四川省成都中考数学试题及答案

合集下载

2020学年四川省成都市中考试题数学及答案解析

2020学年四川省成都市中考试题数学及答案解析

2020年四川省成都市中考试题数学一、选择题(共10小题,每小题3分,共30分)1.实数a, b, c, d在数轴上对应的点的位置如图所示,这四个数中最大的是()i 2 匚________-3 -2 4 0 1 2 SA.aB.bC.cD.d解析:根据实数的大小比较解答即可.由数轴可得:aVbVcVd.答案:D2.2020年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鸽桥号”中继星,卫星进入近地点髙度为200公里、远地点髙度为40万公里的预立轨道.将数据40万用科学记数法表示为()A.4X10:B.4X105C.4X106D.0.4X106解析:科学记数法的表示形式为aX10=的形式,其中1W a <10, n为整数.1万=10000=104.40 万=400000=4 X105.答案:B3 •如图所示的正六棱柱的主视图是()D.、------- 』解析:根据主视图是从正而看到的图象判泄则可.从正而看是左右相邻的3个矩形,中间的矩形的而积较大,两边相同.答案:A4.在平而直角坐标系中,点P(-3, -5)关于原点对称的点的坐标是()A.(3, -5)B.(-3, 5)C.(3, 5)D.(-3, -5)解析:根据关于原点对称的点的坐标特点解答.点P(-3, -5)关于原点对称的点的坐标是(3, 5).答案:c5.下列计算正确的是()A.x'+x—x'B.(x-y)C.(x:y) 3=x6yD.(-x):• x3=x°解析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幫的乘法法则讣算,判断即可.A、x:+x:=2x\ A 错误;B、(x-y) c=x:-2xy+y:, B 错误:C、(x:y) 3=x*y s» C 错误;D^ (-x)5• x3=x s» D 正确.答案:D6•如图,已知ZABC二ZDCB,添加以下条件,不能判左△ABC9Z\DCB的是()A.ZA=ZDB.ZACB=ZDBCC.AC=DBD.AB二DC解析:全等三角形的判世方法有SAS, ASA, AAS, SSS,根据定理逐个判断即可.A、ZA二ZD, ZABC二ZDCB, BC二BC,符合AAS,即能推ABC^ADCB,故本选项错误:B、ZABC二ZDCB, BC二CB・ ZACB二ZDBC,符合ASA,即能推ABC^ADCB,故本选项错误;C 、 ZABC 二ZDCB, AC 二BD, BC 二BC,不符合全等三角形的判龙左理,即不能推出△ ABC^ADCB> 故本选项正确:D 、 AB 二DC. ZABC 二ZDCB, BC 二BC,符合 SAS,即能推ABC^ADCB,故本选项错误. 答案:C7•如图是成都市某周内最髙气温的折线统计图,关于这7天的日最髙气温的说法正确的是 ()A. 极差是8°CB. 众数是28°CC. 中位数是24°CD. 平均数是26°C解析:根拯折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题. 由图可得,极差是:30-20=109,故选项A 错误,众数是28°C,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是260 故选项C 错误,20 + 22 + 24 + 26 + 28 + 28 + 30 “3 -------------------------------------------- =25-平均数是: 7 7匸,故选项D 错误.答案:Bx + 1 1 -------- 1 ------ = 18•分式方程x x-2 的解是()A. x=lB. x 二TC. x —3D. x=-3x + 1 1--- + ----- x x-2去分母,方程两边同时乘以x(x-2)得:(x+1) (x-2)+x=x(x-2),x :-x-2+x=x"-2x,=1解析:x=l,经检验,X=1是原分式方程的解.答案:A9•如图,在口ABCD中,ZB=60° , OC的半径为3,则图中阴影部分的面积是()A.nB.2nC・3 nD. 6 n解析:根据平行四边形的性质可以求得zc的度数,然后根据扇形而积公式即可求得阴影部分的面积.•••在口ABCD 中,ZB=60° , 0C 的半径为3,A ZC=120° ,120x^x32 c--------------- =3兀・•・图中阴影部分的而积是:36°答案:C10.关于二次函数y=2x=+4x-l,下列说法正确的是()扎图象与y轴的交点坐标为(0, 1)B.图象的对称轴在y轴的右侧C.当xVO时,y的值随x值的增大而减小D.y的最小值为-3解析:根拯题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.Vy=2x=+4x-l=2 (x+l)=-3,.