四川省成都市中考数学试题(含答案)

合集下载

2020学年四川省成都市中考试题数学及答案解析

2020学年四川省成都市中考试题数学及答案解析

2020年四川省成都市中考试题数学一、选择题(共10小题,每小题3分,共30分)1.实数a, b, c, d在数轴上对应的点的位置如图所示,这四个数中最大的是()i 2 匚________-3 -2 4 0 1 2 SA.aB.bC.cD.d解析:根据实数的大小比较解答即可.由数轴可得:aVbVcVd.答案:D2.2020年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鸽桥号”中继星,卫星进入近地点髙度为200公里、远地点髙度为40万公里的预立轨道.将数据40万用科学记数法表示为()A.4X10:B.4X105C.4X106D.0.4X106解析:科学记数法的表示形式为aX10=的形式,其中1W a <10, n为整数.1万=10000=104.40 万=400000=4 X105.答案:B3 •如图所示的正六棱柱的主视图是()D.、------- 』解析:根据主视图是从正而看到的图象判泄则可.从正而看是左右相邻的3个矩形,中间的矩形的而积较大,两边相同.答案:A4.在平而直角坐标系中,点P(-3, -5)关于原点对称的点的坐标是()A.(3, -5)B.(-3, 5)C.(3, 5)D.(-3, -5)解析:根据关于原点对称的点的坐标特点解答.点P(-3, -5)关于原点对称的点的坐标是(3, 5).答案:c5.下列计算正确的是()A.x'+x—x'B.(x-y)C.(x:y) 3=x6yD.(-x):• x3=x°解析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幫的乘法法则讣算,判断即可.A、x:+x:=2x\ A 错误;B、(x-y) c=x:-2xy+y:, B 错误:C、(x:y) 3=x*y s» C 错误;D^ (-x)5• x3=x s» D 正确.答案:D6•如图,已知ZABC二ZDCB,添加以下条件,不能判左△ABC9Z\DCB的是()A.ZA=ZDB.ZACB=ZDBCC.AC=DBD.AB二DC解析:全等三角形的判世方法有SAS, ASA, AAS, SSS,根据定理逐个判断即可.A、ZA二ZD, ZABC二ZDCB, BC二BC,符合AAS,即能推ABC^ADCB,故本选项错误:B、ZABC二ZDCB, BC二CB・ ZACB二ZDBC,符合ASA,即能推ABC^ADCB,故本选项错误;C 、 ZABC 二ZDCB, AC 二BD, BC 二BC,不符合全等三角形的判龙左理,即不能推出△ ABC^ADCB> 故本选项正确:D 、 AB 二DC. ZABC 二ZDCB, BC 二BC,符合 SAS,即能推ABC^ADCB,故本选项错误. 答案:C7•如图是成都市某周内最髙气温的折线统计图,关于这7天的日最髙气温的说法正确的是 ()A. 极差是8°CB. 众数是28°CC. 中位数是24°CD. 平均数是26°C解析:根拯折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题. 由图可得,极差是:30-20=109,故选项A 错误,众数是28°C,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是260 故选项C 错误,20 + 22 + 24 + 26 + 28 + 28 + 30 “3 -------------------------------------------- =25-平均数是: 7 7匸,故选项D 错误.答案:Bx + 1 1 -------- 1 ------ = 18•分式方程x x-2 的解是()A. x=lB. x 二TC. x —3D. x=-3x + 1 1--- + ----- x x-2去分母,方程两边同时乘以x(x-2)得:(x+1) (x-2)+x=x(x-2),x :-x-2+x=x"-2x,=1解析:x=l,经检验,X=1是原分式方程的解.答案:A9•如图,在口ABCD中,ZB=60° , OC的半径为3,则图中阴影部分的面积是()A.nB.2nC・3 nD. 6 n解析:根据平行四边形的性质可以求得zc的度数,然后根据扇形而积公式即可求得阴影部分的面积.•••在口ABCD 中,ZB=60° , 0C 的半径为3,A ZC=120° ,120x^x32 c--------------- =3兀・•・图中阴影部分的而积是:36°答案:C10.关于二次函数y=2x=+4x-l,下列说法正确的是()扎图象与y轴的交点坐标为(0, 1)B.图象的对称轴在y轴的右侧C.当xVO时,y的值随x值的增大而减小D.y的最小值为-3解析:根拯题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.Vy=2x=+4x-l=2 (x+l)=-3,.••当x二0时,y二-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-l时,y随x的增大而减小,故选项C错误,当x二-1时,y取得最小值,此时y=-3,故选项D正确.答案:D二、填空题(共4小题,每小题4分,共16分)11._______________________________________________ 等腰三角形的一个底角为50°,则它的顶角的度数为_________________________________ .解析:本题给出了一个底角为50° ,利用等腰三角形的性质得列一底角的大小,然后利用三角形内角和可求顶角的大小.•・•等腰三角形底角相等,.\180° -50° X2二80° ,・•・顶角为80° .答案:80°12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸岀一个乒3乓球,若摸到黄色乒乓球的概率为则该盒子中装有黄色乒乓球的个数是____________ •解析:•・•装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色3乒乓球的概率为3・•・该盒子中装有黄色乒乓球的个数是:16X8=6.答案:6u _b _c13.已知A 5 兀且a+b-2c=6,则a的值为 _____________ .解析:直接利用已知比例式假设出a, b, c的值,进而利用a+b-2c=6,得出答案.a _b _cV6 = 5 = 4,• •役&=6x, b—5x♦ c—lx 9Va+b^c^G,•: 6x+5x-8x=6,解得:x=2,故a=12.答案:12丄14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于亍AC的长为半径作弧,两弧相交于点NUHN;②作直线MN交CD于点E.若DE二2, CE二3,则矩形的对角线AC的长为由作法得MN 垂直平分AC,•••EA 二 EC 二 3,在 RtAADE 中,AD = d3,-W =圧三、解答题(本大题共6个小题,共54分)15. 计算.2?+遁-2sin60° + |-呵解析:(1)根据立方根的意义,特姝角锐角三角函数,绝对值的意义即可求出答案.=4+2-2x 遢+ 3 =点答案:(1)原式 2(2)化简:解析:(2)根据分式的运算法则即可求出答案.解析:连接AE,如图,在 RtAADC 中, AC = W+5,=俪_x+1_i(x+i)(x-i)_ x a+i)(z)_----- •------------- • --------- A — 1答案:⑵原式X+1 X x+1 X16.若关于x的一元二次方程£-(2a+l)x+a匚0有两个不相等的实数根,求a的取值范围. 解析:根据方程的系数结合根的判别式△>(),即可得出关于a的一元一次不等式,解之即可得出a的取值范围.答案:•••关于x的一元二次方程x:-(2a+l)x+a==0有两个不相等的实数根,••• △二[-(2a+l) ] 2-4a:=4a+l > 0,_丄解得:a> 4.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于'‘景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统汁图表.滿意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为 __ ,表中m的值 _____ .解析:⑴利用12 + 10%二120,即可得到m的值:用120X40%即可得到n的值.答案:(1)124-10%=120,故m二120,54n二120X40248, =45%.故答案为120: 45%.⑵请补全条形统计图.解析:(2)根据n的值即可补全条形统讣图.答案:(2)n二120X40%二48,画出条形图:(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯立,请你估计该景区服务工作平均每天得到多少名游客的肯泄.12 + 54解析:(3)根据用样本估计总体,3600X 120 X100%,即可答.12 + 54答案:(3) 3600 X 120 X 10021980(人),答:估计该景区服务工作平均每天得到1980名游客的肯圧.18.由我国完全自主设计、自主建造的首艘国产航母于2020年5月成功完成第一次海上实验任务.如图,航母由四向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70° ^0. 94, cos70° ^0.34, tan70°*2、75, sin37°心06 cos37° = 0. 80, tan37° ^0. 75)解析:根据题意得:ZACD=70°, ZBCD二3厂,AC二80海里,在直角三角形ACD中,由三角函数得出CD二27. 2海里,在直角三角形BCD中,得出BD,即可得岀答案.答案:由题意得:ZACD=70° , ZBCD二37° , AC二80 海里,在直角三角形ACD中,CD二AC • cosZACD二27. 2海里,在直角三角形BCD中,BD二CD • tanZBCD二20. 4海里.答:还需航行的距离BD的长为20.4海里.19•如图,在平面直角坐标系xOy中,一次函数y二x+b的图象经过点A(-2, 0),与反比例函ky =—数X (x>0)的图象交于B(a, 4).(1)求一次函数和反比例函数的表达式.解析:⑴根据一次函数y=x+b的图象经过点A(-2, 0),可以求得b的值,从而可以解答本题. 答案:(1)・.•一次函数ync+b的图象经过点A(-2, 0),0=-2+b t得b=2 ♦・•・一次函数的解析式为y二x+2,ky =-•••一次函数的解析式为y二x+2与反比例函数x (x>o)的图象交于B(a. 4),A4=a+2»得k_•••4=2,得k二8,8y =-即反比例函数解析式为:X (x>0)・k y =—⑵设H是直线AB上一点,过M作MN〃x轴,交反比例函数x(x>0)的图象于点N,若A, 0, M, N为顶点的四边形为平行四边形,求点M的坐标.解析:(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.答案:(2)・・•点A(-2, 0),•••0A二2,8_设点M(m-2, m),点N(加,m),当MN/7A0且MN二A0时,四边形A0MN是平行四边形,8_加-(m-2) 1=2,解得,m二2迥或m二2血+2,•••点M的坐标为(2血-2, 2血)或(2邑2屁2)・20.如图,在RtAABC中,ZC=90° , AD平分ZBAC交BC于点D, 0为AB上一点,经过点A, D的00分别交AB, AC于点E, F,连接0F交AD于点G.(1)求证:BC是O0的切线.解析:(1)连接0D,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等, 等量代换得到内错角相等,进而得到0D与AC平行,得到0D与BC垂直,即可得证.答案:(1)证明:如图,连接0D,TAD为ZBAC的角平分线,••• ZBAD 二ZCAD,VOA=OD,••• ZODA=ZOAD,••• ZODA=ZCAD>AODZ/AC,V ZC=90° ,•••ZODC二90° ,•••0D 丄BC,•••BC为圆0的切线.(2)设AB二x, AF=y,试用含x, y的代数式表示线段AD的长.解析:⑵连接DF,由⑴得到BC为圆0的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD.