代数式及一元一次方程应用
一元一次方程的应用(题型归纳)

将进出数值表示为未知数设x,列出方程解x。
工作效率
将某项工作的效率与时间表示为未知数设x,列 出方程解x。
混合物含量
将每种物质的量表示为未知数设x,列出方程解x。
简单的平移和旋转问题
横坐标加减常数 纵坐标加减常数 关于坐标轴翻转 关于x轴翻转 关于y轴翻转
x±a y±b (x,y)→(y,x) (x,y)→(x,-y) (x,y)→(-x,y)
展开思路
举一反三,尝试从其他角度思考 问题的解决方法。
多种解法对比
尝试多种不同的解题方法进行校 验和验证,选择最优解。
关于人口增长、下降和变化的问题
1
人口增长问题
根据增长率设定未知数,并根据相关数
人口下降问题
2
据列出方程求解。
根据下降率设定未知数,并根据相关数 据列出方程求解。
运动员试训问题的解题思路
代数式/代数式组中的一元一次方程
系数为未知数
将系数表示为未知数x,列出方程求解。
系数为常数
将常数表示为未知数x,列出方程解未知数。
单价和总价问题的解题思路
单价计算 总价计算
总价除以数量 单价乘以数量
根据题目条件将总价或单价设为未知数x,列出方程求解。
单利和复利问题的解题思路
单利
根据单利的计算公式将未知数设为x,列出方程求 解。
3
消元系数
将未知数系数化为1,得到类似x=d的解。
文字题型解题思路
阅读题干
认真读题,理解题意,将问题转 化为一元一次方程。
设定未知数
设定符合题意的未知数,表示题 目中的未知量。
列出方程
根据题意列出方程,运用前几步 解方程求解。
数字应用题型解题思路
代数式与方程的基本概念及解法

代数式与方程的基本概念及解法代数式和方程是数学中重要的概念,它们在各个领域中起着至关重要的作用。
在本文中,我们将探讨代数式与方程的基本概念以及解法,并通过实例来加深理解。
一、代数式的基本概念代数式是由数字、字母和运算符号组成的表达式。
它可以包含一个或多个变量,并通过运算符号(如 +、-、×、÷、^ 等)相互连接。
代数式可以表示各种各样的数学关系和问题,如数列、函数和几何图形等。
代数式的基本要素包括变量、常数、系数和指数。
变量表示未知数,常数是指已知的具体数值,系数是变量的前面的数字,指数表示变量的幂次。
例如,代数式 2x^2 + 3xy - 5z 表示了三个变量 x、y 和 z 之间的数学关系。
二、方程的基本概念方程是一个等式,它包含了一个或多个未知数,并且要求找到使等式成立的变量值。
方程的解就是满足方程的变量值。
方程可以分为一元方程和多元方程,一元方程只有一个未知数,而多元方程则有两个或更多的未知数。
解方程的过程就是确定未知数的值,使方程两边的值相等。
通过运用代数的运算法则,如合并同类项、展开式子、配方等,我们可以解决各种类型的方程。
三、一元一次方程的解法一元一次方程是最简单的方程形式,它的一般形式为 ax + b = 0,其中 a 和 b 是已知数,x 是未知数。
解一元一次方程的基本步骤如下:1. 将方程中的常数项移到等式右边,变为 ax = -b;2. 化简式子,将方程变为 x = -b/a;3. 求得 x 的值。
例如,解方程 2x + 3 = 7:1. 将方程变为 2x = 7 - 3;2. 化简得 2x = 4;3. 最终解为 x = 4/2 = 2。
四、一元二次方程的解法一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b 和 c 都是已知数,且a ≠ 0。
解一元二次方程的方法有多种,其中常用的方法是因式分解法和求根公式法。
1. 因式分解法通过因式分解,将方程转化为两个一元一次方程,并求解这两个方程来得到方程的解。
初一一元一次方程解应用题全部类型