••当x二0时,y二-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-l时,y随x的增大而减小,故选项C错误,当x二-1时,y取得最小值,此时y=-3,故选项D正确.答案:D二、填空题(共4小题,每小题4分,共16分)11._______________________________________________ 等腰三角形的一个底角为50°,则它的顶角的度数为_________________________________ .解析:本题给出了一个底角为50° ,利用等腰三角形的性质得列一底角的大小,然后利用三角形内角和可求顶角的大小.•・•等腰三角形底角相等,.\180° -50° X2二80° ,・•・顶角为80° .答案:80°12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸岀一个乒3乓球,若摸到黄色乒乓球的概率为则该盒子中装有黄色乒乓球的个数是____________ •解析:•・•装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色3乒乓球的概率为3・•・该盒子中装有黄色乒乓球的个数是:16X8=6.答案:6u _b _c13.已知A 5 兀且a+b-2c=6,则a的值为 _____________ .解析:直接利用已知比例式假设出a, b, c的值,进而利用a+b-2c=6,得出答案.a _b _cV6 = 5 = 4,• •役&=6x, b—5x♦ c—lx 9Va+b^c^G,•: 6x+5x-8x=6,解得:x=2,故a=12.答案:12丄14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于亍AC的长为半径作弧,两弧相交于点NUHN;②作直线MN交CD于点E.若DE二2, CE二3,则矩形的对角线AC的长为由作法得MN 垂直平分AC,•••EA 二 EC 二 3,在 RtAADE 中,AD = d3,-W =圧三、解答题(本大题共6个小题,共54分)15. 计算.2?+遁-2sin60° + |-呵解析:(1)根据立方根的意义,特姝角锐角三角函数,绝对值的意义即可求出答案.=4+2-2x 遢+ 3 =点答案:(1)原式 2(2)化简:解析:(2)根据分式的运算法则即可求出答案.解析:连接AE,如图,在 RtAADC 中, AC = W+5,=俪_x+1_i(x+i)(x-i)_ x a+i)(z)_----- •------------- • --------- A — 1答案:⑵原式X+1 X x+1 X16.若关于x的一元二次方程£-(2a+l)x+a匚0有两个不相等的实数根,求a的取值范围. 解析:根据方程的系数结合根的判别式△>(),即可得出关于a的一元一次不等式,解之即可得出a的取值范围.答案:•••关于x的一元二次方程x:-(2a+l)x+a==0有两个不相等的实数根,••• △二[-(2a+l) ] 2-4a:=4a+l > 0,_丄解得:a> 4.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于'‘景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统汁图表.滿意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为 __ ,表中m的值 _____ .解析:⑴利用12 + 10%二120,即可得到m的值:用120X40%即可得到n的值.答案:(1)124-10%=120,故m二120,54n二120X40248, =45%.故答案为120: 45%.⑵请补全条形统计图.解析:(2)根据n的值即可补全条形统讣图.答案:(2)n二120X40%二48,画出条形图:(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯立,请你估计该景区服务工作平均每天得到多少名游客的肯泄.12 + 54解析:(3)根据用样本估计总体,3600X 120 X100%,即可答.12 + 54答案:(3) 3600 X 120 X 10021980(人),答:估计该景区服务工作平均每天得到1980名游客的肯圧.18.由我国完全自主设计、自主建造的首艘国产航母于2020年5月成功完成第一次海上实验任务.如图,航母由四向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70° ^0. 94, cos70° ^0.34, tan70°*2、75, sin37°心06 cos37° = 0. 80, tan37° ^0. 75)解析:根据题意得:ZACD=70°, ZBCD二3厂,AC二80海里,在直角三角形ACD中,由三角函数得出CD二27. 2海里,在直角三角形BCD中,得出BD,即可得岀答案.答案:由题意得:ZACD=70° , ZBCD二37° , AC二80 海里,在直角三角形ACD中,CD二AC • cosZACD二27. 