数学的一个 很重要的任务是探索研究,就是要象科学家那样, 通过实验、视察、比较、发现、归纳、猜想,然后 进行证明 。
善于实验发现、善于视察比较、善于联想构造、 善于质疑提问、善于类比猜想、善于求异创新、善 于分析思考、善于归纳总结。
数学复习习题课教学理念
探究是数学教学的生命线! 数学习题课,不是题型模仿课,而是思维训 练课;不是题海战术课,而是应用数学知识的解 题探究课! 一堂优质高效的数学复习习题课,既是学生 回顾并应用所学知识,又是学生对数学知识认知 的深化,更是方法的提炼与总结、数学思想的升 华、思维能力的发展、数学素养的提高。
请大家注意:当α≥90°时必有n>m !所以最终的结论是: ㈠当 n=h 或 n≥m 时一定全等; ㈡当 h<n<m 时不一定全等.
二、数学思想、方法和原则
1、转化——数学的重要思想 ⑴一般→特殊;⑵新问题→旧问题;
2、分类讨论——严谨性,数学的重要方法; 3、选择与简约——科学性,数学的重要原则 。
解题思路——画图探究发现
用圆规按要求画△ABC:∠A=30°, AB=4, 使BC分别为:⑴1.5; ⑵2; ⑶3; ⑷4; ⑸5.

华东师大版八年级数学上册单元测试题全套(含答案)

华东师大版八年级数学上册单元测试题全套(含答案)

华东师大版八年级数学上册单元测试题全套(含答案)第11章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.(2015·泰州)下列4个数:9、227、π、(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)02.8的平方根是( ) A .4 B .±4 C .8 D .±83.(2015·安徽)与1+5最接近的整数是( ) A .4 B .3 C .2 D .1 4.下列算式中错误的是( ) A .-0.64=-0.8 B .±1.96=±1.4 C .925=±35 D .3-278=-325.如图,数轴上点N 表示的数可能是( ) A .10 B . 5 C . 3 D . 2(第5题)6.比较32,52,-63的大小,正确的是( )A .32<52<-63B .-63<32<52 C .32<-63<52 D .-63<52<327.若a 2=4,b 2=9,且ab >0,则a +b 的值为( ) A .-1 B .±5 C .5 D .-58.如图,有一个数值转换器,原理如下:(第8题)当输入的x 为64时,输出的y 等于( ) A .2 B .8 C . 2 D .89.已知2x -1的平方根是±3,3x +y -1的立方根是4,则y -x 2的平方根是( ) A .5 B .-5 C .±5 D .2510.如图,已知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列各数最接近的是()(第10题)A.0.1 B.0.04 C.30.08 D.0.3二、填空题(每题3分,共30分)11.实数3-2的相反数是________,绝对值是________.12.在35,π,-4,0这四个数中,最大的数是________.13.4+3的整数部分是________,小数部分是________.14.某个数的平方根分别是a+3和2a+15,则这个数为________.15.若2x-y3+|y3-8|=0,则yx是________理数.(填“有”或“无”)16.点P在数轴上和原点相距3个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P的左边,则P,Q之间的距离为______________.(注:数轴的正方向向右)17.一个正方体盒子的棱长为6 cm,现要做一个体积比原正方体体积大127 cm3的新盒子,则新盒子的棱长为________ cm.18.对于任意两个不相等的实数a,b,定义运算※如下:a※b=a+ba-b,那么7※9=________.19.若20n是整数,则正整数n的最小值是________.20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答题(22题9分,26题7分,27,28题每题10分,其余每题6分,共60分) 21.求下列各式中x的值.(1)4x2=25;(2)(x-0.7)3=0.027.22.计算:(1)⎝⎛⎭⎫-122+38-|1-9|; (2)3-1+3(-1)3+3(-1)2+(-1)2; (3)⎝⎛⎭⎫-132+89+(-3)2+(2-7-|7-3|).23.已知|3x -y -1|和2x +y -4互为相反数,求x +4y 的平方根.24.已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x +3y 的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|,化简|b+3|+|a-2|+|c-2|+2c.(第25题)26.某段公路规定汽车行驶速度不得超过80 km/h,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在一次交通事故中,已知d=16,f=1.69.请你判断一下,肇事汽车当时的速度是否超出了规定的速度?27.观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1,…(1)观察上面的规律,计算下面的式子:12+1+13+2+14+3+…+12 015+ 2 014;(2)利用上面的规律,试比较11-10与12-11的大小.28.李奶奶新买了一套两室一厅的住房,将原边长为1 m的方桌换成边长是1.3 m的方桌,为使新方桌有块桌布,且能利用原边长为1 m的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了.”(1)小刚的做法对吗?为什么?(2)你还有其他方法吗?请画出图形.(第28题)答案一、1.C 2.D 3.B 4.C 5.A 6.D 7.B 8.D 9.C10.B 点拨:由题意可得,正方形的边长为1,则圆的半径为12,阴影部分的面积为1-π4≈0.2,故选B .二、11.2-3;2-3 12.π 13.5;3-1 14.9 15.有 16.2-3或2+3 17.7 18.-2 19.5 20.111 111 111 三、21.解:(1)因为4x 2=25,所以x 2=254,所以x =±52;(2)因为(x -0.7)3=0.027,所以x -0.7=0.3,所以x =1. 22.解:(1)原式=14+2-2=14.(2)原式=-1-1+1+1=0. (3)原式=19+89+3+(2-7-3+7)=1+3-1=3.23. 解:根据题意得:||3x -y -1+2x +y -4=0,即⎩⎪⎨⎪⎧3x -y -1=0,2x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =2,所以x +4y =9.所以x +4y 的平方根是 ±3.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为316.25.解:由题图可知,a >2,c <2,b <-3,∴原式=-b -3+a -2+2-c +2c =-b -3+a +c.又|a|=|c|,∴a +c =0,∴原式=-b - 3.26.解:把d =16,f =1.69代入v =16df ,得v =16×16×1.69=83.2(km /h ),∵83.2>80,∴肇事汽车当时的速度超出了规定的速度.27.解:(1)12+1+13+2+14+3+…+12 015+ 2 014=(2-1)+(3-2)+(4-3)+…+( 2 015- 2 014)= 2 015-1.(2)因为111-10=11+10,112-11=12+11,且11+10<12+11,所以111-10<112-11.又因为11-10>0,12-11>0,所以11-10>12-11.点拨:此题运用归纳法,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:(1)小刚的做法是对的,因为将边长为1 m 的两个正方形分别沿着一条对角线剪开,成为四个大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为2,而2>1.3,故能铺满新方桌;(2)有.如图所示.(第28题)第12章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( ) A .a 5 B .-a 5 C .a 6 D .-a 6 2.下列运算正确的是( )A .(a +1)2=a 2+1B .3a 2b 2÷a 2b 2=3abC .