1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
一元一次方程的应用

一元一次方程的应用一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想;●通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。
重点难点:●列方程解应用题。
学习策略:●通过联系实际并对实际问题进行分类,理解并记忆一些关系式,通过练习灵活运用这些公式,熟练掌握各种问题的解题思路。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)只含有个未知数,并且未知数的次数是,系数不为的方程叫做一元一次方程。
一元一次方程的标准形式是: (其中x是未知数,a,b是已知数,且a≠0)我们判断一个方程是不是一元一次方程要看它后的最简形式是不是标准形式ax+b=0 (a≠0)。
例如方程3x2+5=8x+3x2,化简成是一元一次方程;而方程4x-7=3x-7+x表面上看有个未知数x,且x的次数是次,但化简后为,不是一元一次方程.(二)等式两边加(或减),结果仍相等。
等式两边乘,或除以同一个的数,结果仍相等。
(三)解方程(1)0.48x -6 = 4-0.02x (2)5x-3(2x+1)+7x=6x-4(5-3x)(3)37615=-y (4)1815612=+--x x(5)103.02.017.07.0=--x x (6)143)221(314151-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--x知识点一:列一元一次方程解应用题的方法和一般步骤列方程解应用题的关键是从问题中找出一个 关系,然后恰当地设出 ,把 关系中的各个量用含有已知数和未知数的代数式表示,这样就可列出方程,这一过程可以简单表述为:问题−−−→分析抽象方程−−−→求解检验解答.在设未知数和解答时,应注意量的 .综上所述,列方程解应用题的方法步骤可概括为:(1) ,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2) ,一般求什么就设什么为x ,但有时也可以间接设未知数.(3) ,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4) .(5) ,看方程的解是否符合题意.(6)写出答案.注意:(1)设未知数和写答案时,单位要写清楚.知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
一元一次方程的应用

一元一次方程的应用一、列方程解应用题的一样步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,能够直截了当设未知数,也能够间接设未知数;3.列出方程中的有关的代数式;4.依照题中的相等关系列出方程;5.解方程;6.答题。
二、列方程解应用题的关键是找出题中的等量关系三、常见的应用题类型有:行程问题:1)追击问题:a、两个物体在同一地点不同时刻同向动身最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时刻=乙速度×(甲时刻+乙先走的时刻)b、两个物体从不同地点同时同向动身最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点动身相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时刻+乙速度×相遇时刻=原两地的路程3)一样行程问题:等量关系:速度×时刻=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1.一猎狗发觉在它前方240米处有一以80米/分的速度逃跑的兔子,猎狗迅速以120米/分速度追击,要多久才能追到?2.一部队从军部动身行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部动身追赶,4小时后追上,则通讯兵每小时比部队多行多少千米?3.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再动身,问甲动身后几小时与乙相遇?4.学生队伍以每小时5千米的速度外出春游,他们从学校动身走了4小时12分钟后,学校派通讯员骑摩托车以每小时40千米的速度追赶学生队伍,传达紧急通知,求通讯员用了多少时刻赶上学生队伍?5.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,通过多少小时快车可追上慢车?6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?7.甲乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒钟,甲通过几秒能够追上乙?8.敌军和我军相距14千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时能够追上?9.一般飞机和喷气式飞机从相距600千米的两个机场相向起飞,30分钟后相遇,假如喷气式飞机的速度是一般飞机的3倍,求一般飞机和喷气式飞机的速度?10.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向动身,通过多少分钟两人相遇?11.甲乙两站相距245千米,一列慢车由甲站开出,每小时行使50千米,同时,一列快车由乙站开出,每小时行使70千米,两车同向而行,快车在慢车的后面,通过几小时快车能够追上慢车?12.小红和小军两人同时从各自的家里动身去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用1小时在途中某点相遇,则小军每分钟走多少米?613.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?14.A、B两地相距80米,甲从A地动身,每秒走1米,乙从B地动身每秒走1.5米,如甲先走15米,求乙动身后多少秒与甲相遇?15.小船的静水速度是27千米/时,顺流航行60千米逆流返回,假如水流速不变,返程所用时刻比顺流多用25%,求水流速度?16.A、B两地间的路程为360km,甲车从A地动身开往B地,每小时72km,甲车动身25分钟后,乙车从B地动身开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向连续行驶,那么相遇后两车相距100km时,甲车从动身共行驶了多少小时?17.一艘轮船,航行于甲、乙两地之间,顺水用3小时,逆水比顺水多用30分钟。
一元一次方程的应用题的解题步骤