2海里,在直角三角形BCD中,BD二CD • tanZBCD二20. 4海里.答:还需航行的距离BD的长为20.4海里.19•如图,在平面直角坐标系xOy中,一次函数y二x+b的图象经过点A(-2, 0),与反比例函ky =—数X (x>0)的图象交于B(a, 4).(1)求一次函数和反比例函数的表达式.解析:⑴根据一次函数y=x+b的图象经过点A(-2, 0),可以求得b的值,从而可以解答本题. 答案:(1)・.•一次函数ync+b的图象经过点A(-2, 0),0=-2+b t得b=2 ♦・•・一次函数的解析式为y二x+2,ky =-•••一次函数的解析式为y二x+2与反比例函数x (x>o)的图象交于B(a. 4),A4=a+2»得k_•••4=2,得k二8,8y =-即反比例函数解析式为:X (x>0)・k y =—⑵设H是直线AB上一点,过M作MN〃x轴,交反比例函数x(x>0)的图象于点N,若A, 0, M, N为顶点的四边形为平行四边形,求点M的坐标.解析:(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.答案:(2)・・•点A(-2, 0),•••0A二2,8_设点M(m-2, m),点N(加,m),当MN/7A0且MN二A0时,四边形A0MN是平行四边形,8_加-(m-2) 1=2,解得,m二2迥或m二2血+2,•••点M的坐标为(2血-2, 2血)或(2邑2屁2)・20.如图,在RtAABC中,ZC=90° , AD平分ZBAC交BC于点D, 0为AB上一点,经过点A, D的00分别交AB, AC于点E, F,连接0F交AD于点G.(1)求证:BC是O0的切线.解析:(1)连接0D,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等, 等量代换得到内错角相等,进而得到0D与AC平行,得到0D与BC垂直,即可得证.答案:(1)证明:如图,连接0D,TAD为ZBAC的角平分线,••• ZBAD 二ZCAD,VOA=OD,••• ZODA=ZOAD,••• ZODA=ZCAD>AODZ/AC,V ZC=90° ,•••ZODC二90° ,•••0D 丄BC,•••BC为圆0的切线.(2)设AB二x, AF=y,试用含x, y的代数式表示线段AD的长.解析:⑵连接DF,由⑴得到BC为圆0的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD.答案:(2)连接DF,由(1)知BC为圆0的切线,••• ZFDC 二ZDAF,••• ZCDA=ZCFD,••• ZAFD 二ZADB,••• ZBAD 二ZDAF,AAABD^AADF,AB AD:.AD AF ,即AD:=AB • AF二xy,则AD=丄(3) 若 BE 二8, sinB 二 13,求 DG 的长.解析:(3)连接EF,设圆的半径为r,由sinB 的值,利用锐角三角函数立义求出r 的值,由 直径所对的圆周角为直角,得到EF 与BC 平行,得到sinZAEF 二sinB,进而求出DG 的长即 可./・_ 5设圆的半径为r,可得r + 813, 解得:r=5,AAE=1O, AB 二 18,•・・AE 是直径,•••ZAFE 二ZC 二90° ,•••EF 〃BC,••• ZAEF=ZB,AF = AEesin ZAEF = 10x —=— • 13 13 , •••AF 〃OD,50AG_ AF_JJ_10 13 .I DG OD 5 13 ,即 DG 二 23 AD >••• v 13 13“ 13 30x/13 30^13 DG = — x------------ = ----------则 23 13 23・填空题(共5小题,每小题4分,共20分)21 •已知 x+y 二0.2, x+3y=b 则代数式 x'+4xy+4y‘的值为 _____ .解析:原式分解因式后,将已知等式代入汁算即可求出值.Vx+y=0. 2 9 x+3y=l,A2x+4y=l. 2,即 x+2y=0. 6, 则原式二(x+2y)J0・36.答案:0. 36 22.汉代数学家赵爽在注解《周髀算经》时给岀的“赵爽弦图”是我国古代数学的瑰宝•如图 所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2: 3•现随sin B =OD 5 答案:(3)连接EF,在RtABOD 中,OB 13,sin ZAEF =AE 13,机向该图形内掷一枚小针.则针尖落在阴影区域的概率为・解析:针尖落在阴影区域的概率就是四个直角三角形的而积之和与大正方形而积的比.设两直角边分别是2x, 3x,则斜边即大正方形的边长为曲血小正方形边长为x,所以S大正方形=13乳S小正方形=乳S阴影=12x\12/ _ 12则针尖落在阴影区域的概率为13" 13・12答案:131 —一123 •已知a>0, a , S F-S厂1, »,•••(即当n 为大于1 的奇S =—« c数时,;当n为大于1的偶数时,Sn二-S H-1),按此规律,2 ________ .