答案:(2)连接DF,由(1)知BC为圆0的切线,••• ZFDC 二ZDAF,••• ZCDA=ZCFD,••• ZAFD 二ZADB,••• ZBAD 二ZDAF,AAABD^AADF,AB AD:.AD AF ,即AD:=AB • AF二xy,则AD=丄(3) 若 BE 二8, sinB 二 13,求 DG 的长.解析:(3)连接EF,设圆的半径为r,由sinB 的值,利用锐角三角函数立义求出r 的值,由 直径所对的圆周角为直角,得到EF 与BC 平行,得到sinZAEF 二sinB,进而求出DG 的长即 可./・_ 5设圆的半径为r,可得r + 813, 解得:r=5,AAE=1O, AB 二 18,•・・AE 是直径,•••ZAFE 二ZC 二90° ,•••EF 〃BC,••• ZAEF=ZB,AF = AEesin ZAEF = 10x —=— • 13 13 , •••AF 〃OD,50AG_ AF_JJ_10 13 .I DG OD 5 13 ,即 DG 二 23 AD >••• v 13 13“ 13 30x/13 30^13 DG = — x------------ = ----------则 23 13 23・填空题(共5小题,每小题4分,共20分)21 •已知 x+y 二0.2, x+3y=b 则代数式 x'+4xy+4y‘的值为 _____ .解析:原式分解因式后,将已知等式代入汁算即可求出值.Vx+y=0. 2 9 x+3y=l,A2x+4y=l. 2,即 x+2y=0. 6, 则原式二(x+2y)J0・36.答案:0. 36 22.汉代数学家赵爽在注解《周髀算经》时给岀的“赵爽弦图”是我国古代数学的瑰宝•如图 所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2: 3•现随sin B =OD 5 答案:(3)连接EF,在RtABOD 中,OB 13,sin ZAEF =AE 13,机向该图形内掷一枚小针.则针尖落在阴影区域的概率为・解析:针尖落在阴影区域的概率就是四个直角三角形的而积之和与大正方形而积的比.设两直角边分别是2x, 3x,则斜边即大正方形的边长为曲血小正方形边长为x,所以S大正方形=13乳S小正方形=乳S阴影=12x\12/ _ 12则针尖落在阴影区域的概率为13" 13・12答案:131 —一123 •已知a>0, a , S F-S厂1, »,•••(即当n 为大于1 的奇S =—« c数时,;当n为大于1的偶数时,Sn二-S H-1),按此规律,2 ________ .解析:根据Sn数的变化找出Sa的值每6个一循环,结合2018=336X6+2,即可得岀S沁二S:, 此题得解.2S5=* = —(" + l)Se 二-S?-l 二(a+1) -1二3,S厂丄=丄* ",…,・・・3的值每6个一循环.72018=336X6+2,6/ + 1答案:“424•如图,在菱形ABCD中,tanA=3 , M, N分别在边AD, BC上,将四边形AMNB沿MN翻折,BN使AB的对应线段EF经过顶点D,当EF丄AD时,CN的值为______ ・解析:延长NF与DC交于点H,V ZADF=90G ,•••ZA+ZFDH二90° ,V ZDFN+ZDFH=180° , ZA+ZB二180° , ZB=ZDFN,••• ZA=ZDFH,•••ZFDH+ZDFH二90° ,•••NH 丄DC,设DM二14 DE二3k, EM二5k,•••AD 二9k 二DC, DF=6k,4VtanA=tanZDFH=3 ,4则 sinZDFH 二 5 ,4 24 DH = — DF = —k •••5 53ACN=5CH=7k,ABN=2k,BN _2• C7V "7 • • •答案:7y =L25.设双曲线’x (k>0)与直线尸x 交于A, B 两点(点A 在第三象限),将双曲线在第一象 限的一支沿射线BA 的方向平移,使英经过点A,将双曲线在第三象限的一支沿射线AB 的方 向平移,使其经过点B,平移后的两条曲线相交于P, Q 两点,此时我们称平移后的两条曲ky =- 线所围部分(如图中阴影部分)为双曲线的“眸J PQ 为双曲线的“眸径“,当双曲线 x (k >0)的眸径为6时,k 的值为cos C = cos A =CH 3 Ivc "5解析:以PQ为边,作矩形PQQ' P r交双曲线于点P‘ . Q',联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y二p上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P'的坐标, 再利用反比例函数图象上点的坐标特征即可得岀关于k的一元一次方程,解之即可得出结论.以PQ为边,作矩形PQQ' P z交双曲线于点P‘ . Q* ,如图所示.y = x< k y =—联立直线AB及双曲线解析式成方程组,*•••点A的坐标为(一灰,一灰),点B的坐标为(仮,仄)・•••PQ二6,3 迈3^2・・.op二3,点P的坐标为(2 , 2 ).根据图形的对称性可知:AB二00’ =PP r ,3>/2----- +•••点P'的坐标为(2ky =-又・••点P‘在双曲线X上,3解得:k=2.3答案:2二、解答题(本大题共3小题,每小题10分,共30分)26•为了美化环境.建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调査,甲种花卉的种植费用y (元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.⑴直接写出当0WxW300和x>300时,y与X的函数关系式.解析:(1)由图可知y与x的函数关系式是分段函数,待立系数法求解析式即可.‘130x(0 K 300)答(1)'~[80A +15000(X>300)(2)广场上甲.乙两种花卉的种植而积共1200m3,若甲种花卉的种植而积不少于200*且不超过乙种花卉种植而积的2倍,那么应该怎样分配甲、乙两种花卉的种植而枳才能使种植总费用最少?最少总费用为多少元?解析:(2)设甲种花卉种植为a m2,则乙种花卉种植(12000-a)in2,根据实际意义可以确左a的范[1,结合种植费用y(元)与种植而积x(m2)之间的函数关系可以分类讨论最少费用为多少.答案:(2)设甲种花卉种植为am:,则乙种花卉种植(12000-(ml"> 200.[6/ < 2(1200-«)•••2OO0W8OO,当200Wa<300 时,WF130a+100(1200-a) =30a+12000;当a=200 时,W^=126000 元;当300WaW800 时,W:=80a+15000+100 (1200-a) =135000-20a:当圧800 时,W^=l 19000 元.VI19000 <126000.•.当a二800时,总费用最少,最少总费用为119000元.此时乙种花卉种植而积为1200-800=400m:.答:应该分配甲、乙两种花卉的种植而积分别是800m:和400m%才能使种植总费用最少, 最少总费用为119000元.27.在RtAABC 中,ZACB 二90° , AB二°, AC 二2,过点B 作直线m 〃AC,将ZkABC 绕点C 顺时针旋转得到AA' B‘ C'(点A, B的对应点分别为屮,B'),射线CA‘ , CB'分別交直线m于点P, Q.(1)如图1,当P与X重合时,求ZACA f的度数.解析:⑴由旋转可得:AC=A f C=2,进而得到BC二血,依据BC二90 °,可得cosZA f CB = — = —AC 2 ,即可得到ZA' CB二30° , ZACA Z二60° .答案:(1)由旋转可得:AC二A' 82,TZACB二90°,血",AC二2,・・・BC二的,V ZACB=90° , m〃AC,・・・ZA‘ BC二90° ,cos ZA'CB =—=—・A f C 2 ,•••ZA‘ CB二30° ,•••ZACA'二60°・(2)如图2,设A' B r与BC的交点为M,当M为"B‘的中点时,求线段PQ的长.PB =至BC =—解析:⑵根据M为A' B'的中点,即可得出ZA=ZA r CM,进而得到2勺>/3 2 7依据 tanZQ 二tanZA 二 2 ,即可得到 BQ 二BCX 石二2,进而得岀 PQ 二PB+BQ 二 2 .答案:(2)TM 为A' B'的中点,A ZA Z CM 二ZMA' C,由旋转可得,ZMA' C=ZA,A ZA=ZA Z CM,迺t an Z PCB=t an Z A= 2 ,PB = -BC = -・・・ 2 2 ,VtanZQ=tanZA= 2 ,_2_.'.BQ 二BCX V 二2,7•••PQ 二PB+BQ 二 2 ・(3) 在旋转过程中,当点P, Q 分别在CA‘ , CB'的延长线上时,试探究四边形PA' B f Q 的 而积是否存在最小值•若存在,求岀四边形PA' B‘ Q 的最小而积;若不存在,请说明理由. 解析:(3)依据%辺形PATQhS^pcQ-S'AmhSbPCQ-W,即可得到Smi 形“ Q 最小,即S»PCQ =-PQ^BC = ^-PQX 最小,而/2 答案:(3)如图所示:•;S PI 边走PA• 3 Q 最小,即S./.P8最小,I R・ S 込Q =^PQ X BC = *PQ法一:(几何法)取PQ 的中点G,则ZPCQ 二90° ,£利用几何法或代数法即可得到Sf 的最小值S M 边彤?A* B Q=3—备用图=S'PCQ — = S^PCQ••• CG二2 PQ,即PQ二2CG,当CG最小时,PQ最小,•••CG丄PQ,即CG与CB重合时,CG最小,.•.CdM, pg•二2®Sz.FCfl 的最小值二3, S 3 Q二3—丁^;法二(代数法)设PB-X, BQ二y, 由射影泄理得:刃二3, ・•・当PQ最小时,x+y最小, /• (x+y) :=x:+2xy+y:=x::+6+3r:: 2xy+6=12 当X二y二石时,“二”成立,•PQ = y/3+y/3=2s/3•• ,•\S AP CQ的最小值二3, S川边島PA 3 G二3-・528.如图,在平而宜角坐标系xOy中,以直线x=2对称轴的抛物线y=ax:+bx+c与直线1:y=kx+m(k>0)交于A(l, 1), B两点,与y轴交于C(0, 5),直线与y轴交于点D・(1)求抛物线的函数表达式. 解析:(1)根据已知列出方程组求解即可.~2a~2< c = 5a+b+c=\答案:(1)由题意可得,解得,a=l, b=-5> c=5:•••二次函数的解析式为:尸x :-5x+5.(2)设直线1与抛物线的对称轴的交点为F, G 是抛物线上位于对称轴右侧的一点,若 AF _ 3FB 4 ,且ABCG 与ABCD 面积相等,求点G 的坐标.解析:⑵作AM 丄x 轴,BN 丄x 轴,垂足分別为M, N,求出直线1的解析式,在分两种情况 分别分析出G 点坐标即可.AF MQ 3 则 ~FB =QN =43VMQ= 2 t9 HANQ=2, B(2 , 4).k + m = \' 9,1—K+m=—-12 4, 2< 1m =— 解得,I 12 ,1 1 1 =-x+— —2 2 , D (0・ 2 ), 同理可求, S BC =_亍 + 51 1 you = ~--v+- •••(DDG〃BC(G 在BC 下方),22 ,1 1 . c c一一x + —=对一5兀 + 5-2 2 ,3解得,X1=2 , x:二3,5Vx> 2 ,x—3»•••G(3, 一1).②G在BC上方时,直线GG与DG:关于BC对称,1 19y(: G =—x H—• 35 2 21 丄72 L -一一x + —= x -5x + 5-2 2 ,9 + 3佰9-3717解得,XF 4 ,氐二 4 ,5Vx> 2 ,9 + 3庐.•.X 二4,9 + 3庐67-3佰・・・G( 4 , 8 ),9 + 3 奶67-3庐综上所述点G的坐标为G(3. -1), G( 4 , 8 ).(3)若在x轴上有且仅有一点P,使ZAPB二90°,求k的值.解析:(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.答案:(3)由题意可知:k+m二1,/• kx+1 - k二x■-5x+5 ♦解得,xFl, xFk+4,AB(k+4, k3+3k+l),设AB中点为O',TP点有且只有一个,・••以AB为直径的圆与x轴只有一个交点,且P为切点, A0r P丄x轴,・・.P为MN的中点,k + 5•••P( 2 , o),VAANfP^APNB,AM PN••9•••AM • BN=PN • PM>lx(C3R + l)+ + 4-字字•• ,Vk>0>.一6 + 4点(2>/6k = -------------- = _1 + --------二 6 3。

