[架构设计]设计模式C++实现--组合模式
设计模式和架构

设计模式和架构设计模式和架构是软件开发中至关重要的概念,它们对于构建可扩展、可维护和高质量的软件系统具有重要意义。
本文将介绍设计模式和架构的概念、作用以及一些常见的设计模式和架构模式。
一、设计模式的概念和作用设计模式是在软件开发中对常见问题的解决方案的总结和抽象。
它们提供了一种被广泛接受的思想和方法,用于解决软件开发中常见的设计问题。
设计模式帮助开发人员更好地组织和设计代码,提高代码的复用性和可维护性。
通过使用设计模式,开发人员可以更加灵活地应对需求变化,减少代码的耦合性,提升软件系统的可扩展性。
二、常见的设计模式1. 创建型设计模式创建型设计模式主要关注对象的创建过程,包括简单工厂模式、抽象工厂模式、单例模式、建造者模式和原型模式等。
简单工厂模式通过一个工厂类来创建对象,避免直接实例化对象;抽象工厂模式提供一个接口,用于创建一系列相关或相互依赖的对象;单例模式确保一个类只有一个实例对象;建造者模式将对象的构建过程和表示分离,使得同样的构建过程可以创建不同的表示;原型模式通过复制现有对象来创建新对象。
2. 结构型设计模式结构型设计模式关注对象的组合和关联方式,包括适配器模式、装饰者模式、代理模式、外观模式、桥接模式、组合模式和享元模式等。
适配器模式将一个类的接口转换成客户端期望的另一个接口;装饰者模式动态地将责任附加到对象上,扩展其功能;代理模式通过代理对象控制访问,可以在不改变原始对象的情况下增加额外的逻辑;外观模式提供一个统一的接口,用于访问子系统的一组接口;桥接模式将抽象部分和实现部分解耦,使得它们可以独立变化;组合模式将对象组合成树形结构,表示“整体-部分”的层次关系;享元模式通过共享对象来减少内存使用。
3. 行为型设计模式行为型设计模式主要关注对象之间的通信和协作方式,包括观察者模式、策略模式、模板方法模式、迭代器模式、命令模式、备忘录模式、中介者模式、访问者模式和状态模式等。
观察者模式定义对象之间的一对多依赖关系,使得当一个对象状态发生变化时,所有依赖于它的对象都会得到通知和更新;策略模式定义一族算法,分别封装起来,使得它们可以互相替换;模板方法模式定义一个算法的框架,而将一些步骤延迟到子类中实现;迭代器模式提供一种顺序访问集合对象元素的方法,而无需暴露其内部表示;命令模式将请求封装成对象,以便可以用不同的请求对客户进行参数化;备忘录模式在不破坏封装的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态;中介者模式用一个中介对象来封装一系列对象之间的交互;访问者模式将算法与基础数据结构分离,使得算法可以独立变化;状态模式允许一个对象在其内部状态改变时改变其行为。
Python组合模式的实现

Python组合模式的实现Python组合模式的实现组合模式是一种行为设计模式,它允许通过使用树形结构来组合对象来建立对象间的整体-部分关系。
它使得客户能够在没有区别地对待单个对象和对象集合的情况下处理对象。
在组合模式中,有两种类型的对象:叶节点和容器节点。
叶节点是不能包含任何其他对象的最基本对象,而容器节点是可以包含其他叶节点或容器节点的对象。
在本文中,我们将介绍Python中组合模式的实现。
我们首先将介绍组合模式的基础知识,然后介绍用Python实现组合模式的三个步骤:创建基类、创建容器类和创建叶节点类。
最后,我们将给出一个实际的例子以证明组合模式的有效性。
组合模式的基础知识组合模式是基于树形结构的概念的。
在这个结构中,顶部元素被称为根,中间的元素被称为在树形结构中的父节点,而最底层的元素被称为子节点。
组合模式允许我们对树形结构的节点进行递归遍历,以访问整个树状结构。
通过使用组合模式,我们可以将一个对象和另一个对象组合在一起,以形成一个更大的对象。
在组合模式中,我们有两种类型的对象:叶节点和容器节点。
叶节点是不能包含任何其他对象的最基本对象,而容器节点是可以包含其他叶节点或容器节点的对象。
在Python中实现组合模式为了实现组合模式,我们需要完成三个主要步骤:1.创建基类2.创建容器类3.创建叶节点类创建基类在组合模式中,我们需要创建一个基类,该类包含通用的方法和属性。
在Python中,我们可以使用“ABC(抽象基类)”模块来创建抽象基类。
```pythonfrom abc import ABC, abstractmethodclass Component(ABC):@abstractmethoddef operation(self):pass```这个基类是我们用来创建所有其他类的。
我们使用@abstractmethod装饰器来指定该方法为抽象方法。
创建容器类容器类是可以包含其他叶节点或容器节点的对象。
设计模式面试题

设计模式面试题设计模式是软件开发过程中常用的一种设计思想和方法,在面试中也是一个重要的考察点。
下面将介绍一些常见的设计模式面试题,以及它们的解题思路和应用场景。
1. 单例模式(Singleton Pattern)单例模式是最常见的一种设计模式,它保证一个类只有一个实例,并提供一个全局访问点。
在面试中,常常会被问到如何实现单例模式,可能会有以下几种问题:- 如何实现线程安全的单例模式?- 如何避免反射破解单例模式?2. 工厂模式(Factory Pattern)工厂模式是一种创建型模式,用于创建对象的过程与客户端的代码分离,这样可以减少对象创建的复杂度。