解析:根据Sn数的变化找出Sa的值每6个一循环,结合2018=336X6+2,即可得岀S沁二S:, 此题得解.2S5=* = —(" + l)Se 二-S?-l 二(a+1) -1二3,S厂丄=丄* ",…,・・・3的值每6个一循环.72018=336X6+2,6/ + 1答案:“424•如图,在菱形ABCD中,tanA=3 , M, N分别在边AD, BC上,将四边形AMNB沿MN翻折,BN使AB的对应线段EF经过顶点D,当EF丄AD时,CN的值为______ ・解析:延长NF与DC交于点H,V ZADF=90G ,•••ZA+ZFDH二90° ,V ZDFN+ZDFH=180° , ZA+ZB二180° , ZB=ZDFN,••• ZA=ZDFH,•••ZFDH+ZDFH二90° ,•••NH 丄DC,设DM二14 DE二3k, EM二5k,•••AD 二9k 二DC, DF=6k,4VtanA=tanZDFH=3 ,4则 sinZDFH 二 5 ,4 24 DH = — DF = —k •••5 53ACN=5CH=7k,ABN=2k,BN _2• C7V "7 • • •答案:7y =L25.设双曲线’x (k>0)与直线尸x 交于A, B 两点(点A 在第三象限),将双曲线在第一象 限的一支沿射线BA 的方向平移,使英经过点A,将双曲线在第三象限的一支沿射线AB 的方 向平移,使其经过点B,平移后的两条曲线相交于P, Q 两点,此时我们称平移后的两条曲ky =- 线所围部分(如图中阴影部分)为双曲线的“眸J PQ 为双曲线的“眸径“,当双曲线 x (k >0)的眸径为6时,k 的值为cos C = cos A =CH 3 Ivc "5解析:以PQ为边,作矩形PQQ' P r交双曲线于点P‘ . Q',联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y二p上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P'的坐标, 再利用反比例函数图象上点的坐标特征即可得岀关于k的一元一次方程,解之即可得出结论.以PQ为边,作矩形PQQ' P z交双曲线于点P‘ . Q* ,如图所示.y = x< k y =—联立直线AB及双曲线解析式成方程组,*•••点A的坐标为(一灰,一灰),点B的坐标为(仮,仄)・•••PQ二6,3 迈3^2・・.op二3,点P的坐标为(2 , 2 ).根据图形的对称性可知:AB二00’ =PP r ,3>/2----- +•••点P'的坐标为(2ky =-又・••点P‘在双曲线X上,3解得:k=2.3答案:2二、解答题(本大题共3小题,每小题10分,共30分)26•为了美化环境.建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调査,甲种花卉的种植费用y (元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.⑴直接写出当0WxW300和x>300时,y与X的函数关系式.解析:(1)由图可知y与x的函数关系式是分段函数,待立系数法求解析式即可.‘130x(0 K 300)答(1)'~[80A +15000(X>300)(2)广场上甲.乙两种花卉的种植而积共1200m3,若甲种花卉的种植而积不少于200*且不超过乙种花卉种植而积的2倍,那么应该怎样分配甲、乙两种花卉的种植而枳才能使种植总费用最少?最少总费用为多少元?解析:(2)设甲种花卉种植为a m2,则乙种花卉种植(12000-a)in2,根据实际意义可以确左a的范[1,结合种植费用y(元)与种植而积x(m2)之间的函数关系可以分类讨论最少费用为多少.答案:(2)设甲种花卉种植为am:,则乙种花卉种植(12000-(ml"> 200.[6/ < 2(1200-«)•••2OO0W8OO,当200Wa<300 时,WF130a+100(1200-a) =30a+12000;当a=200 时,W^=126000 元;当300WaW800 时,W:=80a+15000+100 (1200-a) =135000-20a:当圧800 时,W^=l 19000 元.VI19000 <126000.•.当a二800时,总费用最少,最少总费用为119000元.此时乙种花卉种植而积为1200-800=400m:.答:应该分配甲、乙两种花卉的种植而积分别是800m:和400m%才能使种植总费用最少, 最少总费用为119000元.27.在RtAABC 中,ZACB 二90° , AB二°, AC 二2,过点B 作直线m 〃AC,将ZkABC 绕点C 顺时针旋转得到AA' B‘ C'(点A, B的对应点分别为屮,B'),射线CA‘ , CB'分別交直线m于点P, Q.(1)如图1,当P与X重合时,求ZACA f的度数.解析:⑴由旋转可得:AC=A f C=2,进而得到BC二血,依据BC二90 °,可得cosZA f CB = — = —AC 2 ,即可得到ZA' CB二30° , ZACA Z二60° .