一元一次方程的应用题的解题步骤
在数学学习中,一元一次方程是一个非常基础且常见的概念。
通过学习一元一
次方程的应用题,我们可以更好地理解数学知识在实际问题中的应用。
解决一元一次方程的应用题需要遵循一定的步骤,下面将详细介绍解题的过程。
步骤一:审题
在解决一元一次方程的应用题时,首先要认真阅读题目,理解问题的意义和要求。
需要清楚问题中给出的已知条件和需要求解的未知数,确保对问题的整体把握。
步骤二:建立方程
根据问题的描述,利用代数式建立方程。
在建立方程时,要仔细分析问题的逻
辑关系,将问题中的信息转化为数学表达式。
步骤三:化简方程
将建立的方程进行整理和化简,消除无关项,最终得到标准的一元一次方程形
式ax+b=c。
步骤四:解方程
通过适当的运算和规律,解出方程中的未知数的值。
常用的解方程方法有逆运
算法、等价方程法和植入法等。
步骤五:验证解答
对求得的未知数进行验证,将其代入原方程,确保方程两边相等。
步骤六:给出答案
根据最终验证的结果,得出问题的解答。
通常将解答进行简要描述或总结,回
答问题的要求。
以上是解决一元一次方程应用题的基本步骤。
通过不断练习和掌握这些方法,
可以提高解题效率和准确性,帮助我们在数学学习中取得更好的成绩。
希望这些步骤能帮助你更好地理解和应用一元一次方程的知识。
一元一次方程应用题题型及解题技巧

列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:⑴审题:理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。
①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇两车同时开出,相背而行多少小时后两车相距600公里两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车 (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
一元一次方程应用解题方法和技巧总结