(-2ab 2)3=8a 3b 6D .x 3·x =x 43.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+zD .-8x 2+8x -2=-2(2x -1)2 4.计算⎝⎛⎭⎫232 013×⎝⎛⎭⎫322 014×(-1)2 015的结果是( ) A .23 B .32 C .-23 D .-32 5.若a m =2,a n =3,a p =5,则a 2m +n -p的值是( )A .2.4B .2C .1D .06.下列各式中,不能用两数和(差)的平方公式分解因式的个数为( ) ①x 2-10x +25;②4a 2+4a -1;③x 2-2x -1;④-m 2+m -14;⑤4x 4-x 2+14.A .1B .2C .3D .47.已知a ,b 都是整数,则2(a 2+b 2)-(a +b)2的值必是( ) A .正整数 B .负整数 C .非负整数 D .4的整数倍8.已知一个长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( ) A .2x 2y 3+y +3xy B .2x 2y 3-2y +3xy C .2x 2y 3+2y -3xy D .2x 2y 3+y -3xy9.因式分解x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.用四个完全一样的长方形(长和宽分别设为x ,y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )(第10题)A .x +y =6B .x -y =2C .xy =8D .x 2+y 2=36二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________.12.已知x +y =5,x -y =1,则代数式x 2-y 2的值是________. 13.若x +p 与x +2的乘积中不含x 的一次项,则p 的值是________. 14.计算:2 015×2 017-2 0162=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________.16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.(2015·东营)分解因式:4+12(x -y)+9(x -y)2=__________. 18.观察下列等式:1×32×5+4=72=(12+4×1+2)2 2×42×6+4=142=(22+4×2+2)2 3×52×7+4=232=(32+4×3+2)2 4×62×8+4=342=(42+4×4+2)2 …根据你发现的规律:可知n(n +2)2(n +4)+4=________.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab cd ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,则可以得出22 014+22 013+22 012+…+23+22+2+1的末位数字是________.三、解答题(27题12分,其余每题8分,共60分) 21.计算:(1)[x(x 2-2x +3)-3x]÷12x 2; (2)x(4x +3y)-(2x +y)(2x -y);(3)5a 2b÷⎝⎛⎭⎫-13ab ·(2ab 2)2; (4)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)(x +5)(x -1)+(x -2)2,其中x =-2;(2)(2015·随州)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)2x 2y -8xy +8y ;(3)a 2(x -y)+4b 2(y -x); (4)4m 2n 2-(m 2+n 2)2.24.已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y)3m ·y m 的值.25.已知a ,b ,c 是△ABC 的三边长,且a 2+2b 2+c 2-2b(a +c)=0,你能判断△ABC 的形状吗?请说明理由.26.因为(x +a)(x +b)=x 2+(a +b)x +ab ,所以x 2+(a +b)x +ab =(x +a)(x +b).利用这个公式我们可将形如x 2+(a +b)x +ab 的二次三项式分解因式.例如:x 2+6x +5=x 2+(1+5)x +1×5=(x +1)(x +5), x 2-6x +5=x 2+(-1-5)x +(-1)×(-5)=(x -1)(x -5), x 2-4x -5=x 2+(-5+1)x +(-5)×1=(x -5)(x +1), x 2+4x -5=x 2+(5-1)x +5×(-1)=(x +5)(x -1). 请你用上述方法把下列多项式分解因式: (1)y 2+8y +15; (2)y 2-8y +15; (3)y 2-2y -15; (4)y 2+2y -15.27.(中考·达州)选取二次三项式ax 2+bx +c ()a ≠0中的两项,配成完全平方式的过程叫配方.例如 ①选取二次项和一次项配方:x 2-4x +2=()x -22-2;②选取二次项和常数项配方:x 2-4x +2=()x -22+()22-4x , 或x 2-4x +2=()x +22-()4+22x ; ③选取一次项和常数项配方:x 2-4x +2=()2x -22-x 2. 根据上述材料,解决下面的问题: (1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值.答案一、1.C 2.D 3.D 4.D 5.A 6.C 7.C 8.D 9.B 10.D 二、11.(1)-24a 5 (2)6;23 12.5 13.-2 14.-115.-2;-1 16.|4a +2| 17.(3x -3y +2)2 18.(n 2+4n +2)2 19.220.7 点拨:由题意可知22 014+22 013+22 012+…+23+22+2+1=(2-1)×(22 014+22 013+22 012+…+23+22+2+1)=22 015-1,而21=2,22=4,23=8,24=16,25=32,26=64,…,可知2n (n 为正整数)的末位数字按2、4、8、6的顺序循环,而2 015÷4=503……3,所以22 015的末位数字是8,则22 015-1的末位数字是7.三、21.解:(1)原式=(x 3-2x 2+3x -3x)÷12x 2=(x 3-2x 2)÷12x 2=2x -4.(2)原式=4x 2+3xy -(4x 2-y 2)=4x 2+3xy -4x 2+y 2=3xy +y 2.(3)原式=5a 2b÷⎝⎛⎭⎫-13ab ·4a 2b 4=-60a 3b 4. (4)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-a 2+a 2-5ab +3ab =4-2ab. 当ab =-12时,原式=4-2×⎝⎛⎭⎫-12=5. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=2y(x 2-4x +4)=2y(x -2)2.(3)原式=a 2(x -y)-4b 2(x -y)=(x -y)(a 2-4b 2)=(x -y)(a +2b)(a -2b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2.24.解:原式=(x 3m )2+(y 2m )3-(x 3m )2·(y 2m )2=22+33-22×32=4+27-4×9=-5. 25.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.26.解:(1)y 2+8y +15=y 2+(3+5)y +3×5=(y +3)(y +5). (2)y 2-8y +15=y 2+(-3-5)y +(-3)×(-5)=(y -3)(y -5). (3)y 2-2y -15=y 2+(-5+3)y +(-5)×3=(y -5)(y +3). (4)y 2+2y -15=y 2+(5-3)y +5×(-3)=(y +5)(y -3).27.解:解:(1)答案不唯一,例如:x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12或x 2-8x +4=(x -2)2-4x.(2)因为x 2+y 2+xy -3y +3=0, 所以⎝⎛⎭⎫x +y 22+34(y -2)2=0, 即x +y2=0,y -2=0,所以y =2,x =-1,所以x y =(-1)2=1.