答案:(1)由旋转可得:AC二A' 82,TZACB二90°,血",AC二2,・・・BC二的,V ZACB=90° , m〃AC,・・・ZA‘ BC二90° ,cos ZA'CB =—=—・A f C 2 ,•••ZA‘ CB二30° ,•••ZACA'二60°・(2)如图2,设A' B r与BC的交点为M,当M为"B‘的中点时,求线段PQ的长.PB =至BC =—解析:⑵根据M为A' B'的中点,即可得出ZA=ZA r CM,进而得到2勺>/3 2 7依据 tanZQ 二tanZA 二 2 ,即可得到 BQ 二BCX 石二2,进而得岀 PQ 二PB+BQ 二 2 .答案:(2)TM 为A' B'的中点,A ZA Z CM 二ZMA' C,由旋转可得,ZMA' C=ZA,A ZA=ZA Z CM,迺t an Z PCB=t an Z A= 2 ,PB = -BC = -・・・ 2 2 ,VtanZQ=tanZA= 2 ,_2_.'.BQ 二BCX V 二2,7•••PQ 二PB+BQ 二 2 ・(3) 在旋转过程中,当点P, Q 分别在CA‘ , CB'的延长线上时,试探究四边形PA' B f Q 的 而积是否存在最小值•若存在,求岀四边形PA' B‘ Q 的最小而积;若不存在,请说明理由. 解析:(3)依据%辺形PATQhS^pcQ-S'AmhSbPCQ-W,即可得到Smi 形“ Q 最小,即S»PCQ =-PQ^BC = ^-PQX 最小,而/2 答案:(3)如图所示:•;S PI 边走PA• 3 Q 最小,即S./.P8最小,I R・ S 込Q =^PQ X BC = *PQ法一:(几何法)取PQ 的中点G,则ZPCQ 二90° ,£利用几何法或代数法即可得到Sf 的最小值S M 边彤?A* B Q=3—备用图=S'PCQ — = S^PCQ••• CG二2 PQ,即PQ二2CG,当CG最小时,PQ最小,•••CG丄PQ,即CG与CB重合时,CG最小,.•.CdM, pg•二2®Sz.FCfl 的最小值二3, S 3 Q二3—丁^;法二(代数法)设PB-X, BQ二y, 由射影泄理得:刃二3, ・•・当PQ最小时,x+y最小, /• (x+y) :=x:+2xy+y:=x::+6+3r:: 2xy+6=12 当X二y二石时,“二”成立,•PQ = y/3+y/3=2s/3•• ,•\S AP CQ的最小值二3, S川边島PA 3 G二3-・528.如图,在平而宜角坐标系xOy中,以直线x=2对称轴的抛物线y=ax:+bx+c与直线1:y=kx+m(k>0)交于A(l, 1), B两点,与y轴交于C(0, 5),直线与y轴交于点D・(1)求抛物线的函数表达式. 解析:(1)根据已知列出方程组求解即可.~2a~2< c = 5a+b+c=\答案:(1)由题意可得,解得,a=l, b=-5> c=5:•••二次函数的解析式为:尸x :-5x+5.(2)设直线1与抛物线的对称轴的交点为F, G 是抛物线上位于对称轴右侧的一点,若 AF _ 3FB 4 ,且ABCG 与ABCD 面积相等,求点G 的坐标.解析:⑵作AM 丄x 轴,BN 丄x 轴,垂足分別为M, N,求出直线1的解析式,在分两种情况 分别分析出G 点坐标即可.AF MQ 3 则 ~FB =QN =43VMQ= 2 t9 HANQ=2, B(2 , 4).k + m = \' 9,1—K+m=—-12 4, 2< 1m =— 解得,I 12 ,1 1 1 =-x+— —2 2 , D (0・ 2 ), 同理可求, S BC =_亍 + 51 1 you = ~--v+- •••(DDG〃BC(G 在BC 下方),22 ,1 1 . c c一一x + —=对一5兀 + 5-2 2 ,3解得,X1=2 , x:二3,5Vx> 2 ,x—3»•••G(3, 一1).②G在BC上方时,直线GG与DG:关于BC对称,1 19y(: G =—x H—• 35 2 21 丄72 L -一一x + —= x -5x + 5-2 2 ,9 + 3佰9-3717解得,XF 4 ,氐二 4 ,5Vx> 2 ,9 + 3庐.•.X 二4,9 + 3庐67-3佰・・・G( 4 , 8 ),9 + 3 奶67-3庐综上所述点G的坐标为G(3. -1), G( 4 , 8 ).(3)若在x轴上有且仅有一点P,使ZAPB二90°,求k的值.解析:(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.答案:(3)由题意可知:k+m二1,/• kx+1 - k二x■-5x+5 ♦解得,xFl, xFk+4,AB(k+4, k3+3k+l),设AB中点为O',TP点有且只有一个,・••以AB为直径的圆与x轴只有一个交点,且P为切点, A0r P丄x轴,・・.P为MN的中点,k + 5•••P( 2 , o),VAANfP^APNB,AM PN••9•••AM • BN=PN • PM>lx(C3R + l)+ + 4-字字•• ,Vk>0>.一6 + 4点(2>/6k = -------------- = _1 + --------二 6 3。

2022年四川省成都市中考数学试题及答案解析

