2011年成都市中考数学试题及答案(word版)

合集下载

2011年成都市中考数学试题及答案

2011年成都市中考数学试题及答案

---------------------------------------------------------------------------------------------------------------成都市二O 一一年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是(A )(B )(C )(D )3. 在函数y =x 的取值范围是 (A)12x ≤(B)12x <(C)12x ≥(D)12x >4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。

据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 (A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是---------------------------------------------------------------------------------------------------------------B时间人数(A )2x x x += (B) 2x x x ⋅=(C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况,50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信周的体育锻炼时间的众数和中位数分别是 (A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10.已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是 (A)相交 (B)相切 (C)相离 (D)无法确定二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)---------------------------------------------------------------------------------------------------------------B11. 分解因式:.221x x ++=________________。

2011年中考数学试题含答案

2011年中考数学试题含答案

2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次). (1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号)23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由; (3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8 图9-1图9-2图9-3图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4;15.10 ; 16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)xx - 4分=22(2)x x --–2(2)xx -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分 ∵DE ∥AC ,DF ∥BC , ∴四边形DECF 为平行四边形, 5分∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,57分∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分 可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分∵23≠13,∴大双的设计方案不公平. 7分(2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1),∴1=2k1分解得k=2, 2分∴反比例函数的解析式为y=1x . 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩,5分∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分 (2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分∴ADCD CD BD =.即baa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC , 又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分∴O A O C O CO B=.又∵A(–1,0),B(9,0),∴19O CO C=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0)∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ C D =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQC D =,∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ C D =.∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3.又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0),又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G , 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3,设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G ,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。

2008年—2012年年成都市中考数学试题及答案

2008年—2012年年成都市中考数学试题及答案

一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简( - 3x2)〃2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6.在函数中,自变量x的取值范围是(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2(B )15πcm 2(C )18πcm 2(D )24πcm 210. 有下列函数:①y = - 3x ;②y = x – 1:③y = - x1(x < 0);④y = x 2+ 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有(A )①②(B )①④(C )②③(D )③④二、填空题:(每小题4分,共16分)11. 现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为2甲S =0.32,2乙S =0.26,则身高较整齐的球队是 队.12. 已知x = 1是关于x 的一元二次方程2x 2+ kx – 1 = 0的一个根,则实数k 的值是 . 13. 如图,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .14. 如图,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它们的对应点N 的坐标是.三、(第15题每小题6分,第16题6分,共18分) 15. 解答下列各题:(1)计算:231)2008(410-+⎪⎭⎫⎝⎛--+- .(2)化简:).4(2)12(22-⋅-+-x xx x x x 16. 解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整式解. 四、(每小题8分,共16分)17. 如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)18. 如图,已知反比例函数y =xm 的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. (1)试确定这两个函数的表达式; (2)求点B 的坐标.五、(每小题10分,共20分)19. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4. (1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.20. 已知:在梯形ABCD 中,AD ∥BC ,AB = DC ,E 、F 分别是AB 和BC 边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC.若AD =4,BC=8,求梯形ABCD 的面积ABCD S 梯形的值;(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果FG=k 〃EF (k 为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.一、选择题:(每小题3分,共30分)1. 计算2(12-)的结果是 (A)-1 (B) l (C)一2 (D) 22. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是俯视图主视图(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上(C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖(D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限 7. 若关于x 的一元二次方程2210kxx --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150° 9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为(A)20kg (B)25kg (C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是6.8度 (C)极差是5度 (D)中位数是6度二、填空题:(每小题4分,共16分) BCDEA′BCDO11.分式方程2131xx =+的解是_________ 12.如图,将矩形ABCD 沿BE 折叠,若∠CBA ′=30则∠BEA ′=_____.13.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①54.4110⨯人;②64.4110⨯人;③544.110⨯人.其中是科学记数法表示的序号为_________.14.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6,那么BD =_________. 三、(第15题每小题6分,第16题6分,共18分) 15.解答下列各题: (1032(2009)4sin 45(1)π--+-。

2011年四川省南充市中考数学试题(WORD解析版)

2011年四川省南充市中考数学试题(WORD解析版)

2011年四川省南充市中考数学试卷—解析版一、选择题:(本大题共10个小题,每小题3分,共30分)1、(2011•南充)计算a+(﹣a)的结果是()A、2aB、0C、﹣a2D、﹣2a考点:整式的加减。