第13章达标检测卷(120分,90分钟) 得 分一、选择题(每题3分,共30分) 1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等 2.下列方法中,不能判定三角形全等的是( ) A .S .S .A . B .S .S .S . C .A .S .A . D .S .A .S .3.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的是( )(第3题)A .甲、乙B .甲、丙C .乙、丙D .乙4.在△ABC 中,∠B =∠C ,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与这个100°角对应相等的角是( )A .∠AB .∠BC .∠CD .∠B 或∠C(第5题)5.如图,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列不正确的等式是( ) A .AB =AC B .∠BAE =∠CAD C .BE =DC D .AD =DE6.在△ABC 和△A′B′C′中,AB =A′B′,∠B =∠B′,补充条件后仍不一定能保证△ABC ≌△A′B′C′,则补充的这个条件是( )A .BC =B′C ′B .∠A =∠A′C .AC =A′C′D .∠C =∠C′ 7.下列命题中,逆命题正确的是( )A.全等三角形的对应角相等B.全等三角形的周长相等C.全等三角形的面积相等D.全等三角形的对应边相等8.如图,在△ABC中,AB=m,AC=n,BC边的垂直平分线交AB于E,则△AEC的周长为() A.m+n B.m-n C.2m-n D.2m-2n9.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD∶CD=9∶7,则点D到AB边的距离为()A.18 B.32 C.28 D.24(第8题) (第9题) (第10题)10.如图,将含有30°角的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB 平分∠AED;④△ABD为等边三角形.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.把命题“等边对等角”的逆命题写成“如果……,那么……”的形式为________________________________________________________________________.12.如图,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“H.L.”说明Rt________≌Rt________得到AB=DC,再利用“________”证明△AOB≌△DOC得到OB=OC.13.如图,在△ABC中,边AB的垂直平分线DE交AC于E,△ABC和△BEC的周长分别是30 cm 和20 cm,则AB=________ cm.(第12题) (第13题)(第14题) (第16题) 14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA =________.15.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.16.(2015·怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是______.17.(2015·永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.18.如图,AB=12 m,CA⊥AB于点A,DB⊥AB于点B,且AC=4 m.点P从点B开始以1 m/min 的速度向点A运动;点Q从点B开始以2 m/min的速度向点D运动.P,Q两点同时出发,运动________后,△CAP≌△PBQ.(第17题) (第18题) (第19题) (第20题)19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC 的面积是________.20.如图,△ABC中,BC的垂直平分线与∠BAC的邻补角的平分线相交于点D,DE⊥AC于E,DF⊥AB 交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠FAE=180°;④∠BAC=90°.其中正确的有____________.(填序号)三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P应建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).(第21题)22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.(第22题)23.如图,在△A BC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F,交BC于E.试判断△AGF的形状并加以证明.(第23题)24.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第24题)25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第25题)26.如图①,点A,E,F,C在同一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB =CD.(1)若BD与EF交于点G,求证:BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.(第26题)27.如图a,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图b,线段CF,BD所在直线的位置关系为________,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图c,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F 不重合),并说明理由.(第27题)答案一、1.A 2.A 3.C 4.A 5.D 6.C7.D8.A9.C10.B二、11.如果一个三角形有两个角相等,那么这两个角所对的边相等12.△ABC;△DCB;A.A.S.13.1014.55°15.8 cm或5 cm16.90°17.318.4 min点拨:本题运用了方程思想,设未知数,利用全等三角形的性质列方程求解.设运动t min 后,△CAP≌△PBQ,由题意得AP=AB-BP=12-t,BQ=2t.当△CAP≌△PBQ时,AP=BQ,即12-t=2t,解得t=4.即运动4 min后,△CAP≌△PBQ.19.1520.①②③三、21.解:如图.(第21题)22.解:(1)EF =MN ,EG =HN ,FG =MH ,FH =MG ,∠F =∠M ,∠E =∠N ,∠EGF =∠MHN ,∠FHN =∠MGE.(2)∵△EFG ≌△NMH ,∴MN =EF =2.1 cm ,GF =HM =3.3 cm ,∵FH =1.1 cm ,∴HG =GF -FH =3.3-1.1=2.2 cm .23.解:△AGF 是等腰三角形.证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC. ∵GE ∥AD ,∴∠GFA =∠BAD ,∠G =∠DAC. ∴∠G =∠GFA.∴AF =GA.∴△AGF 是等腰三角形.24.解:(1)∵DE 垂直平分AC ,∴AE =CE ,∴∠ECD =∠A =36°. (2)∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°. ∵∠BEC =∠A +∠ACE =72°, ∴∠B =∠BEC ,∴BC =CE =5.25.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC.又∵BD =DF ,∴Rt △CDF ≌Rt △EDB(H .L .),∴CF =EB. (2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE ,∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得CD =DE.进而证得Rt △CDF ≌Rt △EDB ,得CF =EB.(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,得AC =AE ,再将线段AB 进行转化.26.