2022年四川省成都市中考数学试题及答案解析

2022年四川省成都市中考数学试卷1.−37的相反数是( )A. 37B. −37C. 73D. −732.2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为( )A. 1.6×102B. 1.6×105C. 1.6×106D. 1.6×1073.下列计算正确的是( )A. m+m=m2B. 2(m−n)=2m−nC. (m+2n)2=m2+4n2D. (m+3)(m−3)=m2−94.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC//DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )A. BC=DEB. AE=DBC. ∠A=∠DEFD. ∠ABC=∠D5.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( )A. 56B. 60C. 63D. 726.如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )A. √3B. √6C. 3D. 2√37. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A. {x +y =1000,47x +119y =999B. {x +y =1000,74x +911y =999C. {x +y =1000,7x +9y =999D. {x +y =1000,4x +11y =9998. 如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于A(−1,0),B 两点,对称轴是直线x =1,下列说法正确的是( )A. a >0B. 当x >−1时,y 的值随x 值的增大而增大C. 点B 的坐标为(4,0)D. 4a +2b +c >09. 计算:(−a 3)2= ______ .10. 在平面直角坐标系xOy 中,若反比例函数y =k−2x的图象位于第二、四象限,则k 的取值范围是______.11. 如图,△ABC 和△DEF 是以点O 为位似中心的位似图形.若OA :AD =2:3,则△ABC 与△DEF 的周长比是______.12. 分式方程3−xx−4+14−x =1的解为______.13. 如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E.若AC =5,BE =4,∠B =45°,则AB 的长为______.14.(1)计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x+2)≥2x+5,①x2−1<x−23.②15.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<24xB2≤t<420C4≤t<636%D t≥616%根据图表信息,解答下列问题:(1)本次调查的学生总人数为______,表中x的值为______;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A′OB=108°时(点A′是A的对应点),用眼舒适度较为理想.求此时顶部边缘A′处离桌面的高度A′D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)17.如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在CD⏜上取一点E,使BE⏜=CD⏜,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=4,求BF及DE的长.518. 如图,在平面直角坐标系xOy 中,一次函数y =−2x +6的图象与反比例函数y =kx 的图象相交于A(a,4),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.19. 已知2a 2−7=2a ,则代数式(a −2a−1a)÷a−1a 2的值为______.20. 若一个直角三角形两条直角边的长分别是一元二次方程x 2−6x +4=0的两个实数根,则这个直角三角形斜边的长是______. 21. 如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是______.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度ℎ(米)与物体运动的时间t(秒)之间满足函数关系ℎ=−5t 2+mt +n ,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t秒时ℎ的值的“极差”(即0秒到t秒时ℎ的最大值与最小值的差),则当0≤t≤1时,w的取值范围是______;当2≤t≤3时,w的取值范围是______.23.