分析:本题需先把括号去掉,再合并同类项,即可得出正确答案.解答:解:a+(﹣a),=a﹣a,=0.故选B.点评:本题主要考查了整式的加减,在解题时要注意去括号,再合并同类项是解题的关键.2、(2011•南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12 32 13 43建议学校商店进货数量最多的品牌是()A、甲品牌B、乙品牌C、丙品牌D、丁品牌考点:众数。

专题:常规题型。

分析:根据众数的意义和定义,众数是一组数据中出现次数最多的数据,则进货要进销售量最多的品牌.解答:解:在四个品牌的销售量中,丁的销售量最多.故选D.点评:本题属于基础题,考查了确定一组数据的众数的能力.一些学生往往对这个概念掌握不清楚,而误选其它选项.3、(2011•南充)如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()A、∠C=60°B、∠DAB=60°C、∠EAC=60°D、∠BAC=60°考点:平行线的性质。

专题:几何图形问题。

分析:根据平行线的性质,根据内错角相等,逐个排除选项即可得出结果.解答:解:A、无法判断,故本选项错误,B、∠B=60°,∴∠DAB=60°,故本选项正确,C、无法判断,故本选项错误,D、无法判断,故本选项错误,故选B.点评:本题考查了两直线平行,内错角相等的性质,难度适中.4、(2011•南充)某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.4考点:频数(率)分布直方图。

四川省内江2011年中考数学试题及答案-解析版

四川省内江2011年中考数学试题及答案-解析版

四川省内江市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•内江)下列四个实数中,比﹣1小的数是()A、﹣2B、0C、1D、2考点:实数大小比较。

专题:探究型。

分析:根据实数比较大小的法则进行比较即可.解答:解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.点评:本题考查的是实数比较大小的法则,即任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2、(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A、32°B、58°C、68°D、60°考点:平行线的性质;余角和补角。

专题:计算题。

分析:本题主要利用两直线平行,同位角相等及余角的定义作答.解答:解:根据题意可知∠1+∠2=90°,所以∠2=90°﹣∠1=58°.故选B.点评:主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.3、(2011•内江)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A、9.4×10﹣7mB、9.4×107mC、9.4×10﹣8mD、9.4×108m考点:科学记数法—表示较小的数。

分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、(2011•内江)在下列几何图形中,一定是轴对称图形的有()A、1个B、2个C、3个D、4个考点:轴对称图形。

四川省眉山市2011年中考数学试卷(含解析)

四川省眉山市2011年中考数学试卷(含解析)