一元一次方程应用解题方法和技巧总结一元一次方程是数学中的一个基本概念,在实际生活中有着广泛的应用。
掌握一元一次方程的解法和应用技巧,对于解决实际问题具有重要的意义。
本文将介绍一元一次方程应用解题方法和技巧总结。
1. 一元一次方程的定义和特点一元一次方程是指未知数最高次数为1次的整式方程,其一般形式为ax+b=0(a,b为常数且a≠0)。
一元一次方程的特点是未知数最高次数为1次,且只含有一个未知数。
2. 一元一次方程的解法一元一次方程的解法通常采用移项、系数化为1和开方等步骤。
具体步骤如下:(1)移项:将方程的左侧移项右侧,使方程只含有一个未知数;(2)系数化为1:将方程的未知数系数化为1,常数项化为0;(3)开方:如果方程有根,则对其进行开方运算,得到方程的解。
3. 一元一次方程的应用技巧一元一次方程在实际生活中有着广泛的应用,例如在销售、工程、医学等领域。
掌握一元一次方程的应用技巧,可以帮助我们解决实际问题。
以下是一些常见的一元一次方程应用技巧:(1)代数式转换:将实际问题中的数学问题转换为代数式,并使用一元一次方程求解;(2)分析法:通过分析问题中的变量关系,列出方程求解;(3)试算法:通过试错法逐步逼近方程的解。
4. 举例以下是一元一次方程应用的一个例子:某工厂生产一批零件,共有10个不同规格的零件,每个零件的长度(单位:毫米)如下:29、31、32、33、34、35、36、37、38、39。
这批零件中,有且只有一个尺寸超过了公称尺寸40毫米,求公称尺寸的最大值和最小值。
分析:本题可以将问题转化为一个一元一次方程的应用问题。
设公称尺寸的最大值为x,则有以下情况:(1)29个零件长度都小于x,则有x-29u003c0,解得xu003c29;(2)29个零件长度都大于x,则有x+29u003e40,解得xu003e11;(3)有一个零件长度大于x,则有x+该零件长度-40u003e0,解得xu003e5.该零件长度小于x+29,解得xu003e7.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式及一元一次方程的应用一.选择题(共15小题)1.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x2.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则4.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()第3天第5天5.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今小王取出一年到6.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元的不予优惠;(2)一次购买金额超过1万元,但不超过3万元的九折优惠;(3)一次购买金额超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库存原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元.7.2013年澄江县要创建国家卫生县城,计划把城区一段主干道的一侧全部栽上树,如果每隔6米栽1棵,恰巧这段主干道的两端都有一棵,则还差31棵树苗;如果每隔8米栽1棵,恰巧这段主干道的两端都有一棵,则树苗正8.一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a100=().10.如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )11.如果单项式与 是同类项,那么a ,b 分别为( )12.根据右图中已填出的“√”和“×”的排列规律,把②、③、④还原为“√”或“×”且符合右图的排列规律,下面“”中还原正确的是( ).CD .13.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )15.如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是.CD .二.填空题(共4小题)16.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为 _________ .17.某篮球运动员在一次篮球比赛中20投16中得30分,其中3分球2个,则他投中 _________ 个2分球和_________ 个罚球(罚球命中1次得1分).18.观察下列各数,它们是按一定规律排列的,则第n 个数是 _________ . ,,,,,…19.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 _________ .三.解答题(共11小题)20.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A 、B 两地间的路程.21.某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成. 你认为哪种方案获利最多,为什么?22.先阅读下列一段文字,然后解答问题.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验.23.某商店为了促销某品牌空调机,决定2004年元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2005年元旦付清.该空调机售价为每台8224元,若两次付款相同,问每次应付款多少元?24.仔细阅读下列材料,然后解答问题.某商场在促销期间规定:商场内所有商品按标价的80%出售.同时当顾客在该商场消费满一定金额后,按如下方案450×80%=360元,获得的优惠额为450×(1﹣80%)+30=120元.设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价.(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?25.如图所示,这个风铃分别由正三、正四、正五、正六、正八、正十和正十二边形的饰物组成,共重144克,(假设绳子和横杆的重量为0),请你计算出每个正多边形饰物的重量.26.如图,早晨小明与父亲同时出发,到离家900米的公园晨练.父亲以100米/分钟的速度步行前往公园,小明跑步到公园后立即原路跑回,遇到父亲后,再与父亲一起步行到公园.求小明遇到父亲是跑了多少米?(小明跑步速度与父亲步行速度均近似为匀速)27.在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为_________.(2)请你利用下图,再设计一个能求的值的几何图形.28.研究下列算式,你会发现有什么规律?①13=12②13+23=32③13+23+33=62④13+23+33+43=102⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n(n为正整数)的式子表示第n个算式;(3)请用上述规律计算:73+83+93+ (203)29.大客车上原有(3m﹣n)人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m﹣5n)人.(1)请问中途上车的乘客有多少人;(2)求当m=10,n=8时,中途上车的乘客有多少人,共有乘客多少人.30.小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?代数式及一元一次方程的应用参考答案与试题解析一.选择题(共15小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用×工作进度如右表:则完成这项工作共需()天做了÷=12÷+)﹣÷()6.(2003•桂林)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元的不予优惠;(2)一次购买金额超过1万元,但不超过3万元的九折优惠;(3)一次购买金额超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库存原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元.7.(2013•澄江县二模)2013年澄江县要创建国家卫生县城,计划把城区一段主干道的一侧全部栽上树,如果每隔6米栽1棵,恰巧这段主干道的两端都有一棵,则还差31棵树苗;如果每隔8米栽1棵,恰巧这段主干道的两端都有一棵,则树苗正好用完.设原有树苗为x棵,小澄、小江、小明、小雨分别列出下列四个方程,请你判断一下正8.(2013•玉林)一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a100=().==,=211.(2012•雅安)如果单项式与是同类项,那么a ,b 分别为( )12.(2011•淄博)根据右图中已填出的“√”和“×”的排列规律,把②、③、④还原为“√”或“×”且符合右图的排列规律,下面“”中还原正确的是( ).CD .13.(2011•盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( ).C D.16.(2012•赤峰)某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为(+)小时完成,可知其效率为;初三学生单独工作,需要,则初二和初三学生一起工作的效率为(),初三学生的效率为,则初二和初三学生一起工作的效率为()(10个2分球和,解得:.故答案为:18.(2013•三明)观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…个数是.故答案为:19.(2012•三明)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是900.20.(2008•南宁)小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.千米,即两人速度的和是:;到中午度的和是利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验..检验:当=10=时,左边+11=10=一笔款,余下部分及它的利息(年利率为5.6%)在2005年元旦付清.该空调机售价为每台8224元,若两次付款相24.(2013•梅州模拟)仔细阅读下列材料,然后解答问题.某商场在促销期间规定:商场内所有商品按标价的80%出售.同时当顾客在该商场消费满一定金额后,按如下方案根据上述促销方法,顾客在商场内购物可以获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×80%=360元,获得的优惠额为450×(1﹣80%)+30=120元.设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价.(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的×100%=29%;根据题意得:=,解得元的商品,可以得到成,共重144克,(假设绳子和横杆的重量为0),请你计算出每个正多边形饰物的重量.行前往公园,小明跑步到公园后立即原路跑回,遇到父亲后,再与父亲一起步行到公园.求小明遇到父亲是跑了多少米?(小明跑步速度与父亲步行速度均近似为匀速)27.(2005•大连)在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为(1﹣).(2)请你利用下图,再设计一个能求的值的几何图形.,最后余下的面积为:故几何图形的值为:.故答案为:①13=12②13+23=32③13+23+33=62④13+23+33+43=102⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n(n为正整数)的式子表示第n个算式;3333个算式为29.大客车上原有(3m﹣n)人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m﹣5n)人.(1)请问中途上车的乘客有多少人;((时,=30.小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?。