四川省成都市2021年中考数学真题(含答案)

四川省成都市2021年中考数学真题(含答案)

共有钱 50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,r,则可列方
乌 程组为 尸
_
无 + 2 _ 5 0 ,
( A 、丿 ' + 2 _ .
y -3 兀 _ 5 0
『、 x+ y=50,
(C) 吓2 =:�.
,1 x _ 2「
_ _ 5 0 ,
( B 、丿 叫 y _ 2 _ .
课程
人数
篮球
m
足球
21
排球
30
乒乓球
n
根据图表信息,解答下列问题:
(1) 分别求出表中m,n的值; (2) 求扇形统计图中“ 足球” 对应的扇形圆心角的度数; (3)该校共有2000名学生,请你估计其中选择“ 乒乓球 ” 课程的学生人数.
18. (本小题满分 8 分)
越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.
(1)求抛物线的函数表达式;
(2)若点B的横坐标与纵坐标相等,LABC= LOAP,且点 C位于欠轴上方, 求点C的
坐标; (3)若点B的横坐标为t, LABC=90° ,请用含t的代数式表示点C的横坐标 ,并求出
当t<O时,点C的横坐标的取值范围
y
y
X
备用图
— 34 —
数学参考答案
A卷(共100分) 第 1 卷(选择题,共30分)
某校学生开展综合实践活动,测供太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为
1.6米,在测点A处安笠测倾器,测得点M的仰角LMBC=33 ° ,在与点A相距3.5米的测点D
处安翌测倾器,测得点M的仰角LMEC=45 °(点A,D与N在一条直线上),求电池板离地面的

2021年四川省成都市中考数学试题及参考答案(word解析版)

2021年四川省成都市中考数学试题及参考答案(word解析版)

2021年成都市高中阶段教育学校统一招生考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2 6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAFC.AE=AD D.∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π第Ⅱ卷(非选择题共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.因式分解:x2﹣4=.12.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.根据图表信息,解答下列问题:(1)分别求出表中m ,n 的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角∠MBC =33°,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角∠MEC =45°(点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x+的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.20.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为,△ABC 的面积为2,求CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若=,求BF 的长. B 卷(共50分)课程人数 篮球 m 足球 21 排球 30 乒乓球 n一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.答案与解析A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.7【知识考点】倒数.【思路分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解题过程】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.【总结归纳】此题主要考查了倒数,正确掌握倒数的定义是解题关键.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解题过程】解:3亿=300000000=3×108.故选:D.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()。

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。

A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。

据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。

2023年四川省成都市数学中考真题(解析版)

2023年四川省成都市数学中考真题(解析版)
故选:B.
【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
6. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某
班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供 6 张背面完全相同的卡片,其中蔬菜
类有 4 张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有 2 张,正面分别印有草莓、西瓜图案,
【详解】解:由平移性质得: EF BC 8 , ∴ CF EF CE 8 5 3 ,
故答案为:3. 【点睛】本题考查平移性质,熟练掌握平移性质是解答的关键.
12. 在平面直角坐标系 xOy 中,点 P 5, 1 关于 y 轴对称的点的坐标是___________. 【答案】 5, 1
6 1
6

∵ 2 6 ,
∴ y1 y2 , 故答案为: .
【点睛】本题考查了比较反比例函数值,熟练掌握反比例函数的性质是解题的关键.
11. 如图,已知△ABC ≌△DEF ,点 B,E,C,F 依次在同一条直线上.若 BC 8,CE 5 ,则 CF 的
长为___________.
【答案】3 【解析】 【分析】利用平移性质求解即可.
2023 年四川省成都市数学中考真题
A 卷(共 100 分) 第 I 卷(选择题,共 32 分) 一、选择题(本大题共 8 个小题,每小题 4 分,共 32 分,每小题均有四个选项,其中只有一 项符合题目要求)
1 1. 在 3 , 7 , 0 , 9 四个数中,最大的数是( )
A. 3
B. 7
C. 0
每个图案对应该种植项目.把这 6 张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概

2022年四川省成都市中考数学试题(解析版)

2022年四川省成都市中考数学试题(解析版)