四川眉山市2011年中考数学试卷解析1.(2011四川眉山,1,3分)—2的相反数是A .2B .—2C .21 D .—21【解题思路】根据相反数的定义:只有符号不同的两个数就是相反数,进行判断【答案】A 【点评】本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.难度较小. 2.(2011四川眉山,2,3分)下列运算正确的是A .a a a =-22B .4)2(22+=+a a C .632)(a a = D .3)3(2-=- 【解题思路】根据整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质,逐一检验.A .2a 2与-a 不是同类项,不能合并,本选项错误;B .∵44)2(22++=+a a a ,本选项错误; C .63232)(a a a ==⨯,本选项正确;D .33)3(22==-,本选项错误 .【答案】C【点评】本题考查了整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质的运用.关键是熟悉各种运算法则.难度较小.3.(2011四川眉山,3,3分)函数21-=x y 中自变量x 的取值范围是 A .2-≠x B .2≠x C .2<x D .2->x【解题思路】根据分式有意义的条件是分母不等于0,即可求解 【答案】B【点评】本题主要考查了分式有意义的条件,是需要熟记的内容.难度较小.4.(2011四川眉山,4,3分)2011年,我市参加中考的学生约为33200人,用科学记数法表示为A .332×102B .33.2×103C .3.32×104D .0.332×105 【解题思路】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【答案】C【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.难度较小.5.(2011四川眉山,5,3分)若一个正多边形的每个内角为150°,则这个正多边形的边数是A .12B .11C .10D .9 【解题思路】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°-150°=30°,再根据多边形外角和为360度即可求出边数.【答案】A 【点评】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.难度较小. 6.(2011四川眉山,6,3分)下列命题中,假命题是A .矩形的对角线相等B .有两个角相等的梯形是等腰梯形C .对角线互相垂直的矩形是正方形D .菱形的面积等于两条对角线乘积的一半【解题思路】分别根据矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质对各选项进行逐一判断即可.A .对角线相等是矩形的性质,故本选项正确;B .直角梯形中有两个角相等但不是等腰梯形,故本选项错误;C .符合正方形的判定定理,故本选项正确;D .符合菱形的性质,故本选项正确. 【答案】B【点评】本题考查的是命题与定理,熟知矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质是解答此题的关键.难度较小.7.(2011四川眉山,7,3分)化简:mm nm n -÷-2)(结果是 A .1--m B .1+-m C .m mn +- D .n mn --【解题思路】根据分式乘法及除法的运算法则进行计算,即分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【答案】原式=1)1()(+-=-⨯-m nm m m n 故选B【点评】本题考查的是分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.难度较小. 8.(2011四川眉山,8,3分)下列说法正确的是A .打开电视机,正在播放新闻B .给定一组数据,那么这组数据的中位数一定只有一个C .调查某品牌饮料的质量情况适合普查D .盒子里装有2个红球和2个黑球,搅均后从中摸出两个球,一定一红一黑【解题思路】分别根据随机事件、中位数及全面调查与抽样调查的概念进行解答. A .打开电视机,正在播放新闻是随机事件,故本选项错误;B .由中位数的概念可知,给定一组数据,那么这组数据的中位数一定只有一个,故本选项正确;C.由于调查某品牌饮料的质量具有一定的破坏性,故适合抽样调查,故本选项错误;D.由于盒子里装有2个红球和2个黑球,所以搅匀后从中摸出两个球,一红一黑是随机事件,故本选项错误.【答案】B【点评】本题考查的是随机事件、中位数及全面调查与抽样调查的概念,熟知以上知识是解答此题的关键,难度较小.9.(2011四川眉山,9,3分)如图所示的物体的左视图是【解题思路】根据左视图就是从左面看到的图形,从左边看去,就是两个长方形叠在一起,即可得出结果.【答案】D【点评】本题考查了三视图的知识,左视图就是从左面看到的图形,难度较小.10.(2011四川眉山,10,3分)已知三角形的两边长是方程x2-5x+6的两个根,则该三角形的周长L的取值范围是A.1<L<5 B.2<L<6 C.5<L<9 D.6<L<10【解题思路】先利用因式分解法解方程x2-5x+6=0,得到x=2或x=3,即三角形的两边长是2和3,再根据三角形三边的关系确定第三边的取值范围,从而得到三角形的周长L的取值范围.【答案】∵x2-5x+6=0,∴(x-2)(x-3)=0,∴x=2或x=3,即三角形的两边长是2和3,∴第三边a的取值范围是:1<a<5,∴该三角形的周长L的取值范围是6<L<10.故选D.【点评】题考查了用因式分解法解一元二次方程的方法:把方程左边分解成两个一次式的乘积,右边为0,从而方程就转化为两个一元一次方程,解一元一次方程即可.也考查了三角形三边的关系:三角形任意两边之和大于第三边.难度中等.11.(2011四川眉山,11,3分)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为A.50° B.25°C.40° D.60°【解题思路】由PA、PB是⊙O的切线,根据切线的性质得到∠OAP=∠OBP=90°,再根据四边形的内角和为360°可得到∠AOB,而AC是⊙O的直径,根据互补即可得到∠BOC 的度数.【答案】∵PA 、PB 是⊙O 的切线,∴∠OAP=∠OBP=90°, 而∠P=50°, ∴∠AOB=360°-90°-90°-50°=130°, 又∵AC 是⊙O 的直径, ∴∠BOC=180°-130°=50°. 故选A【点评】本题考查了圆的切线的性质:圆的切线垂直于过切点的半径;也考查了四边形的内角和为360°.难度中等.12.