(1)证明:∵ED ⊥AC ,FB ⊥AC ,∴∠DEG =∠BFE =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE(H .L .).∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF =∠DGE ,∠BFG =∠DEG ,BF =DE ,∴△BFG ≌△DEG(A .A .S .).∴FG =EG ,即BD 平分EF.(2)解:BD 平分EF 的结论仍然成立.理由:∵AE =CF ,FE =EF ,∴AF =CE.∵ED ⊥AC ,FB ⊥AC ,∴∠AFB =∠CED =90°.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE.∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF =∠DGE ,∠BFG =∠DEG ,BF =DE ,∴△BFG ≌△DEG.∴GF =GE ,即BD 平分EF ,结论仍然成立.点拨:本题综合考查了三角形全等的判定方法.(1)先利用H .L .判定Rt △ABF ≌Rt △CDE ,得出BF =DE ;再利用A .A .S .判定△BFG ≌△DEG ,从而得出FG =EG ,即BD 平分EF.(2)中结论仍然成立,证明过程同(1)类似.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由如下:由正方形ADEF 得AD =AF ,∠DAF =90°.∵∠BAC =90°,∴∠DAF =∠BAC ,∴∠DAB =∠FAC ,又∵AB =AC ,∴△DAB ≌△FAC ,∴CF =BD ,∠ACF =∠ABD.∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∴∠ABC =45°,∴∠ACF =45°,∴∠BCF =∠ACB +∠ACF =90°.即CF ⊥BD.(第27题)(2)当∠ACB =45°时,CF ⊥BD(如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG.∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC.第14章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,62.用反证法证明“如果在△ABC 中,∠C =90°,那么∠A ,∠B 中至少有一个角不大于45°”时,应先假设( )A .∠A>45°,∠B>45°B .∠A ≥45°,∠B ≥45°C .∠A<45°,∠B <45°D .∠A ≤45°,∠B ≤45°(第3题)3.如图,图中有一个正方形,此正方形的面积是( ) A .16 B .8 C .4 D .24.满足下列条件的△ABC 不是直角三角形的是( ) A .∠A =∠B -∠C B .∠A ∶∠B ∶∠C =1∶1∶2 C .b 2=a 2-c 2 D .a ∶b ∶c =1∶1∶25.若△ABC 的三边长分别为a ,b ,c ,且满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形(第6题)6.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处朝张大爷的房子方向折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗( )A .一定不会B .可能会C .一定会D .以上答案都不对7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线AC 上的D′点处.若AB =3,AD =4,则ED 的长为( )A .32B .3C .1D .43(第7题) (第8题) (第9题) (第10题)8.如图,在△ABC 中,AD 是BC 边的中线,AC =17,BC =16,AD =15,则△ABC 的面积为( ) A .128 B .136 C .120 D .2409.如图,长方体的高为9 m ,底面是边长为6 m 的正方形,一只蚂蚁从顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A .10 mB .12 mC .15 mD .20 m10.如图,是一种饮料的包装盒,长、宽、高分别为4 cm 、3 cm 、12 cm ,现有一长为16 cm 的吸管插入到盒的底部,则吸管露在盒外的部分h(cm )的取值范围为( )A .3<h<4B .3≤h ≤4C .2≤h ≤4D .h =4二、填空题(每题3分,共30分)11.若用反证法证明“有两个内角不相等的三角形不是等边三角形”,可先假设这个三角形是________.12.在△ABC中,AC2-AB2=BC2,则∠B的度数为________.13.如图,∠OAB=∠OBC=90°,OA=2,AB=BC=1,则OC2=________.(第13题) (第14题) (第19题) (第20题) 14.如图,直角三角形三边上的半圆形面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是________.15.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 c m,对角线长为100 cm,则这个桌面________(填“合格”或“不合格”).16.若直角三角形的两边长分别为a、b,且满足(a-3)2+|b-4|=0,则该直角三角形的斜边长为________.17.等腰三角形ABC的腰AB为10 cm,底边BC为16 cm,则面积为________cm2.18.(2015·黄冈)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.19.《中华人民共和国道路管理条例》规定:小汽车在城市街道上的行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街道上直道行驶时,某一时刻刚好行驶到路对面车速检测仪观测点A正前方50 m 的C处,过了6 s后,行驶到B处的小汽车与车速检测仪间的距离变为130 m,请你判断:这辆小汽车________(填“是”或“否”)超速了.20.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 015=________.三、解答题(21,22题每题8分,23,24题每题10分,25,26题每题12分,共60分)21.用反证法证明一个三角形中不能有两个角是直角.22.园丁住宅小区有一块草坪如图,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.(第22题)23.如图,将断落的电话线拉直,使其一端在电线杆顶端A处,另一端落在地面C处,这时测得BC =6米,再把电话线沿电线杆拉扯,使AD=AB,并量出电话线剩余部分(即CD)的长为2米,你能由此算出电线杆AB的高吗?(第23题)24.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B 点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm的速度移动,如果P,Q同时出发,问过3 s时,△BPQ的面积为多少?(第24题)25.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有一学校,点A到公路MN的距离为80 m,现有一拖拉机在公路MN上以18 km/h的速度沿PN方向行驶,拖拉机行驶时周围100 m以内都会受到噪音的影响,试问该校受影响的时间为多长?(第25题)26.图甲是任意一个直角三角形ABC,它的两条直角边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为(a+b)的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为_______,图丙中③的面积为________;(3)图乙中①②的面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?(第26题)答案一、1.A 2.A 3.B 4.D 5.D 6.A7.A8.C9.C10.B二、11.等边三角形12.90°13.614.S1+S2=S315.合格16.4或517.4818.126 cm2或66 cm219.是20. 2 016点拨:由勾股定理得:OP4=22+1=5,∵OP1=2,OP2=3,OP3=4,OP4=5,以此类推可得OP n=n+1,∴OP2 015= 2 016.