如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P′,点Q是AC上一动点,连接P′Q,DQ.若AE=14,CE=18,则DQ−P′Q的最大值为______.24.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/ℎ,乙骑行的路程s(km)与骑行的时间t(ℎ)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?25.如图,在平面直角坐标系xOy中,直线y=kx−3(k≠0)与抛物线y=−x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B′.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB′,BB′,若△B′AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB′是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).答案和解析1.【答案】A【解析】解:−37的相反数是37. 故选:A .相反数的概念:只有符号不同的两个数叫做互为相反数. 本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】C【解析】解:160万=1600000=1.6×106, 故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】D【解析】解:A.m +m =2m ,故本选项不合题意; B .2(m −n)=2m −2n ,故本选项不合题意;C .(m +2n)2=m 2+4mn +4n 2,故本选项不合题意;D .(m +3)(m −3)=m 2−9,故本选项符合题意; 故选:D .选项A 根据合并同类项法则判断即可;选项B 根据去括号法则判断即可;选项C 根据完全平方公式判断即可;选项D 根据平方差公式判断即可.本题考查了合并同类项,去括号法则,完全平方公式以及平方差公式,掌握相关公式与运算法则是解答本题的关键.4.【答案】B【解析】解:∵AC//DF , ∴∠A =∠D ,∵AC=DF,∴当添加∠C=∠F时,可根据“ASA”判定△ABC≌△DEF;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断.本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.5.【答案】B【解析】解:由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B.根据众数的定义求解即可.本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.【答案】C【解析】解:连接OB、OC,如图:∵⊙O的周长等于6π,=3,∴⊙O的半径OB=OC=6π2π∵六边形ABCDEF是正六边形,=60°,∴∠BOC=360°6∴△BOC是等边三角形,∴BC=OB=OC=3,即正六边形的边长为3,故选:C.连接OB、OC,根据⊙O的周长等于6π,可得⊙O的半径OB=OC=3,而六边形ABCDEF是正六边形,即知∠BOC=360°6=60°,△BOC是等边三角形,即可得正六边形的边长为3.本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60°,从而得到△BOC是等边三角形.7.【答案】A【解析】解:∵共买了一千个苦果和甜果,∴x+y=1000;∵共买一千个苦果和甜果共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个,∴47x+119y=999.∴可列方程组为{x+y=100047x+119y=999.故选:A.利用总价=单价×数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】D【解析】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;B、∵抛物线对称轴是直线x=1,开口向下,∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;C、由A(−1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,∴4a+2b+c>0,故选项D正确,符合题意;故选:D.由抛物线开口方向可判断A,根据抛物线对称轴可判断B,由抛物线的轴对称性可得点B 的坐标,从而判断C,由(2,4a+2b+c)所在象限可判断D.本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.9.【答案】a6【解析】解:(−a3)2=a6.根据幂的乘方,底数不变指数相乘计算即可.