(2011四川眉山,12,3分)如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论: ①OA=OB②△AOM ≌△BON③若∠AOB=45°,则S △AOB =k ④当AB=2时,ON-BN=1;其中结论正确的个数为A .1B .2C .3D .4【解题思路】①②设A (x 1,y 1),B (x 2,y 2),联立b x y +-=与xk y =,得x 2-bx+k=0,则x 1•x 2=k ,又x 1•y 1=k ,比较可知x 2=y 1,同理可得x 1=y 2,即ON=OM ,AM=BN ,可证结论;③作OH ⊥AB ,垂足为H ,根据对称性可证△OAM ≌△OAH ≌△OBH ≌△OBN ,可证S △AOB =k ;④延长MA ,NB 交于G 点,可证△ABG 为等腰直角三角形,当AB= 时,【答案】设A (x 1,y 1),B (x 2,y 2),代入xky =中,得x 1•y 1=x 2•y 2=k , 联立 ⎝⎛=+-=x ky b x y ,得x 2-bx+k=0, 则x 1•x 2=k ,又x 1•y 1=k , ∴x 2=y 1, 同理可得x 1=y 2, ∴ON=OM ,AM=BN ,∴①OA=OB ,②△AOM ≌△BON ,正确;③作OH ⊥AB ,垂足为H ,∵OA=OB ,∠AOB=45°,∴△OAM ≌△OAH ≌△OBH ≌△OBN , ∴S △AOB =S △AOH +S △BOH =S △AOM +S △BON = 21k+ 21k=k ,正确; ④延长MA ,NB 交于G 点, ∵NG=OM=ON=MG ,BN=AM , ∴GB=GA ,∴△ABG 为等腰直角三角形, 当AB=时,GA=GB=1,∴ON-BN=GN-BN=GB=1,正确.正确的结论有4个. 故选D .【点评】本题考查了反比例函数的综合运用.关键是明确反比例函数图象上点的坐标特点,反比例函数图象的对称性.难度较大.13.(2011四川眉山,13,3分)因式分解:=-234xy x .【解题思路】先提公因式x ,再利用平方差公式继续分解因式. 【答案】)2)(2(y x y x x -+【点评】本题考查了提公因式法与公式法分解因式,提取公因式后继续进行二次因式分解是关键,注意分解因式要彻底.难度较小. 14.(2011四川眉山,14,3分)有一组数据,2、6、5、4、5,它们的众数是 .【解题思路】根据众数的定义解答即可 【答案】5【点评】此题考查了众数的概念----一组数据中,出现次数最多的数位众数,众数可以有多个.难度较小. 15.(2011四川眉山,15,3分)如图,梯形ABCD 中,如果AB ∥CD ,AB=BC ,∠D=60°,AC 丄AD ,则∠B= .【解题思路】由∠D=60°,AC 丄AD ,得到∠ACD=30°,而AB ∥CD ,根据平行线的性质得到∠BAC=∠ACD=30°,又因为AB=BC ,根据等腰三角形的性质得到∠BCA=∠BAC=30°,最后根据三角形的内角和定理计算出∠B 的度数.【答案】120°【点评】:本题考查了梯形的性质:梯形的两底边平行.也考查了等腰三角形的性质和三角形内角和定理.难度较小.16.(2011四川眉山,16,3分)已知一个圆锥形的零件的母线长为3cm ,底面半径为2cm , 则这个圆锥形的零件的侧面积为 cm2.(用π表示).【解题思路】先计算出底面圆的周长,根据圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长,利用扇形的面积公式进行计算即可.【答案】6π【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长.也考查了扇形的面积公式. 难度较小.17.(2011四川眉山,17,3分)已知一元二次方程0132=+-y y 的两个实数根分别为y 1、y 2,则(y 1-1)(y 2-1)的值为 .【解题思路】先根据一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,求出y 1+y 2及y 1•y 2的值,再代入(y 1-1)(y 2-1)进行计算即可.【答案】∵一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,∴y 1+y 2=3,y 1•y 2=1, ∴(y 1-1)(y 2-1),=y 1y 2-y 1-y 2+1,=y 1y 2-(y 1+y 2)+1, =1-3+1, =-1.故答案为:-1.【点评】题考查的是一元二次方程根与系数的关系及代数式求值,若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=ab-,x 1x 2= a c ,难度中等.18.(2011四川眉山,18,3分)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是 .【解题思路】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a的取值范围,求出a 的职权范围【答案】原不等式解得x≤3a , ∵解集中只有两个正整数解, 可知是1,2, ∴2≤3a<3, 解得6≤a <9.故答案为:6≤a <9.【点评】题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.对3a的范围的把握是本题最易错的地方,也是学生最难理解之处.难度较难.19.(2011四川眉山,19,6分)计算:28)1()14.3(2011--+-+-π【解题思路】根据0指数幂,二次根式的化简,去绝对值法则分别计算,再合并同类项.【答案】2【点评】本题考查了实数的运算,0指数幂.关键是熟悉各项的运算法则,先分别计算,再合并同类项.难度较小.20.(2011四川眉山,20,6分)解方程:⎩⎨⎧=-=+②①212y x y x【解题思路】由于两方程中y 的系数互为相反数,所以可先用加减消元法,再用代入消元法求方程组的解.【答案】⎩⎨⎧-==11y x【点评】本题考查的是解二元一次方程组的加减消元法和代入消元法,熟知以上知识是解答此题的关键.难度较小. 21.(2011四川眉山,21,8分)如图,图中的小方格都是边长为1的正方形,△ABC 的顶点坐标为A (0,-2)、B (3,-1)、C (2,1).(1)请在图中画出△ABC 关于y 轴对称的图形△AB′C′; (2)写出点B′和C′的坐标.【解题思路】(1)根据对称轴为y 轴,作出△ABC 的轴对称图形△AB′C′;(2)根据所画出的图形,求点B′和C′的坐标.【答案】(1)△ABC 关于y 轴对称的图形△AB′C′如图所示;(2)由图形可知B′(-3,-1),C′(-2,1).【点评】本题考查了轴对称变换的作图.关键是明确对称轴,根据对应点的连线被对称轴垂直平分,找对应点的位置.难度较小. 22.(2011四川眉山,22,8分)在一次数学课外活动中,一位同学在教学楼的点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为15cm .求旗杆的高度.【解题思路】过A 作AE ⊥BC ,构造两个直角三角形,然后利用解直角三角形的知识解答.【答案】过A 作AE ⊥BC ,垂足为E ,由题意可知,四边形ADCE 为矩形,yxAB CO∴EC=AD=15,在Rt △AEC 中,tan ∠EAC=AECE, ∴AE=3560tan 15tan =︒=∠EAC CE (米), 在Rt △AEB 中,tan ∠BAE=AEBE,∴BE=AE•tan ∠EAB=35•tan30°=5(米),∴BC=CE+BE=20(米). 