2022年四川省成都市中考数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)37−的相反数是( ) A .37 B .37− C .73 D .73− 2.(4分)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A .21.610⨯B .51.610⨯C .61.610⨯D .71.610⨯3.(4分)下列计算正确的是( )A .2m m m +=B .2()2m n m n −=−C .222(2)4m n m n +=+D .2(3)(3)9m m m +−=−4.(4分)如图,在ABC ∆和DEF ∆中,点A ,E ,B ,D 在同一直线上,//AC DF ,AC DF =,只添加一个条件,能判定ABC DEF ∆≅∆的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠5.(4分)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( )A .56B .60C .63D .726.(4分)如图,正六边形ABCDEF 内接于O e ,若O e 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .237.(4分)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .1000,41199979x y x y +=⎧⎪⎨+=⎪⎩B .1000,79999411x y x y +=⎧⎪⎨+=⎪⎩ C .1000,79999x y x y +=⎧⎨+=⎩ D .1000,411999x y x y +=⎧⎨+=⎩8.(4分)如图,二次函数2y ax bx c =++的图象与x 轴相交于(1,0)A −,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >−时,y 的值随x 值的增大而增大C .点B 的坐标为(4,0)D .420a b c ++>二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)计算:32()a −= .10.(4分)在平面直角坐标系xOy 中,若反比例函数2k y x −=的图象位于第二、四象限,则k 的取值范围是 . 11.(4分)如图,ABC ∆和DEF ∆是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC ∆与DEF ∆的周长比是 .12.(4分)分式方程31144x x x−+=−−的解为 . 13.(4分)如图,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为 .三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:11()93tan 3032|2−+︒+. (2)解不等式组:()3225,2123x x x x ⎧++⎪⎨−−<⋅⎪⎩①②… 15.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级 时长t (单位:分钟) 人数 所占百分比A02t <… 4 x B24t <… 20 C 46t <…36% D 6t …16% 根据图表信息,解答下列问题:(1)本次调查的学生总人数为 ,表中x 的值为 ;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08)︒≈17.(10分)如图,在Rt ABC∆中,90ACB∠=︒,以BC为直径作Oe,交AB边于点D,在¶CD上取一点E,使¶¶BE CD=,连接DE,作射线CE交AB边于点F.(1)求证:A ACF∠=∠;(2)若8AC=,4cos5ACF∠=,求BF及DE的长.18.(10分)如图,在平面直角坐标系xOy中,一次函数26y x=−+的图象与反比例函数k yx =的图象相交于(,4)A a,B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知2272a a −=,则代数式2211()a a a a a−−−÷的值为 . 20.(4分)若一个直角三角形两条直角边的长分别是一元二次方程2640x x −+=的两个实数根,则这个直角三角形斜边的长是 .21.(4分)如图,已知O e 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .22.(4分)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =−++,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t 剟时,w 的取值范围是 ;当23t 剟时,w 的取值范围是 .23.(4分)如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '−的最大值为 .二、解答题(本大题共3个小题,共30分)24.(8分)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18/km h ,乙骑行的路程()s km 与骑行的时间()t h 之间的关系如图所示.(1)直接写出当00.2t 剟和0.2t >时,s 与t 之间的函数表达式; (2)何时乙骑行在甲的前面?25.(10分)如图,在平面直角坐标系xOy 中,直线3(0)y kx k =−≠与抛物线2y x =−相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B '.(1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ',BB ',若△B AB '的面积与OAB ∆的面积相等,求k 的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(12分)如图,在矩形ABCD中,(1)=>,点E是AD边上一动点(点E不与AD nAB nA,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,ABE∆始终保持相似关系,请说明理由.∆与DEH【深入探究】(2)若2n=,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan ABE∠的值.【拓展延伸】(3)连接BH,FH,当BFH∆是以FH为腰的等腰三角形时,求tan ABE∠的值(用含n 的代数式表示).2022年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)37−的相反数是( ) A .37 B .37− C .73 D .73− 【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:37−的相反数是37. 故选:A .【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.(4分)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A .21.610⨯B .51.610⨯C .61.610⨯D .71.610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数. 【解答】解:160万61600000 1.610==⨯,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)下列计算正确的是( )A .2m m m +=B .2()2m n m n −=−C .222(2)4m n m n +=+D .2(3)(3)9m m m +−=−【分析】选项A 根据合并同类项法则判断即可;选项B 根据去括号法则判断即可;选项C 根据完全平方公式判断即可;选项D 根据平方差公式判断即可.【解答】解:A .2m m m +=,故本选项不合题意;B .2()22m n m n −=−,故本选项不合题意;C .222(2)44m n m mn n +=++,故本选项不合题意;D .2(3)(3)9m m m +−=−,故本选项符合题意;故选:D .【点评】本题考查了合并同类项,去括号法则,完全平方公式以及平方差公式,掌握相关公式与运算法则是解答本题的关键.4.(4分)如图,在ABC ∆和DEF ∆中,点A ,E ,B ,D 在同一直线上,//AC DF ,AC DF =,只添加一个条件,能判定ABC DEF ∆≅∆的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠【分析】先根据平行线的性质得到A D ∠=∠,加上AC DF =,则可根据全等三角形的判定方法对各选项进行判断.【解答】解://AC DF Q ,A D ∴∠=∠,AC DF =Q ,∴当添加C F ∠=∠时,可根据“ASA ”判定ABC DEF ∆≅∆;当添加ABC DEF ∠=∠时,可根据“AAS ”判定ABC DEF ∆≅∆;当添加AB DE =时,即AE BD =,可根据“SAS ”判定ABC DEF ∆≅∆.故选:B .【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.5.(4分)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( )A .56B .60C .63D .72【分析】根据众数的定义求解即可.【解答】解:由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B .【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.(4分)如图,正六边形ABCDEF 内接于O e ,若O e 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .23【分析】连接OB 、OC ,根据O e 的周长等于6π,可得O e 的半径3OB OC ==,而六边形ABCDEF 是正六边形,即知360606BOC ︒∠==︒,BOC ∆是等边三角形,即可得正六边形的边长为3.