在面试中,可能会被问到如何实现工厂模式,以及工厂模式与抽象工厂模式的区别和应用场景。
3. 观察者模式(Observer Pattern)观察者模式是一种行为型模式,它定义了一种一对多的依赖关系,当一个对象的状态发生改变时,它的所有依赖者都会收到通知并自动更新。
在面试中,可能会被问到观察者模式的实现方式,以及观察者模式与发布-订阅模式的区别。
4. 适配器模式(Adapter Pattern)适配器模式是一种结构型模式,它通过将不兼容的接口转换成可兼容的接口,使得不同类之间可以协同工作。
在面试中,可能会被问到适配器模式的应用场景,以及适配器模式和装饰器模式的区别。
5. 策略模式(Strategy Pattern)策略模式是一种行为型模式,它通过定义一系列算法类并将其封装起来,从而使得它们可以互相替换。
在面试中,可能会被问到策略模式的特点,以及与状态模式的区别和适用场景。
6. 装饰器模式(Decorator Pattern)装饰器模式是一种结构型模式,它通过动态地将责任附加到对象上,扩展对象的功能。
在面试中,可能会被问到装饰器模式的实现方式,以及装饰器模式和代理模式的区别。
7. 原型模式(Prototype Pattern)原型模式是一种创建型模式,它通过复制已有对象来生成新的对象,从而避免了对象创建的复杂性。
23种设计模式及应用

23种设计模式及应用设计模式是指在软件设计过程中,针对常见问题的解决方案的经验总结。
它们提供了解决特定或常见问题的可重用方案,使得软件设计更加灵活、可扩展和可维护。
1. 创建型模式:- 单例模式:确保一个类只有一个实例,并提供全局访问点。
- 简单工厂模式:通过一个共同的接口创建不同的对象实例。
- 工厂方法模式:定义一个创建对象的接口,由子类决定具体创建哪个对象。
- 抽象工厂模式:提供一个创建一系列相关或互相依赖对象的接口。
- 建造者模式:将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建不同的表示。
2. 结构型模式:- 适配器模式:将一个类的接口转换为客户端所期待的另一种接口。
- 桥接模式:将抽象部分与它的实现部分分离,使它们可以独立变化。
- 组合模式:将对象组合成树形结构以表示"整体-部分"的层次结构。
- 装饰器模式:动态地给对象添加额外的功能,避免继承带来的类膨胀问题。
- 外观模式:为子系统中一组接口提供一个一致的界面。
3. 行为型模式:- 策略模式:定义一系列算法,将它们封装起来,并使它们可以相互替换。
- 观察者模式:定义对象之间的依赖关系,当对象状态改变时自动通知依赖方。
- 模板方法模式:定义一个操作中的算法骨架,将一些步骤延迟到子类中实现。
- 命令模式:将一个请求封装成一个对象,从而使您可以用不同的请求参数化客户端对象。
- 状态模式:允许对象在其内部状态改变时改变其行为。
4. J2EE模式:- MVC模式:将应用程序划分为三个核心组件:模型、视图和控制器。
- 业务代表模式:将对业务对象的访问和业务逻辑从表示层分离出来。
- 数据访问对象模式:用于将业务逻辑和数据访问逻辑分离。
- 前端控制器模式:通过一个单一的入口点来处理应用程序的所有请求。
- 传输对象模式:用于在客户端和服务器之间传输数据。
5. 并发模式:- 线程池模式:创建一组预先初始化的线程对象来处理任务。
系统架构设计师23种设计模式记忆口诀

系统架构设计师23种设计模式记忆口诀设计模式分为三种类型:创建型设计模式(4种:工厂模式(工厂模式、抽象工厂模式)、单例模式、原型模式、建造者模式)主要用户创建对象;创建型:创建模式创对象。
工厂模式要抽象;单例只有一个类;拷贝原型创对象;建造复杂的对象。
解释:创建模式主要用于创建对象。
工厂模式根据业务需要分为简单工厂模式、工厂方法模式和抽象工厂模式;原型模式用于创建重复的对象,通过拷贝这些原型创建新的对象;建造者模式使用多个简单的对象一步一步构建成一个复杂的对象。
------------------------------------------------------------------------------- 结构型设计模式(8种:代理模式、外观模式、装饰器模式、享元模式、组合模式、适配器模式、桥接模式、过滤器)主要关注类和对象的组合;结构型:结构组合类对象。
代理外观装饰器;享元组合适配器;桥接不能过滤器。
代理对象访问者;外观一致的接口;装饰动态添职责;享元共享搞对象。
组合对象像棵树;适配接口能兼容;桥接抽象与实现;不同标准来过滤。
解释:结构型设计模式主要关注类和对象的组合。
主要有代理模式、外观模式、装饰器模式、享元模式、组合模式、适配器模式、桥接模式不能继承,过滤器模式。
代理模式为其他对象提供一种代理以控制对这个对象的访问;外观模式通过为多个复杂的子系统提供一个一致的接口,而使这些子系统更加容易被访问的模式,这是典型的”迪米特原则“;装饰器模式动态地给一个对象添加一些额外的职责;享元模式运用共享技术来有效地支持大量细粒度对象的复用;组合模式将对象组合成树形结构以表示"部分-整体"的层次结构;适配器模式将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类可以一起工作;桥接模式将抽象部分与实现部分分离,使它们都可以独立的变化;过滤器模式允许开发人员使用不同的标准来过滤一组对象,通过逻辑运算以解耦的方式把它们连接起来行为型设计模式(11种:模板模式、策略模式、迭代器模式、中介模式、备忘录模式、解释器模式、观察者模式、访问者模式、状态模式、责任链模式、命令模式)主要关注对象间通信的问题。