故旗杆高度为20米.【点评】此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键.难度中等. 23.(2011四川眉山,23,9分)某中学团委、学生会为了解该校学生最喜欢的球类活动的悄況,对足球、乒乓球、篮球、排球四个项目作调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息射答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢篮球的圆心角度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是最喜欢乒乓球的概率是多少?【解题思路】(1)读图可知喜欢足球的有40人,占20%,所以一共调查了40÷20%=200人,(2)喜欢篮球的占40%,所占的圆心角为360°×40%=144度,(3)喜欢乒乓球的人数为60人,总人数为200人,根据概率公式即可得出结果.【答案】(1)200,补全统计图,如图所示:(2)144°;(3) 103【点评】本题考查学生的读图能力,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,难度适中.24.(2011四川眉山,24,9分)在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已在(2)的条件下,请说明哪种方案的总费用最少?【解题思路】(1)设运往E 地x 立方米,由题意可列出关于x 的方程,求出x 的值即可;(2)由题意列出关于a 的一元一次不等式组,求出a 的取值范围,再根据a 是整数可得出a 的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可. 【答案】(1)设运往E 地x 立方米,由题意得,x+2x-10=140,解得:x=50, ∴2x-10=90,答:共运往D 地90立方米,运往E 地50立方米; (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a≤22, ∵a 是整数, ∴a=21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米;第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.难度适中.25.(2011四川眉山,25,9分)如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.【解题思路】(1)根据菱形的性质得CD=AD ,∠CDP=∠ADP ,证明△CDP ≌△ADP 即可;(2)由菱形的性质得CD ∥BA ,可证△CPD ∽△FPB ,利用相似比,结合已知DP :PB=1:2,CD=BA ,可证A 为BF 的中点,又PA ⊥BF ,从而得出PB=PF ,已证PA=CP ,把问题转化到Rt △PAB 中,由勾股定理,列方程求解.【答案】(1)证明:∵四边形ABCD 为菱形,∴CD=AD ,∠CDP=∠ADP ,∴△CDP ≌△ADP ,∴∠DCP=∠DAP ;(2)解:∵四边形ABCD 为菱形,∴CD ∥BA ,CD=BA ,∴△CPD ∽△FPB , ∴21===PF CP BF CD PB DP , ∴CD= 21BF ,CP= 21PF , ∴A 为BF 的中点,又∵PA ⊥BF ,∴PB=PF ,由(1)可知,PA=CP ,∴PA=21 PB , 在Rt △PAB 中,PB 2=22+(21PB )2, 解得PB=334, 则PD=332, ∴BD=PB+PD=32.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是运用方程的思想,利用相似和勾股定理,列出关于PB 的方程.难度较大.26.(2011四川眉山,26,11分)如图,在直角坐标系中,已知点A (0,1),B (-4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B .(1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.【解题思路】(1)设抛物线的解析式:y=ax 2,把B (-4,4)代入即可得到a 的值;过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,易证Rt △BAE ≌Rt △ACD ,得到AD=BE=4,CD=AE=OE-OA=4-1=3,即可得到C 点坐标(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,则有d 1=41a 2,又AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a ,在Rt △PAF 中,利用勾股定理得到PA=d 2= 41a 2+1,即有结论d 2=d 1+1; (3)△PAC 的周长=PC+PA+5,由(2)得到△PAC 的周长=PC+PH+6,要使PC+PH 最小,则C 、P 、H 三点共线,P 点坐标为(3,49),此时PC+PH=5,得到△PAC 的周长的最小值=5+6=11.【答案】(1)设抛物线的解析式:y=ax 2,∵拋物线经过点B (-4,4),∴4=a•42,解得a=41, 所以抛物线的解析式为:y=41x 2; 过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,如图,∵点B 绕点A 顺时针方向90°得到点C ,∴Rt △BAE ≌Rt △ACD ,∴AD=BE=4,CD=AE=OE-OA=4-1=3,∴OD=AD+OA=5,∴C 点坐标为(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,如图,∵点P 在抛物线y= 41x 2上, ∴b=41a 2, ∴d 1= 41a 2, ∵AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a , 在Rt △PAF 中,PA=d 2= 22222)141(a a PF AF +-=+ = 41a 2+1, ∴d 2=d 1+1;(3)由(1)得AC=5,∴△PAC 的周长=PC+PA+5=PC+PH+6,则C 、P 、H 三点共线时,PC+PH 最小,∴此时P 点的横坐标为3,把x=3代入y=41x 2,得到y=49, 即P 点坐标为(3,49),此时PC+PH=5, ∴△PAC 的周长的最小值=5+6=11.【点评】本题考查了点在抛物线上,点的横纵坐标满足二次函数的解析式和顶点在原点的二次函数的解析式为:y=ax 2;也考查了旋转的性质、勾股定理以及两点之间线段最短.本题第(3)小题的关键是将△PAC 的周长转化为PC 与PH 和的关系,从而求出三角形周长的最小值.难度较大.本题第(3)小题与2010年南通市28题的第(3)小题非常类似,如下题,供参考。