【解答】解:连接OB 、OC ,如图:O Q e 的周长等于6π,O ∴e 的半径632OB OC ππ===, Q 六边形ABCDEF 是正六边形,360606BOC ︒∴∠==︒, BOC ∴∆是等边三角形,3BC OB OC ∴===,即正六边形的边长为3,故选:C .【点评】本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60︒,从而得到BOC ∆是等边三角形.7.(4分)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .1000,41199979x y x y +=⎧⎪⎨+=⎪⎩B .1000,79999411x y x y +=⎧⎪⎨+=⎪⎩ C .1000,79999x y x y +=⎧⎨+=⎩ D .1000,411999x y x y +=⎧⎨+=⎩【分析】利用总价=单价⨯数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:Q 共买了一千个苦果和甜果,1000x y ∴+=;Q 共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个, ∴41199979x y +=. ∴可列方程组为100041199979x y x y +=⎧⎪⎨+=⎪⎩. 故选:A .【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)如图,二次函数2y ax bx c =++的图象与x 轴相交于(1,0)A −,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >−时,y 的值随x 值的增大而增大C .点B 的坐标为(4,0)D .420a b c ++>【分析】由抛物线开口方向可判断A ,根据抛物线对称轴可判断B ,由抛物线的轴对称性可得点B 的坐标,从而判断C ,由(2,42)a b c ++所在象限可判断D .【解答】解:A 、由图可知:抛物线开口向下,0a <,故选项A 错误,不符合题意; B 、Q 抛物线对称轴是直线1x =,开口向下,∴当1x >时y 随x 的增大而减小,1x <时y 随x 的增大而增大,故选项B 错误,不符合题意; C 、由(1,0)A −,抛物线对称轴是直线1x =可知,B 坐标为(3,0),故选项C 错误,不符合题意;D 、抛物线2y ax bx c =++过点(2,42)a b c ++,由(3,0)B 可知:抛物线上横坐标为2的点在第一象限,420a b c ∴++>,故选项D 正确,符合题意;故选:D .【点评】本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)计算:32()a −= 6a .【分析】根据幂的乘方,底数不变指数相乘计算即可.【解答】解:326()a a −=.【点评】本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.10.(4分)在平面直角坐标系xOy 中,若反比例函数2k y x −=的图象位于第二、四象限,则k 的取值范围是 2k < .【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:Q 反比例函数2k y x−=的图象位于第二、四象限, 20k ∴−<, 解得2k <,故答案为:2k <.【点评】本题考查反比例函数的性质,解题的关键是掌握当0k <时,k y x=的图象位于第二、四象限.11.(4分)如图,ABC ∆和DEF ∆是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC ∆与DEF ∆的周长比是 2:5 .【分析】先根据位似的性质得到ABC ∆和DEF ∆的位似比为:OA OD ,再利用比例性质得到:2:5OA OD =,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:ABC ∆Q 和DEF ∆是以点O 为位似中心的位似图形.ABC ∴∆和DEF ∆的位似比为:OA OD ,:2:3OA AD =Q ,:2:5OA OD ∴=,ABC ∴∆与DEF ∆的周长比是2:5.故答案为:2:5.【点评】本题考查了位似变换.位似变换的两个图形相似.相似比等于位似比.12.(4分)分式方程31144x x x−+=−−的解为 3x = . 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:314x x −−=−,解得:3x=,经检验3x=是分式方程的解,故答案为:3x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(4分)如图,在ABC∆中,按以下步骤作图:①分别以点B和C为圆心,以大于12 BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若5AC=,4BE=,45B∠=︒,则AB的长为7.【分析】设MN交BC于D,连接EC,由作图可知:MN是线段BC的垂直平分线,即得4BE CE==,有45ECB B∠=∠=︒,从而90AEC ECB B∠=∠+∠=︒,由勾股定理得3AE=,故7AB AE BE=+=.【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,4BE CE∴==,45ECB B∴∠=∠=︒,90AEC ECB B∴∠=∠+∠=︒,在Rt ACE ∆中, 2222543AE AC CE =−=−=,347AB AE BE ∴=+=+=,故答案为:7.【点评】本题考查尺规作图中的计算问题,解题的关键是掌握用尺规作线段垂直平分线的方法,得到MN 是线段BC 的垂直平分线.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:11()93tan 30|32|2−−+︒+−. (2)解不等式组:()3225,2123x x x x ⎧++⎪⎨−−<⋅⎪⎩①②… 【分析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.【解答】解:(1)原式3233233=−+⨯+− 1323=−++− 1=;(2)解不等式①得,1x −…,解不等式②得,2x <,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为12x −<….【点评】本题考查负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算以及一元一次不等式组,掌握负整数指数幂的性质,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算的方法以及一元一次不等式组的解法是正确解答的前提.15.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表. 等级 时长t (单位:分钟) 人数 所占百分比A 02t < (4)x B 24t <… 20 C 46t <…36% D 6t …16% 根据图表信息,解答下列问题:(1)本次调查的学生总人数为 50 ,表中x 的值为 ;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【分析】(1)用D 等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x 的值;(2)用500乘以B 等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为816%50÷=(人),所以48%50x ==; 故答案为:50;8%;(2)2050020050⨯=(人),所以估计等级为B 的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8, 所以恰好抽到一名男生和一名女生的概率82123==. 【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求出事件A 或B 的概率.也考查了统计图.16.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08)︒≈【分析】利用平角定义先求出30AOC ∠=︒,然后在Rt ACO ∆中,利用锐角三角函数的定义求出AO 的长,从而求出A O '的长,再利用平角定义求出A OD ∠'的度数,最后在Rt △A DO '中,利用锐角三角函数的定义进行计算即可解答.【解答】解:150AOB ∠=︒Q ,18030AOC AOB ∴∠=︒−∠=︒,在Rt ACO ∆中,10AC cm =,220()AO AC cm ∴==,由题意得:20AO A O cm ='=,108A OB ∠'=︒Q ,18072A OD A OB ∴∠'=︒−∠'=︒,在Rt △A DO '中,sin 72200.9519()A D A O cm '='⋅︒≈⨯=,∴此时顶部边缘A '处离桌面的高度A D '的长约为19cm .【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.17.(10分)如图,在Rt ABC ∆中,90ACB ∠=︒,以BC 为直径作O e ,交AB 边于点D ,在¶CD上取一点E ,使¶¶BE CD =,连接DE ,作射线CE 交AB 边于点F . (1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长.【分析】(1)利用等角的余角相等证明即可;(2)连接CD .解直角三角形求出AB ,BC ,利用面积法求出CD ,再利用勾股定理求出DB ,证明DEF BCF ∆∆∽,利用相似三角形的性质求出DE 即可.【解答】(1)证明:Q ¶¶BECD =, BCF FBC ∴∠=∠,90ACB ∠=︒Q ,90A FBC ∴∠+∠=︒,90ACF BCF ∠+∠=︒,A ACF ∴∠=∠;(2)解:连接CD .A ACF ∠=∠Q ,FBC BCF ∠=∠,AF FC FB ∴==,4cos cos 5AC A ACF AB ∴∠=∠==, 8AC =Q ,10AB ∴=,6BC =,BC Q 是直径,90CDB ∴∠=︒,CD AB ∴⊥, 1122ABC S AC BC AB CD ∆=⋅⋅=⋅⋅Q , 6824105CD ⨯∴==, 222224186()55BD BC CD ∴=−=−=, 5BF AF ==Q ,187555DF BF BD ∴=−=−=, 180DEF DEC ∠+∠=︒Q ,180DEC B ∠+∠=︒,DEF B BCF ∴∠=∠=∠,//DE CB ∴,DEF BCF ∴∆∆∽,∴DE DF BC FB=, ∴7565DE =, 4225DE ∴=.