软件设计模式之结构型模式

适用场景
01
02
03
需要动态地添加或删除 功能的情况。
需要灵活地组合和复用 功能的情况。
需要对原有对象进行扩 展,但不希望修改原有
对象代码的情况。
实现方式
定义一个抽象组件接口,规定组件的基本功能。
输标02入题
定义一个具体组件类,实现抽象组件接口,提供具体 功能。
01
03
定义具体装饰器类,继承装饰器抽象类,并实现其方 法。在具体装饰器类中,可以调用被装饰对象的方法,
提高了系统的可扩展性和可复用性。
特点
分离抽象和实现,使它们可以独立变化 。
适用场景
1
当一个类需要同时访问多个接口时,且这些接口 之间存在继承关系。
2
当一个类需要同时访问多个接口,且这些接口之 间存在依赖关系时。
3
当一个类需要同时访问多个接口,且这些接口之 间存在关联关系时。
实现方式
创建抽象接口
定义抽象接口,用于规定具体类的行为。
05
02
桥接模式
将抽象与实现解耦,使它们可以独立变化。
04
装饰器模式
动态地给一个对象添加一些额外的职 责,就增加功能来说,装饰器模式相 比生成子类更为灵活。
06
享元模式
通过共享对象来显著减少系统中对象的数量, 从而显著提高系统性能。
02 适配器模式
定义与特点
01
02
定义:适配器模式是一 种结构型设计模式,它 通过将一个类的接口转 换成客户端所期望的另 一个接口,使得原本由 于接口不兼容而无法协 同工作的类能够一起工 作。
实现步骤
1. 定义抽象组件接口,包括在接口中声明需要 在组合中使用的操作。
2. 创建实现抽象组件接口的叶子节点类和复合 组件类。
软件设计模式的概念和实现方法

软件设计模式的概念和实现方法软件设计模式是指在软件开发过程中,经过多次实践的总结,抽象出来的可重用的设计方式,它可以有效地提高软件开发的效率,降低软件维护的成本。
一般来说,软件设计模式可以从四个方面来划分:创建型模式、结构型模式、行为型模式和J2EE模式。
1.创建型模式:创建型模式主要是解决对象实例化的问题,包括单例模式、工厂模式、抽象工厂模式、建造者模式和原型模式。
单例模式是指保证一个类只有唯一的一个实例,可以用于保存全局状态,比如配置文件对象、线程池对象等等。
工厂模式主要是通过一个工厂来创建对象,可以简化客户端的操作,提供更好的封装性。
抽象工厂模式是对工厂模式的补充,它是一种提供接口来创建一系列相关对象的方式,可以方便地进行对象间的组合。
建造者模式主要是通过一个指挥者来协调各个部件的构造,使得对象的构造过程更加灵活和可控。
原型模式主要是通过克隆现有的对象来创建新的对象,可以避免耗时的初始化过程。
2.结构型模式:结构型模式主要是解决类与类之间的关系问题,包括适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式和享元模式。
适配器模式是指将一个类的接口转换成客户希望的另一个接口,使得原本不兼容的类可以合作。
装饰器模式是指在不改变原有对象的基础上,通过包装对象来增强对象的功能或者增加行为。
代理模式是指在访问对象时引入一定程度的间接性,以便更好地控制访问的过程和结果。
外观模式是指为一组复杂的子系统提供一个简单的入口,以便客户端能够更方便地访问这些子系统。
桥接模式是指将抽象部分与实现部分分离,以便二者可以独立地变化。
组合模式是指将对象组合成树形结构以表示整体-部分的层次结构,使得客户端可以统一地处理单个对象和组合对象。
享元模式是指通过共享来减少对象的创建,以便降低系统的内存开销。
3.行为型模式:行为型模式主要解决对象之间的通信问题,包括观察者模式、模板方法模式、命令模式、职责链模式、策略模式、状态模式和访问者模式。
23种设计模式 详解

23种设计模式详解设计模式是指面向对象编程中,经过多次验证、被广泛接受的代码实现方法。
这些设计模式可以帮助开发者更快地解决问题,提高代码的可读性、可维护性、可扩展性。
目前,常用的设计模式有23种。
下面,我们来详细介绍一下这23种设计模式。
1. 单例模式(Singleton)单例模式是一种只允许生成一个实例的模式。
在实例化对象时,单例模式的生成过程比较特殊,需要先判断该类是否已经实例化过,如果已经实例化,则直接返回已有的实例对象,否则再进行实例化。
2. 工厂模式(Factory)工厂模式是一种生产对象实例的设计模式。
它将对象实例的生成过程封装在一个工厂类中,客户端需要对象时,只需要调用工厂类中对应的方法即可。
3. 抽象工厂模式(Abstract Factory)抽象工厂模式是一种扩展了工厂模式的模式。
它可以生成一系列相关或相互依赖的对象实例。
具体实现时,通常需要定义一个抽象工厂类和一些具体工厂类,来生产各种相关的对象实例。
4. 建造者模式(Builder)建造者模式是一种用于构建复杂对象的模式。
它将一个复杂对象的构建过程分解成多个简单的步骤,然后通过一个指挥者来管理这些步骤的执行,最终构建出一个复杂的对象。
5. 原型模式(Prototype)原型模式是一种通过复制已有对象来创建新对象的模式。