2011年中考数学试题及答案(Word版)

2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。

2011年四川省广安中考数学试题及答案(word版)

2011年四川省广安中考数学试题及答案(word版)

6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。

而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也3.+66962011年四川省广安市中考数学试卷一、选择题:每小题给出的四个选项中.只有一个选项符合题意要求.请将符合要求的选项的代号填涂在机读卡上(本大题共10个小题,每小题3分,共30分) 1、3-的倒数是( ) A 、13B 、13-C 、±13D 、32、下列运算正确的是( ) A 、(1)1x x --+=+ B=C 、22= D 、222()a b a b -=-3、已知样本数据l ,0,6,l ,2,下列说法不正确的是( )A 、中位数是6B 、平均数是2C 、众数是1D 、极差是64、从《中华人民共和国2010年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值为(结果保留两个有效数字)( ) A 、133.910⨯B 、134.010⨯C 、53.910⨯D 、54.010⨯5、下列几何图形:①角;②平行四边形;③扇形;④正方形,其中轴对称图形是( ) A 、①②③ B 、②③④ C 、①③④ D 、①②③④6、如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( ) A 、6(4)π+㎝ B 、5cm C、㎝ D 、7cm7、下列命题中,正确的是( )A 、过一点作已知直线的平行线有一条且只有一条B 、对角线相等的四边形是矩形C 、两条边及一个角对应相等的两个三角形全等D 、位似图形一定是相似图形8、在直角坐标平面内的机器人接受指令“[a ,A]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走口.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[2,60°]后位置的坐标为( ) A、(1-B、(1 -,C、(1)-D、(9、由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A 、18 B 、19 C 、20D 、216.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市二○一一年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学注意事项:1. 全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答,郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束,监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁,不得折叠、污染、破损等。