本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.三、21.证明:假设三角形ABC的三个内角∠A、∠B、∠C中有两个直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,所以∠A=∠B=90°不成立,所以一个三角形中不能有两个角是直角.22.解:连接AC.在Rt△ABC中,由勾股定理得AC2=AB2+BC2,所以AC2=42+32=25,即AC=5米.在△ACD中,因为AC2+C D2=52+122=169=AD2.所以△ACD是直角三角形,且∠ACD=90°.所以S草坪=S△ABC+S△ACD=12×3×4+12×5×12=36(平方米).答:这块草坪的面积是36平方米.23.解:设AB=x米,则AC=AD+CD=AB+CD=(x+2)米.在Rt△ABC中,AC2=AB2+BC2,即(x+2)2=x2+62,解得x=8.即电线杆AB的高为8米.24.解:设AB=3x cm,则BC=4x cm,AC=5x cm,因为△ABC的周长为36 cm,所以AB+BC+AC=36 cm,即3x+4x+5x=36,解得x=3,所以AB=9 cm,BC=12 cm,AC=15 cm.因为AB2+BC2=AC2,所以△ABC是直角三角形,且∠B=90°.过3 s 时,BP =9-3×1=6(cm ),BQ =2×3=6(cm ), 所以S △BPQ =12BP·BQ =12×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.(第25题)25.解:如图,设拖拉机行驶到C 处刚好开始受到噪音的影响,行驶到D 处时,结束了噪音的影响,连接AC ,AD ,则有CA =DA =100 m .在Rt △ABC 中,CB 2=1002-802=602. ∴CB =60 m .同理BD =60 m ,∴CD =120 m . ∵18 km /h =5 m /s ,∴该校受影响的时间为120÷5=24(s ).26.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2 (3)a 2+b 2(4)相等.理由:由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b)2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形,根据面积相等得(a +b)2=a 2+b 2+2ab ,由图丙可得(a +b)2=c 2+4×12ab.所以a 2+b 2=c 2.所以图乙中①②的面积之和与图丙中③的面积相等.于是得到直角三角形三边长的关系为a 2+b 2=c 2.第15章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.要反映某市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图 D .以上都可以2.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3(第2题) (第3题) (第4题)3.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为( ) A .39.0 ℃ B .38.5 ℃ C .38.2 ℃ D .37.8 ℃4.(中考·邵阳)如图是某班学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组5.(中考·丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()B型A.16人B.14人C.4人D.6人6.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是()A.22,44% B.22,56% C.28,44% D.28,56%(第7题)7.某校图书馆整理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.90 B.144 C.200 D.808.如图是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.小麦产量和杂粮产量增加的幅度大约是一样的C.2014年杂粮产量约是玉米产量的六分之一D.2014年和2015年的小麦产量变化幅度最小(第8题) (第9题)9.(中考·武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选一种喜好的书籍,如果没有喜好的书籍,则作“其他”类统计.图①和图②是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两幅统计图可知喜好“科普常识”的学生有90人B.若该年级共有1 200名学生,则由这两幅统计图可估计喜好“科普常识”的学生约有360人C.由这两幅统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是()(第10题)A.4 B.5 C.6 D.7二、填空题(每题3分,共24分)11.Lost time is ne v er found again(岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是________.12.如图是根据某市2011年至2015年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是________年,比它的前一年增加________亿元.(第12题) (第14题) (第15题) 13.地球上山地面积、水域面积和陆地面积大体上可以用“三山六水一分田”来描述,则用扇形统计图来表示时,它们所占的百分比分别是________、________、________.14.调查机构对某地区1 000名20~30岁年龄段观众周五综艺节目的收视选择进行了调查,相关统计图如图,请根据图中信息,调查的 1 000名20~30岁年龄段观众选择观看《最强大脑》的人数约为________人.15.(中考·金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形的圆心角的度数是________.16.小张根据某媒体的报道中一幅条形统计图(如图所示),在随笔中写道:“……今年,我市中学生在艺术节上,参加合唱比赛的人数比去年激增……”小张说得对不对?为什么?请你用一句话对小张的说法作一个评价:________________________________________________________________________.(第16题) (第17题) (第18题)17.(2015·防城港)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图(如图),其中“其他”部分所对应的圆心角是36°,则“步行”部分所占的百分比是________.18.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有________名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有________名体尖生.三、解答题(19~21题每题12分,22,23题每题15分,共66分)19.某股票上周五的收盘价为3元,本周的收盘价分别是:周一3.2元;周二3.25元;周三3.35元;周四3.18元;周五3.3元,根据以上信息完成下列各题:(1)填下面的统计表:(2)画出你认为最能反映该股票变化情况的统计图.20.“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.(第20题)21.(改编·金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图解答下列问题.(1)第三次成绩的优秀率是多少?(2)将条形及折线统计图补充完整.(第21题)22.(中考·黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积都相同),绘制了如图所示的两幅不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全条形统计图,并计算出喜好菠萝味牛奶的学生人数在扇形统计图中所占扇形的圆心角的度数;(3)该校共有1 200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?(第22题)23.“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测.某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:类别。