【点评】本题属于圆综合题,考查了解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.(10分)如图,在平面直角坐标系xOy 中,一次函数26y x =−+的图象与反比例函数k y x =的图象相交于(,4)A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.【分析】(1)将点A 坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP ,AP ,BQ 的解析式,联立方程组可求解.【解答】解:(1)Q 一次函数26y x =−+的图象过点A ,426a ∴=−+,1a ∴=,∴点(1,4)A ,Q 反比例函数k y x=的图象过点(1,4)A , 144k ∴=⨯=; ∴反比例函数的解析式为:4y x=, 联立方程组可得:426y x y x ⎧=⎪⎨⎪=−+⎩,解得:1114x y =⎧⎨=⎩,2222x y =⎧⎨=⎩, ∴点(2,2)B ;(2)如图,过点A 作AE y ⊥轴于E ,过点C 作CF y ⊥轴于F ,//AE CF ∴,AEH CFH ∴∆∆∽, ∴AE AH EH CF CH FH==, 当12AH CH =时,则22CF AE ==, ∴点(2,2)C −−,22(22)(22)42BC ∴=+++= 当2AH CH =时,则1122CF AE ==, ∴点1(2C −,8)−, 221517(2)(28)22BC ∴=+++=, 综上所述:BC 的长为42517; (3)如图,当90AQP ABP ∠=∠=︒时,设直线AB 与y 轴交于点E ,过点B 作BF y ⊥轴于F ,设BP 与y 轴的交点为N ,连接BQ ,AP 交于点H ,Q 直线26y x =−+与y 轴交于点E ,∴点(0,6)E ,Q 点(2,2)B ,2BF OF ∴==,4EF ∴=,90ABP ∠=︒Q ,90ABF FBN ABF BEF ∴∠+∠=︒=∠+∠,BEF FBN ∴∠=∠,又90EFB ABN ∠=∠=︒Q ,EBF BNF ∴∆∆∽, ∴BF FN EF BF=, 2214FN ⨯∴==, ∴点(0,1)N ,∴直线BN 的解析式为:112y x =+, 联立方程组得:4112y x y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:1141x y =−⎧⎨=−⎩,2222x y =⎧⎨=⎩, ∴点(4,1)P −−,∴直线AP 的解析式为:3y x =+,AP Q 垂直平分BQ ,∴设BQ 的解析式为4y x =−+,34x x ∴+=−+,12x ∴=, ∴点1(2H ,7)2, Q 点H 是BQ 的中点,点(2,2)B ,∴点(1,5)Q −.【点评】本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知2272a a −=,则代数式2211()a a a a a−−−÷的值为 72 . 【分析】先将代数式化简为2a a −,再由2272a a −=可得272a a −=,即可求解. 【解答】解:原式2221()1a a a a a a −=−⨯− 22(1)1a a a a −=⨯− (1)a a =−2a a =−,2272a a −=Q ,2227a a ∴−=,272a a ∴−=, ∴代数式的值为72, 故答案为:72. 【点评】本题考查代数式求值,解题的关键是正确化简代数式,利用题干条件进行解答.20.(4分)若一个直角三角形两条直角边的长分别是一元二次方程2640x x −+=的两个实数根,则这个直角三角形斜边的长是【分析】设直角三角形两条直角边分别为a 、b ,斜边为c ,由一元二次方程根与系数的关系可得6a b +=,4ab =,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a 、b ,斜边为c ,Q 直角三角形两条直角边的长分别是一元二次方程2640x x −+=的两个实数根,6a b ∴+=,4ab =,∴斜边2222()262427c a b a b ab =+=+−=−⨯=,故答案为:27.【点评】本题考查一元二次方程根与系数的关系,涉及勾股定理、完全平方公式的应用,解题的关键是掌握一元二次方程根与系数的关系,得到6a b +=,4ab =.21.(4分)如图,已知O e 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 24π− .【分析】作OD CD ⊥,OB AB ⊥,设O e 的半径为r ,根据O e 是小正方形的外接圆,是大正方形的内切圆,可得OB OC r ==,AOB ∆、COD ∆是等腰直角三角形,即可得2AE r =,2CF r =,从而求出答案.【解答】解:作OD CD ⊥,OB AB ⊥,如图:设O e 的半径为r ,O Q e 是小正方形的外接圆,是大正方形的内切圆,OB OC r ∴==,AOB ∆、COD ∆是等腰直角三角形,AB OB r ∴==,22OD CD r ==, 2AE r ∴=,2CF r =,∴这个点取在阴影部分的概率是222(2)2(2)4r r r ππ−−=,故答案为:24π−.【点评】本题考查几何概率,涉及正方形的外切圆与内接圆,解题的关键是用含r 的代数式表示阴影部分的面积.22.(4分)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =−++,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t 剟时,w 的取值范围是 05w 剟 ;当23t 剟时,w 的取值范围是 .【分析】利用待定系数法求得抛物线的解析式,再利用配方法求得抛物线的顶点坐标,结合函数图象即可求解.【解答】解:Q 物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒, ∴抛物线25h t mt n =−++的顶点的纵坐标为20,且经过(3,0)点,∴224(5)204(5)5330n m m n ⎧⨯−−=⎪⨯−⎨⎪−⨯++=⎩, 解得:111015m n =⎧⎨=⎩,2250105m n =⎧⎨=−⎩(不合题意,舍去), ∴抛物线的解析式为251015h t t =−++,22510155(1)20h t t t =−++=−−+Q ,∴抛物线的最高点的坐标为(1,20).20155−=Q ,∴当01t 剟时,w 的取值范围是:05w 剟; 当2t =时,15h =,当3t =时,0h =,20155−=Q ,20020−=,∴当23t 剟时,w 的取值范围是:520w 剟. 故答案为:05w 剟;520w 剟. 【点评】本题主要考查了二次函数的应用,待定系数法确定函数的解析式,二次函数的性质,理解“极差”的意义是解题的关键.23.(4分)如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '−的最大值为 1623.【分析】如图,连接BD 交AC 于点O ,过点D 作DK BC ⊥于点K ,延长DE 交AB 于点R ,连接EP '交AB 于点J ,作EJ 关于AC 的对称线段EJ ',则DP '的对应点P ''在线段EJ '上.当点P 是定点时,DQ QP AD QP −'=−'',当D ,P '',Q 共线时,QD QP −'的值最大,最大值是线段DP ''的长,当点P 与B 重合时,点P ''与J '重合,此时DQ QP −'的值最大,最大值是线段DJ '的长,也就是线段BJ 的长.解直角三角形求出BJ ,可得结论.【解答】解:如图,连接BD 交AC 于点O ,过点D 作DK BC ⊥于点K ,延长DE 交AB 于点R ,连接EP '交AB 于点J ,作EJ 关于AC 的对称线段EJ ',则点P '的对应点P ''在线段EJ '上.当点P 是定点时,DQ QP AD QP −'=−'',当D ,P '',Q 共线时,QD QP −'的值最大,最大值是线段DP ''的长,当点P 与B 重合时,点P ''与J '重合,此时DQ QP −'的值最大,最大值是线段DJ '的长,也就是线段BJ 的长.Q 四边形ABCD 是菱形,AC BD ∴⊥,AO OC =,14AE =Q .18EC =,32AC ∴=,16AO OC ==,16142OE AO AE ∴=−=−=,DE CD ⊥Q ,90DOE EDC ∴∠=∠=︒,DEO DEC ∠=∠Q ,EDO ECD ∴∆∆∽,236DE EO EC ∴=⋅=,6DE EB EJ ∴===,CD ∴==,OD ∴===,BD ∴=1122DCB S OC BD BC DK ∆=⨯⨯=⋅Q , 111616323DK ⨯⨯⨯⨯∴==, BER DCK ∠=∠Q ,32sin sin9DK BER DCK CD ∴∠=∠===,RB BE ∴==, EJ EB =Q ,ER BJ ⊥,JR BR ∴==,3JB DJ ∴='=,DQ P Q '∴−的最大值为1623. 解法二:DQ P Q BQ P Q BP '''−=−…,显然P '的轨迹EJ ,故最大值为BJ .勾股得CD ,OD .BDJ BAD ∆∆∽,2*BD BJ BA =,可得1623BJ =. 故答案为:1623. 【点评】本题考查轴对称−最短问题,菱形的性质,解直角三角形等知识,解题的关键是学会利用轴对称解决最值问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.二、解答题(本大题共3个小题,共30分)24.(8分)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18/km h ,乙骑行的路程()s km 与骑行的时间()t h 之间的关系如图所示.(1)直接写出当00.2t 剟和0.2t >时,s 与t 之间的函数表达式; (2)何时乙骑行在甲的前面?【分析】(1)根据图象分段设出函数解析式,在用待定系数法求出函数解析式即可;(2)设t 小时后乙在甲前面,用乙的路程大于甲的路程列出不等式求解即可.【解答】解:(1)当00.2t 剟时,设s at =, 把(0.2,3)代入解析式得,0.23a =,解得:15a =,15s t ∴=;当0.2t >时,设s kt b =+,把(0.2,3)和(0.5,9)代入解析式,。