一般来说,系统中的对象包含大量相同或相似的部分,通过复制对象可以帮助我们节省生成对象的时间和资源。
6. 适配器模式(Adapter)适配器模式是一种将不兼容接口转换为兼容接口的模式。
具体实现时,需要定义一个适配器类,该类实现了客户端所期望的接口,而且还包装了原有不兼容的接口,使其能够兼容客户端期望的接口。
7. 桥接模式(Bridge)桥接模式是一种将抽象部分与其实现部分分离开来的模式。
具体实现时,需要定义抽象部分和实现部分的接口,然后定义一个桥接类,将抽象部分和实现部分联系起来。
8. 组合模式(Composite)组合模式是一种将具有相同属性和方法的对象组合成树形结构的模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式定义:组合模式允许你将对象组合成树形结构来表现“整体/部分”层次结构。
组合能让客户以一致的方式处理个别对象以及对象组合。
这个模式能够创建一个树形结构,在同一个结构中处理嵌套菜单和菜单项组。
通过菜单和项放在相同结构中,我们创建了一个“整体/部分”层次结构,即由菜单和菜单项组成的对象树。
使用组合结构,我们能把相同的操作应用在组合和个别对象上。
换句话说,在大多数情况下,我们可以忽略对象组合和个别对象之间的差别。
模式结构:Component:为组合中的对象声明接口;在适当情况下实现所有类共有接口的缺省行为;声明一个接口用于访问管理Component的子组件在递归结构中定义一个接口,用于访问一个父部件,并在合适的情况下实现它Leaf:在组合中表示叶节点对象,叶节点没有子节点,并定义其行为Composite:定义有子部件的那些部件的行为存储子部件实现与子部件有关的操作Client:通过Component接口操作组合件和个别对象。
举例:在迭代器例子中,我们希望在午餐餐单中增加一份甜点餐单,也就是说希望能让甜点餐单变成午餐餐单的一个元素。
我们可以用组合模式解决这个问题:一开始我们创建一个组件接口作为餐单和菜单项的共同接口,让我们能够用统一的做法来处理菜单和菜单项。
换句话说,我们可以针对菜单或菜单项调用相同的方法。
然后实现菜单项和组合菜单组件,以及他们各自的方法。
UML设计:编程实现及执行结果:1.#include <iostream>2.#include <vector>3.#include <list>4.#include <string>5.ing namespace std;7.8.//菜单和菜单项共同的组件9.class MenuComponent10.{11.public:12.virtual void add(MenuComponent* menuComponent)13. {14.throw exception("add error!");15. }16.17.virtual void remove(MenuComponent* menuComponent)18. {19.throw exception("remove error!");20. }21.22.virtual MenuComponent* getChild(int i)23. {24.throw exception("getChild error");25. }26.27.virtual string getName()28. {29.throw exception("getName error");30. }31.32.virtual string getDescription()33. {34.throw exception("getDescription error");35. }36.37.virtual double getPrice()38. {39.throw exception("getPrice error");40. }41.42.virtual void print()43. {44.throw exception("print error");45. }46.};47.48.//菜单项类49.class MenuItem : public MenuComponent50.{51.public:52. MenuItem(){}53. MenuItem(string na, string descrip, double pric)55. name = na;56. description = descrip;57. price = pric;58. }59.60. string getName()61. {62.return name;63. }64.65. string getDescription()66. {67.return description;68. }69.70.double getPrice()71. {72.return price;73. }74.75.void print()76. {77. cout << " " << getName() << ", " << getPrice()78. <<" ---" << getDescription() << endl;79. }80.private:81. string name;82. string description;83.double price;84.};85.//组合菜单类86.class Menu : public MenuComponent87.