华东师大版数学八年级上册数学试卷

华东师大版数学八年级上册数学试卷

华东师大版数学八年级上册数学试卷选择题:1. 下列四个数中,哪个是一个质数?A) 12B) 17C) 20D) 252. 若一个三角形有两个边长分别为5cm和8cm,那么第三条边的可能长度是:A) 12cmB) 7cmC) 15cmD) 3cm3. 某班有35名学生,其中男生占总人数的40%,则女生人数是:A) 15B) 20C) 17D) 124. 若一个圆的半径为6cm,则其周长约为:A) 18cmB) 12cmC) 36cmD) 24cm5. 一个矩形的长是12cm,宽是5cm,则它的面积是:A) 60平方厘米B) 42平方厘米C) 24平方厘米D) 30平方厘米填空题:1. 12的平方根是________2. 若一个数的四倍增加了9等于33,那么这个数是________3. 在一个标准的骰子上,三个相对的面的数字之和是________4. 如果一辆汽车每小时行驶60公里,3小时后行驶的总里程是________公里5. 一块土地的长度是8米,宽度是5米,面积是________平方米应用题:1. 某商店有500个苹果,每天售出30个,问多少天能售完?2. 小明学习数学用了1小时,语文用了45分钟,求他学习这两门课的总时间。

3. 一个长方形花园的长度是15米,宽度是8米,围绕着花园修一圈小路,小路的面积是3平方米,求小路的宽度。

4. 若一个长方形的周长是32厘米,宽为6厘米,求该长方形的面积。

5. 某班同学组织篮球比赛,男生队有15人,女生队有10人,男生队的人数是女生队的几倍?。

2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

第11章一、选择题:(每题3分,共30分) 1. -2020的相反数是( )A. 2020B. -2020C.12020 D. -120202. (2020江苏盐城市)实数a ,b 在数轴上表示的位置如图所示,则( )2题图A. a >0B. a >bC. a <bD. a <b3.实数的立方根是( ) A.-1B.0C.1D.±14. (2020黑龙江绥化市)3的结果正确的是( )A.C. 5. (2020福建省)如图,数轴上两点M ,N 所对应的实数分别为m ,n ,则m-n 的结果可能是( )5题图A. -1B. 1C. 2D. 36.下面各等式正确的是( )3=± B.7=- 0.3- D.0.000 1-7. )A .5B .6C .7D .88. 一个数的平方是 4,则这个数的立方是( )A .8B .8 或-8C .-8D .4 或-4 9. (2020湖北恩施州)在实数范围内定义运算“☆”:a ☆b =a +b -1,例如:2☆3=2+3-1,如果2☆x =1,则x 的值是( ).A. -1B. 1C. 0D. 2 10.一个自然数的算术平方根是a ,那么比这个自然数大且与它相邻的一个自然数的算术平方根是( )A.21a +C.1a +二、填空题:(每题3分,共30分)11. (2020四川遂宁市)下列各数3.1415926 1.212212221…,17,2﹣π,﹣2020中,无理数的个数有 个.12.(2020浙江宁波市)实数8的立方根是 .13.写出一个比2大比3小的无理数(用含根号的式子表示) .14π,-4,0这四个数中,最大的数是________.15.4+3的整数部分是5,小数部分是________.16.某个数的平方根分别是2a -1和2-a ,则这个数为________.17. =0.5981 5.98 1 0.1289 , 则 x = , y = .18. 规定用符号[m ]表示一个实数m 的整数部分,例如:⎥⎦⎤⎢⎣⎡32=0,[3.14]=3.按此规定8⎡⎣的值为______________.19. 对于任意两个不相等的实数a ,b ,定义一种新运算“※”,规则如下:a ※b =b a ba -+,如3※2=2323-+=5,则12※4的值为________________. 20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11; (2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答下列各题:(共60分) 21.计算:(每题5分,共15分)①计算:|-2|(-1)×(-3); ;34.22.解方程:(每题5分,共10分)①(x+2)2-9=0;②(x+3)3+27=0.23.(5分)物体从某一高度自由落下,物体下落的高度h与下落的时间t•之间的关系可用公式h=12gt2表示,其中g=10米/秒2,若物体下落的高度是180米,•那么下落的时间是多少秒?24.(6分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求4x+3y 的平方根和立方根.25.(8分)已知x,y为实数,且y19,求xy的立方根.26.(8分)某小区为了促进全民健身活动的开展,决定在一块面积约为1000 m2的正方形空地上建一个篮球场.已知篮球场的面积为420 m2,其中长是宽的2815倍,篮球场的四周必须留出1 m宽的空地.请你通过计算说明能否按要求在这块空地上建一个篮球场?27.(8分)||||b c a c b c-++++.27题图第11章数的开方达标性测试题答案1.B.2.C.解析:由图可得a <0<b , b <a , 故选C .3.C.解析:∵21()=1,而1的立方根等于1,∴21()的立方根是1.4.D.3 =3-2D .5.C.解析:根据数轴可得0<m <1,-2<n <-1,则1<m-n <3, 故选C.6.C.7.B. 解析:∵36<37<496<7,∵37与36最接最接近的是6.故选B .8.B.解析:∵一个数的平方是 4,∴这个数是2或-2,那么2或-2的立方是8或-8. 应选B.9.C.解析:由题意知:2☆x =2+x -1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选C . 10.B.11. 3. 解析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,在上面所列的实数中,无理数有1.212212221…,2﹣π3个,故答案为:3. 12.2..解析:∵4<5<9,∴232大比3小的无. 14.π解析:∵45,∴小数部分是4 1. 16.9. 解析:由题意得2a -1+2-a =0,解得a =-1, ∴这个数为(2a -1)2=(-3)2=9.17. 214, 0.00214.18.3.点拨:∵9<13<16,∴343,∴8 4. 19.21. 20.111 111 111.21.①原式=2-2+3=3. ②0;③解:∵3<<4,∴1<-2<213<<28312=<912=34,∴<34.22. ①解:由(x +2)2-9=0得,(x +2)2=9; ∴ x +2=3或x +2=-3;∴x 1=-1, x 2=-5. ② 解:由(x +3)3+27=0得,(x +3)3=-27; ∴ x +3=-3,∴ x =-6 23.6.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为25.解:∵y 为实数,1-3x ≥0, x ≤13, ∴ 3x -1≥0, ∴ x ≥13.∴ x =13,∴y =+-19=-19,∴====-13.26. 解:设篮球场的宽为x m,那么长为2815x m. 根据题意,得2815x ·x =420, 所以x 2=225. 因为x 为正数, 所以x =15,又因为2815x 所以能按要求在这块空地上建一个篮球场.27.解:由数轴得:a <0,b <0,c >0, ∴a +b <0,b –c <0,a +c <0,b +c <0 ∴原式=a -a b ++b c -+a c ++b c +=-a -〔-(a +b )〕+〔-(b-c )〕+〔-(a +c )〕+〔-(b+c )〕 =-a +a +b -b +c -a -c-b-c =–a-b-c. 第12章1.(知识点1)下列运算正确的是( ) A .3x +4y =7xy B .(﹣a )3•a 2=a 5 C .(x 3y )5=x 8y 5 D .m 10÷m 7=m 32.(知识点2,3)下列各式计算正确的是( )A.(x-y)(y-x)=x2-y2B.2x(x-2y)=2x2-4xyC.(-a+b)(a+b)=a2+b2D.