四川省成都市2023年中考数学真题和参考答案

四川省成都市2023年中考数学真题和参考答案

四川省成都市2023年中考数学真题和参考答案- 说明:本文档包含了四川省成都市2023年中考数学科目的真题和参考答案,旨在帮助考生备考。

请注意,以下内容仅供参考。

选择题1. 若正整数 $a$ 和 $b$ 满足 $a + b = 9$,则 $a$ 和 $b$ 的乘积最大值是多少?A. 12B. 18C. 20D. 27答案:D2. 若 $\frac{x-1}{a} + \frac{x}{b} = 2$,其中 $a$、$b$ 为正整数,则 $x = \_\_\_$。

答案:$\frac{ab}{b-a}$3. 若一个分数的分子和分母都是3位数,且分母比分子小27,则该分数的值是多少?A. $\frac{11}{13}$B. $\frac{13}{14}$C. $\frac{16}{17}$D. $\frac{18}{19}$答案:D4. 已知 $\log_a b = 2$,则 $a^4 + b^2 = \_\_\_$。

答案:21解答题5. 求下列方程的解集:$2(x - 3) - 4x + 1 = x + 5$。

解答:将方程化简得:$-2x - 5 = x + 5$。

移项得:$-3x = 10$。

两边同时除以-3得:$x = \frac{-10}{3}$。

所以,方程的解集为:$\{ \frac{-10}{3} \}$。

6. 若 $\triangle ABC$ 的内角 $A$ 为 $55^\circ$,边 $AB$ 长为4,边 $AC$ 长为11,则 $\sin C$ 的值为多少?解答:根据正弦定理,我们有:$\frac{4}{\sin 55^\circ} = \frac{11}{\sin C}$。