{88.public:89. Menu(string nam, string descri)90. {91. name = nam;92. description = descri;93. }94.95.void add(MenuComponent* pMenuComponent)96. {97. pMenuComponents.push_back(pMenuComponent);99.100.void remove(MenuComponent* pMenuComponent)101. {102. vector<MenuComponent*>::iterator iter = pMenuComponents.begin(); 103.for(; iter!=pMenuComponents.end(); ++iter)104. {105.if(*iter == pMenuComponent)106. {107. pMenuComponents.erase(iter);108. }109. }110. }111.112. MenuComponent* getChild(int i)113. {114.return pMenuComponents[i];115. }116.117. string getName()118. {119.return name;120. }121.122. string getDescription()123. {124.return description;125. }126.127.void print()128. {129. cout << endl << getName() << ", " << getDescription() << endl << "--------------" << endl;130. vector<MenuComponent*>::iterator iter = pMenuComponents.begin(); 131.while(iter != pMenuComponents.end())132. {133. MenuComponent* pMenuComponent = *iter;134. pMenuComponent->print();135. ++iter;136. }137. }138.private:139. vector<MenuComponent*> pMenuComponents;140. string name;141. string description;142.};143.144.//服务生类145.class Waitress146.{147.public:148. Waitress(MenuComponent* all_Menus)149. {150. allMenus = all_Menus;151. }152.153.void printMenu()154. {155. allMenus->print();156. }157.private:158. MenuComponent* allMenus;159.};160.//客户代码161.int main()162.{163. MenuComponent* pancakeHouseMenu = new Menu("PANCAKE HOUSE MENU", "Break fast");164. MenuComponent* dinerMenu = new Menu("Diner MENU", "Lunch");165. MenuComponent* dessertMenu = new Menu("DESSERT MENU","Dessert of coure!");166.167. MenuComponent* allMenus = new Menu("ALL Menus", "All menus combined");168.169. allMenus->add(pancakeHouseMenu);170. allMenus->add(dinerMenu);171. dinerMenu->add(new MenuItem("Pasta","Spaheti with Sauce", 3.89)); 172.173. dinerMenu->add(dessertMenu);174. dessertMenu->add(new MenuItem("Apple Pie", "App pie with a cruse", 1.59 ));175.176. Waitress* waitress = new Waitress(allMenus);177. waitress->printMenu();178.return 0;179.}执行结果:ALLMenus, All menus combined--------------PANCAKEHOUSE MENU, Breakfast--------------DinerMENU, Lunch--------------Pasta, 3.89 ---Spaheti with SauceDESSERTMENU, Dessert of coure!--------------Apple Pie, 1.59 ---App pie with a cruse 请按任意键继续. . .。