(2x+3)2=4x2+93. (2020•江苏徐州)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a-b)2=a2-b2D.(ab)2=a2b24.(2020•湖南常德)下列计算正确的是()A.a2+b2=(a+b)2 B.a2+a4=a6 C.a10÷a5=a2D.a2•a3=a5 5.(2020•河北)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k6.(重点2)当x=3、y=1时,代数式(2x+y)(2x-y)+y2的值是.7.(重点2)若a2+b2=12,ab=2,则(a+b)2= .8.(重点2)已知x+y=2,x2-y2=6,则x-y= .9.(重点1)运转速度是7.9×103米/秒,2×102秒卫星运行所走过的路程是.10.(重点2)a>b>0,那么在边长为a+b的正方形内,挖去一个边长为a-b的正方形,剩余部分的面积为.11.(重点1) 计算:2x5(-x2)-(-x2)3(-7x).12.(重点2) 计算:(x+2)2-2(x+2)(x-2)+(x-2)2.13.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的一个根强化提高14.(重点2) 计算:(3x-2y+1)(3x+2y-1).第12章复习课(第1课时)1.D.解析:A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.2.B.3. D. 解析:a2+2a2=3a2,因此选项A不符合题意;a6÷a3=a6-3=a3,因此选项B不符合题意;(a-b)2=a2-2ab+b2,因此选项C不符合题意;(ab)2=a2b2,因此选项D符合题意;故选:D.4.B. 解析:A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.5. A. 解析:=(k•k)k=(k2)k=k2k,故选:A.6.36.7.16.8.3.9.1.58×106米. 10.4ab. 11. -9x7. 12.16.13. 解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.14. 9x2-4y2+4y-1.知识点1:整式的除法法则. 知识点2:因式分解的定义及因式分解法.重点1:综合运用单项式的除法和多项式除以单项式的除法,进行整式除法运算. 重点2:灵活运用提取公因式和公式法进行因式分解.难点:单项式的除法运算.基础巩固1.(知识点1)下列运算正确的是( )A.a3+a4=a7B.a2·a5=a10C.(ab2)2=ab4D.a9÷a2=a72.(知识点2)若x2+mx-15=(x+3)(x+n),则n的值为( )A.-5B.5C.-2D.23.(知识点2)若多项式x2+mx+16可以分解因式,则整数m可取的值共有( )A.1个B.2个C.3个D.无限多个4. (知识点2)若9x2+mxy+16xy2是一个完全平方式,那么m的值是()A.±12B.-12C.±24D.-245.(重点1)计算: (-2x)10÷(2x)8=_____________.6.(重点2)分解因式:(1) xy3-x3y= ;(2) a2-1-b2-2b= ;(3) 2a3﹣8a=;(4) a4-3a3b+2a2b2= .7.(重点2)矩形面积是15a3b2cm2时,它的长为3a2b2cm,则它的宽是.8.(知识点1)若除式为a2+1,商式为a2-1,余式为2a,则被除式为.9. (重点2)已知一个长方形的长宽分别为a,b,如果它的周长为10,面积为5,则代数式a2b+ab2的值为______________10.(重点2) 因式分解:(1) -4a2b3+16ab2-12a b;(2) 4m2n2-(m2+n2)2.11.(重点1) 计算:(1) [(x+1)(x+2)–2]÷x. (2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).12.(重点1)化简求值.[(2x+y)2-y(y+4x)-8xy]÷2x,其中x=2,y=-2.强化提高13.(重点2)说明817-279-913能被15整除.1. D.2. A.3. B.4. C.5.4x2 .6. (1) xy(y+x)(y-x);(2) (a+b+1)(a-b-1);(3) 2a(a+2)(a﹣2);(4)a2(a-b)(a-2b).7.5a cm. 8.a4+2a-1.9. 25. 解析:由题意知,2(a+b)=10,ab=5,∴a+b=5, ∴a2b+ab2=ab(a+b)=25.10. (1) -4ab(ab2-4b+3). (2) -(m+n)2(m-n)2.11.(1) x+3. (2) -x+3y.12.解:原式=(4x2+4xy+y2-y2-4xy-8xy)÷2x=(4x2-8xy)÷2x=2x-4y.当x=2,y=-2时,原式=2×2-4×(-2)=12. 13.解:817-279-913=(34)7-(33)9-(32)13 =328-327-326=326(32-3-1)=326×5=325×3×5=325×15,故817-279-913能被15整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 6 题图NDAM 华师大版八年级上册数学全册复习试题时间:100分钟 姓名:____________ 总分____________一、选择题(每小题3分,共24分)1. 81的算术平方根是 【 】 (A )9± (B )9 (C )3± (D )32. 实数14.3,1010010001.0,6,27,0,33-π中无理数的个数是 【 】(A )1 (B )2 (C )3 (D )43. 若5233=⋅m ,则m 的值是 【 】 (A )2 (B )9 (C )15 (D )274. 若()()n mx x x x -+=-+234,则n m ,的值分别是 【 】 (A )12,1=-=n m (B )12,1-=-=n m (C )12,1-==n m (D )12,1==n m5. 某校八(3)班有50名学生,他们上学的方式有三种:①步行;②骑车;③乘公共汽车.根据表中信息,下列结论错误的是 【 】(A )12,18==b a (B )%12,18==c a (C )%40,12==d b (D )%40%,24==d c 6. 如图,若NDC MBA ND MB ∠=∠=,,则添加下列 条件后不能判定△ABM ≌ △CDN 的是 【 】 (A )CN AM // (B )N M ∠=∠ (C )DB AC = (D )CN AM =7. 直角三角形的斜边长为20 cm,两条直角边长之比为3 : 4 ,那么这个直角三角形的周长为 【 】 (A )27 cm (B )30 cm (C )40 cm (D )48 cm8. 如图,在Rt △ABC 中,︒=∠90C ,按如下步骤作图:①分别以A 、B 为圆心,以大于AB 21的长为半径画弧,两弧交于M 、N ;②作直线MN ,交BC 于点D ;③连结AD .若︒=∠64ADE ,则CAD ∠的度数为 【 】 (A )︒32 (B )︒34 (C )︒36 (D )︒38第 8 题图第 13 题图优良28%及格36%16%不及格二、填空题(每小题3分,共21分)9. 两个连续整数y x ,满足y x <+<23,则=+y x __________. 10. 若()(),11,1722=-=+b a b a 则=+22b a __________.11. 因式分解:=-+-y xy y x 271832________________.12. 等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________cm. 13. 期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优等生人数为__________.14. 如图,直线l 上有三个正方形c b a 、、,若c a 、的面积分别为5和11,则b 的面积为__________.15. 如图,长方形ABCD 中,,4,10==AD AB E 为AB 的中点,在线段CD 上找一点P ,使△APE 为一个腰长为5的等腰三角形,则线段DP 的长为__________.l 第 14 题图cba第 15 题图三、解答题(共75分)16. 计算:(8分) (1)()()3201822712---+-;(2)()()()213229---+x x x .17. (12分)化简求值:(1)()()()()21122+--++-x x x x x ,其中1=x .(2)已知0322=+-x x ,求值:()()()x x x +-+-3322.18. (8分)如图,△ACB和△ECD都是等腰直角三角形,︒ECDACB,D∠90==∠为AB边上一点.