A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C)±2 (D)22.如图所示的几何体的俯视图是3. 在函数y=x的取值范围是(A)12x≤ (B)12x<(C)12x≥ (D)12x>4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。

据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人(C) 42.0310⨯人 (D) 32.0310⨯人5.下列计算正确的是(A )2x x x += (B) 2x x x ⋅=(C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0m >(B)0n < (C)0mn <(D)0m n ->9. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是 (A)相交 (B)相切 (C)相离 (D)无法确定BBB 第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共l 6分)11. 分解因式:.221x x ++=________________。

12. 如图,在△ABC 中,D,E 分别是边AC 、BC 的中点,若AB=________________。

13. 已知1x =是分式方程131k x x=+的根,则实数k =___________。

14. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________。

三、解答题:(本大题共6个小题,共54分) 1 5. (本小题满分12分,每题6分)(1)计算:0020112cos303)(1)π+--+-。

(2)解不等式组:20312123x x x +≥⎧⎪-+⎨<⎪⎩,并写出该不等式组的最小整数解。

16.(本小题满分6分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B 处时,发现灯塔A 在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C 处时,发现灯塔A 在我军舰的北偏东60°的方向。

求该军舰行驶的路程.(计算过程和结果均不取近似值)x17.(本小题满分8分) 先化简,再求值:232()111x x x x x x --÷+--,其中x =。

18.(本小题满分8分)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。

规定:每位考生先在三个笔试题(题签分别用代码123B B B 、、表示)中抽取一个,再在三个上机题(题签分别用代码123J J J 、、表示)中抽取一个进行考试。

小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。

(1)用树状图或列表法表示出所有可能的结构;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“1B ”的下表为“1”)均为奇数的概率。

1 9. (本小题满分1 0分) 如图,已知反比例函数(0)k y k x =≠的图象经过点(12,8),直线y x b =-+经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.BD20.(本小题满分1 0分)如图,已知线段AB∥CD,AD 与B C 相交于点K ,E 是线段AD 上一动点。

(1)若BK=52KC ,求CD AB的值; (2)连接BE ,若BE 平分∠ABC ,则当AE=12AD 时,猜想线段AB 、BC 、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=1nAD (n>2),而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.B 卷(共5 0分)一、填空题:(每小题4分,共20分)21.在平面直角坐标系xOy 中,点P(2,a )在正比例函数12y x =的图象上,则点Q( 35a a -,)位于第______象限。

22.某校在“爱护地球 绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校学生则这l 00计该校学生的植树总数是__________棵.23.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设...S =,则S=_________ (用含n 的代数式表示,其中n 为正整数).24.在三角形纸片ABC 中,已知∠ABC=90°,AB=6,BC=8。

过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为_________ (计算结果不取近似值). 25.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小。

若该反比例函数的图象与直线y x =-都经过点P ,且OP =,则实数k=_________.二、解答题:(本大题共3个小题,共30分) 26.(本小题满分8分)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD 。

已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,清说明理由.已知:如图,以矩形ABCD 的对角线AC 的中点O 为圆心,OA 长为半径作⊙O ,⊙O 经过B 、D 两点,过点B 作BK ⊥ A C ,垂足为K 。

过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE=CK ;(2)如果AB=a ,AD=13a (a 为大于零的常数),求BK 的长:(3)若F 是EG 的中点,且DE=6,求⊙O 的半径和GH 的长.如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知:1:5OA OB =,OB OC =,△ABC 的面积15ABC S ∆=,抛物线2(0)y ax bx c a =++≠ 经过A 、B 、C 三点。

(1)求此抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为M的坐标;若不存在,请说明理由.。

相关文档
最新文档