即,$\sin C = \frac{11}{4} \cdot \sin 55^\circ$。

所以,$\sin C$ 的值为 $\frac{11}{4} \cdot \sin 55^\circ$。

以上为四川省成都市2023年中考数学科目的部分真题和参考答案。

数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案

数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案

2024~2025 学年度上期高 2025届半期考试高三数学试卷考试时间:120 分钟总分:150 分注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.2.回答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,请考生个人留存试卷并将答题卡交回给监考教师.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数i i 4321-+的虚部是( )A.51-B .5 1 C .5 2 - D .52 2.式子15tan 115tan 1-+的 值为() A.3 B .2 C .5 D .63.由正数组成的等比数列{}n a ,n S 为其前n 项和,若241a a =,37S =,则5S 等于() A.152 B.314 C.3 34 D .1 72 4.在24 3)1()1()1(+++++++n x x x 的展开式中,含2x 项的系数是() A.33+n C B .123- +n C C.133- +n C D .331+-n C 5.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时(2)()0x f x '->,则当24a <<时,有()A.2(2)(2)(log )a f f f a << B.2(log )(2)(2)a f a f f <<C.2(log )(2)(2)a f a f f << D.2(2)(log )(2)a f f a f <<6.若向量,,abc 满足,22a b c == = ,则()()a b c b-⋅- 的最大值为()A.10B .12C . D . 7.若对R x ∈∀,函数a x x f +=2)(的函数值都不超过函数⎪⎩⎪⎨⎧≥+<+=1,21,2)(x x x x x x g 的函数值,则实数a 的取值范围是()A.2-≥a B .2≤a C.22≤≤-a D.2<a 8.在三棱柱1 1 1C B A ABC -中, 1CC CB CA ==,3 =AB ,1C 在面ABC 的投影为ABC ∆的外心,二面角1 1B CC A --为3π,该三棱柱的侧面积为() A.33 4 +B .3 7 C .3 6 D .35在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到m 50.9以上(含m 50.9)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X 是甲、乙、丙在校运动会铅球比赛中获优秀奖的总人数,估计X 的数学期望)(X E .17.(本小题满分15分)如图,在三棱柱11 1 ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,1 3CC =, 点,D E 分别在棱1AA 和棱1CC 上,且12,AD C E M ==为棱11A B 的中点.(I )求证:11C M B D ⊥;(II )求二面角1B B E D --的正弦值;(III )求直线AB 与平面1DB E 所成角的正弦值.椭圆)0(1:2 2 2 2>>=+b a by a x E 左焦点F 和),0(),0,(b B a A 构成一个面积为)12 (2+的F AB ∆,且22cos =∠AFB .(I )求椭圆E 的标准方程;(II )点P 是E 在三象限的点,P A 与y 轴交于M ,PB 与x 轴交于N ①求四边形ABNM 的面积;② 求PMN ∆面积最大值及相应P 点的坐标.19.(本小题满分17分)已知函数1)(2---=x ax e x f x .( 其中71828.2≈e )(I )当0=a 时,证明:0)(≥x f (II )若0>x 时,0)(>x f ,求实数a 的取值范围;(Ⅲ)记函数x xe x g x ln 21)(--=的最小值为m ,求证:)1,2023(-∈e m2024~2025 学年度上期高 2025届半期考试高三数学试卷参考答案一、单选题DABC D BCC二、多选题9.ABD 1 0.AC 1 1.BCD三、填空题12.2 00 ,1x N x ∃ ∈≤13.25)2()3( 2 2=-+-y x 14.22四、解答题15.【解】(I )21cos cos sin 32=-C C C ,12cos 212sin 23=-∴C C ,即sin(216C π-=,π<<C 0 ,262 C ππ ∴-=, 解得3π=C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

..
2.(3分)(2013
....成都)要使分式有意义,则
分式有意义,
.×
、×
=,运算错误,故本选项错误;
y=
10.(3分)(2013•40°
13.(4分)(2013•成都)如图,
BC=AB=100
)计算:)解方程组:.
=4++2×﹣2=4
),
故方程组的解为.
成都)化简.
×=a
==
点评:本题考查了利用旋转变换作图,扇形面积的计算,是基础题,熟练掌握网格结构,准y==0.7
P=.
的图象与反比例函数(
的坐标代入:,
2=,
=;
两点不重合时,求的值;
相似可得=,
BF相似可得=,然后整理得到(
,最后利用相似三角形对应边成比例可得=,从而得解;
∵在△ABD和△CEB
,∴△ABD≌△CEB(AAS
∴=,
即=,
QF=BF
∴=,
即=,
•BF
得,=,
∴=;
QF=AP
QF=.
×=4
BQ===.MN=BQ=.
的中点所经过的路径(线段)长为.
则的值为 ﹣ .
则==.
故答案为:﹣.
中,随机抽取一个数,抽到偶数的概率为 .
=.
故答案为:.
的不等式组,恰有三个整数解,则关于
次函数的图象与反比例函数的图象的公共点的个数为 
比例函数与一次函数的交点问题;一元一次不等式组的整数解.
根据不等式组恰有三个整数解,可得出
比例函数解析式,利用二次函数的性质判断其判别式的值的情况,从而确定交点的个
≤,
联立方程组,
得:x
a+)2﹣=

y=
k=时,
PAB面积的最小值为.
=2,当值为,故正确.
y=x得:x
,解得a=,
()
x=,
轴的交点坐标为(,
()
(,
∵+===0 PA与x轴的交点关于y轴对称,即直线PA、PA关于
∴,
易知:=﹣,
OB=﹣OA
∴,
PB=﹣PA
[﹣PA(﹣OA=﹣(=﹣
∴PA2﹣AO2=(PD2+AD2)﹣(OD2+AD2)=PD2﹣OD2=(4+km)2﹣(﹣km)2=8km+16,∵m+n=3k,∴k=(m+n),
∴PA2﹣AO2=8•(m+n)•m+16=m2+mn+16=m2+×(﹣6)+16=m2.
∴(PA+AO)(PB﹣BO)=﹣(PA2﹣AO2)=﹣•m2=﹣mn=﹣×(﹣6)=16.
即:(PA+AO)(PB﹣BO)为定值,所以说法②错误.
(3)说法③正确.理由如下:
当k=时,联立方程组:,得A(,2),B(,﹣1),
∴BP2=12,BO•BA=2×6=12,
∴BP2=BO•BA,故说法③正确.
(4)说法④正确.理由如下:
S△PAB=S△PAO+S△PBO=OP•(﹣m)+OP•n=OP•(n﹣m)=2(n﹣m)=2
=2,
∴当k=0时,△PAB面积有最小值,最小值为=.
故说法④正确.
综上所述,正确的说法是:③④.
故答案为:③④.
点评:本题是代数几何综合题,难度很大.解答中首先得到两个基本结论,其中PA、PB的
等分点,=,点上,
三者的数量关系:发现当
c+b c+b
(参考数据:,)
到;其次,证明,得到;由
p=c+2cos•
ACB=×=(度)
ACB=2cos•
∴=2cos.
∴,
∵,
∴,
DA=•EB=2cos•
EA=ED+DA=EC+2cos•
p=c+2cos•
b=c+b
b=c+b
c+b c+b
点评:本题是几何综合题,难度很大.解决本题,需要综合运用圆、相似三角形、等腰三角
p=c+2cos•
总路程的时所用的时间.
然后将其代入解析式就

解得:
S=,
×=30
×=21
点总路程的时所用的时间为
ADB=,PA=AH
ADB=,可设PA=AH
PDH=60°,连接
=;
HC=(﹣4k4 [4k+(25﹣4k
ADB=
可设AH=3k,则
PA=AH
4﹣3
PH=4k
P==,
=;
BH=﹣4k
HC=(﹣4k
2
4﹣3[4k+(25﹣4k
k=4﹣3
AC=3k+(25﹣4k=24+7
=BD AC=×25×24+7=900+.
y=x
.试探究是否存在最大值?若存在,求出该最
的距离为.此时,将直线
的距离为.此时,将直线
PQ=为定值,因此当取最小值时,有最大值.
∴,解得:
y=x
y=(
解方程组:,
解得,
PQ==AP
为等腰直角三角形,则可分为以下两种情况:
的距离为(即为
0=.
y=x
解方程组,得:,
②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.
如答图1,取AB的中点F,则点F的坐标为(2,﹣1).
由A(0,﹣1),F(2,﹣1),P0(2,1)可知:
△AFP0为等腰直角三角形,且点F到直线AC的距离为.
过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l2的解析式为:y=x+b2,
∵F(2,﹣1),∴﹣1=2+b2,解得b1=﹣3,
∴直线l2的解析式为:y=x﹣3.
解方程组,得:,
∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).
综上所述,所有符合条件的点M的坐标为:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
ii)存在最大值.理由如下:
由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.
如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′P≥FB′==.
∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.
∴的最大值为=.
点评:本题为二次函数中考压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、。

相关文档
最新文档