(1)求证: △ACE≌△BCD;(2)若12AD,求DE的长.=BD,5=ADEB19. (8分)如图,在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠∠,.ABP==CQBPACQ(1)求证: △ABP≌△ACQ;(2)请判断△APQ的形状,并说明理由.AQPB C20. (9分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行了体能测试,测试结果分为A 、B 、C 、D 四个等级,并绘制了两幅不完整的统计图,请根据图中的信息解答下列问题:等级D 等级C 等级B 等级A 等级 20%(1)本次调查一共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形统计图;(3)若该校八年级共有700名学生,请你估计该校八年级学生中体能测试结果为D 等级的学生有多少名.21. (9分)如图,在Rt △ABC 中,8,6,90==︒=∠BC AC C ,将△ABC 沿直线AD 折叠,使点C 落在AB 边上的点E 处,求CD 的长.22. (9分)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N 两点,DM与EN的延长线相交于点F.(1)若△CMN的周长为15 cm,求AB的长;(2)若︒∠的度数.MFN,求MCN=∠7023. (12分)问题情景: 如图1,在等边三角形ABC 内有一点P ,,4,5==PB PA3=PC ,求BPC ∠的度数.(1)问题解决: 小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC 绕点B 逆时针旋转︒60,得到了△A BP '(如图2),然后连结'PP ,请你参考小明同学的思路,求BPC ∠的度数;(3)类比迁移: 如图3,在正方形ABCD 内有一点P ,1,2,5===PC PB PA ,求BPC ∠的度数.图 1ABCP图 2图 3PCABD新华师大版八年级上册数学全册复习试题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共21分)9. 7 10. 14 11.()233--xy12. 8或613. 1014. 16 15. 3或2或8(注意:答错一个或少答一个均不给分)部分题目答案提示:15. 如图,长方形ABCD中,,4,10==ADAB E为AB的中点,在线段CD上找一点P,使△APE为一个腰长为5的等腰三角形,则线段DP的长为__________.第 15 题图解析:根据题意分类讨论如下图所示:第 15 题图三、解答题(共75分)16. 计算:(8分) (1)()()3201822712---+-解:原式()312--+= 33+=6=…………………………4分 (2)()()()213229---+x x x解:原式()()1694922+---=x x x 16936922-+--=x x x 376-=x …………………8分 17. (12分)化简求值:(1)()()()()21122+--++-x x x x x ,其中1=x .解: ()()()()21122+--++-x x x x x()2122222-+-+++-=x x x x x x21222+--+=x x x32+-=x x ………………………4分当1=x 时 原式3112+-=3=……………………………6分 (2)已知0322=+-x x ,求值:()()()x x x +-+-3322.解: ()()()x x x +-+-3322()()()3322+-+-=x x x94422-++-=x x x5422--=x x ……………………10分∵0322=+-x x ∴322-=-x x ∴原式()5222--=x x ()532--⨯=11-= ……………………12分 18. (8分)(1)证明: ∵△ACB 和△ECD 都是等腰直角三角形 ∴CB CA CD CE ==,︒=∠=∠90ACB DCE︒=∠=∠45BAC B ………………1分 ∴ACD ACB ACD DCE ∠-∠=∠-∠ ∴21∠=∠…………………………2分 在△ACE 和△BCD 中∵⎪⎩⎪⎨⎧=∠=∠=CD CE CB CA 21 ∴△ACE ≌△BCD (SAS ); ……………………………………5分 (2)由(1)可知:△ACE 和△BCD∴︒=∠=∠==453,12B BD AE ∴︒=︒+︒=∠+∠=∠9045453BAC DAE ∴△ADE 是直角三角形……………………………………6分 在Rt △ADE 中,由勾股定理得:222DE AE AD =+ ∴131252222=+=+=AE AD DE……………………………………8分 19. (8分)(1)证明: ∵△ABC 是等边三角形 ∴︒=∠=60,BAC AC AB……………………………………1分 在△ABP 和△ACQ 中∵⎪⎩⎪⎨⎧=∠=∠=CQ BP ACQ ABP AC AB ∴△ABP ≌△ACQ (SAS ); ……………………………………4分 (2)△APQ 是等边三角形……………………………………5分 理由如下: 由(1)可知:△ABP ≌△ACQ∴AQ AP =∠=∠,21……………6分 ∵︒=∠=∠+∠601BAC PAC ∴︒=∠+∠602PAC∴︒=∠60PAQ ……………………7分 在△APQ 中,∵︒=∠=60,PAQ AQ AP ∴△APQ 是等边三角形.……………………………………8分 20. (9分)解:(1)50%2010=÷(人)答:本次调查一共抽取了50名学生; ……………………………………3分 (2)164201050=---(人) ……………………………………4分补全条形统计图如图所示; ………6分 答:测试结果为C 等级的学生有16人;等级(说明:不标注数字“16”扣1分) (3)56504700=⨯(名) 答:估计D 等级的学生有56名. ……………………………………9分21. (9分)解: 由折叠可知:△ACD ≌△AED∴6,===AE AC ED CD︒=∠=∠=∠90BED AED C ∴△BDE 是直角三角形……………………………………3分 在Rt △ABC 中,由勾股定理得:222AB BC AC =+∴10862222=+=+=BC AC AB∴4610=-=-=AE AB BE ……………………………………5分 设x CD =,则x DE x BD =-=,8 ……………………………………6分 在Rt △BDE 中,由勾股定理得:222BD DE BE =+ ∴()22284x x -=+解之得:3=x∴3=CD …………………………9分 22. (9分)解: (1)∵DM 、EN 分别垂直平分AC 和BC∴CN BN CM AM ==,……………………………………2分 ∵15=++=∆CN MN CM C CMN cm ∴15=++BN MN AM∴15=AB cm;……………………4分(2)在△ACM 和△BCN 中 ∵CN BN CM AM ==, ∴2,1∠=∠∠=∠B A……………………………………5分 在四边形DCEF 中 ∵︒=∠70MFN ∴︒=︒-︒-︒-︒=∠110907090360DCE ∴︒=∠110ACB……………………………………7分 ∴︒=︒-︒=∠+∠70110180B A ∴︒=∠+∠7021…………………8分 ∴︒=︒-︒=∠4070110MCN ……………………………………9分 23. (12分) 解: (1)由旋转可知: △BPC ≌△BP′A ,︒=∠60'PBP ∴3',4'====A P PC B P PB ……………………………………2分∵︒=∠=60','PBP B P PB ∴△'PBP 是等边三角形∴4'',60'===︒=∠PB P P B P B PP ……………………………………3分 在△'APP 中,∵3',4',5===A P P P PA∴222222543''PA P P A P ==+=+ ∴△'APP 是直角三角形∴︒=∠90'P AP ……………………5分 ∴︒=︒+︒=∠1509060'A BP ∵△BPC ≌△BP′A ∴︒=∠=∠150'A BP BPC ;……………………………………6分图 2图 3D(2)如图所示,将△BPC 绕点B 逆时针旋转︒90,得到△A BP ',连结P P '. ……………………………………8分要点:可证:△P BP '为等腰直角三角形,△P AP '为直角三角形 ∴︒=︒+︒=∠1359045'A BP……………………………………11分 ∵△BPC ≌△BP′A ∴︒=∠=∠135'A BP BPC .……………………………………12分。

相关文档
最新文档