本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.10.【答案】k<2的图象位于第二、四象限,【解析】解:∵反比例函数y=k−2x∴k−2<0,解得k<2,故答案为:k<2.根据反比例函数的性质列不等式即可解得答案.本题考查反比例函数的性质,解题的关键是掌握当k<0时,y=k的图象过第二、四象x限.11.【答案】2:5【解析】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.本题考查了位似变换.位似变换的两个图形相似.相似比等于位似比.12.【答案】x=3【解析】解:去分母得:3−x−1=x−4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】7【解析】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE=√AC2−CE2=√52−42=3,∴AB=AE+BE=3+4=7,故答案为:7.设MN交BC于D,连接EC,由作图可知:MN是线段BC的垂直平分线,即得BE=CE=4,有∠ECB=∠B=45°,从而∠AEC=∠ECB+∠B=90°,由勾股定理得AE=3,故AB= AE+BE=7.本题考查尺规作图中的计算问题,解题的关键是掌握用尺规作线段垂直平分线的方法,得到MN是线段BC的垂直平分线.14.【答案】解:(1)原式=2−3+3×√33+2−√3=−1+√3+2−√3=1;(2)解不等式①得,x≥−1,解不等式②得,x<2,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为−1≤x<2.【解析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.本题考查负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算以及一元一次不等式组,掌握负整数指数幂的性质,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算的方法以及一元一次不等式组的解法是正确解答的前提.15.【答案】508%【解析】解:(1)本次调查的学生总人数为8÷16%=50(人),所以x=450=8%;故答案为:50;8%;(2)500×2050=200(人),所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率=812=23.(1)用D等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x的值;(2)用500乘以B等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.16.【答案】解:∵∠AOB=150°,∴∠AOC=180°−∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°−∠A′OB=72°,在Rt△A′DO中,A′D=A′O⋅sin72°≈20×0.95=19(cm),∴此时顶部边缘A′处离桌面的高度A′D的长约为19cm.【解析】利用平角定义先求出∠AOC=30°,然后在Rt△ACO中,利用锐角三角函数的定义求出AO的长,从而求出A′O的长,再利用平角定义求出∠A′OD的度数,最后在Rt△A′DO中,利用锐角三角函数的定义进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.17.【答案】(1)证明:∵BE⏜=CD⏜,∴∠BCF=∠FBC,∵∠ACB=90°,∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,∴∠A=∠ACF;(2)解:连接CD.∵∠A=∠ACF,∠FBC=∠BCF,∴AF=FC=FB,∴cos∠A =cos∠ACF =45=AC AB ,∵AC =8,∴AB =10,BC =6,∵BC 是直径,∴∠CDB =90°,∴CD ⊥AB ,∵S △ABC =12⋅AC ⋅BC =12⋅AB ⋅CD , ∴CD =6×810=245,∴BD =√BC 2−CD 2=√62−(245)2=185, ∵BF =AF =5,∴DF =BF −BD =5−185=75, ∵∠DEF +∠DEC =180°,∠DEC +∠B =180°,∴∠DEF =∠B =∠BCF ,∴DE//CB ,∴△DEF∽△BCF ,∴DE BC =DF FB , ∴DE 6=755, ∴DE =4225.【解析】(1)利用等角的余角相等证明即可;(2)连接CD.解直角三角形求出AB ,BC ,利用面积法求出CD ,再利用勾股定理求出DB ,证明△DEF∽△BCF ,利用相似三角形的性质求出DE 即可.本题属于圆综合题,考查了解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.【答案】解:(1)∵一次函数y =−2x +6的图象过点A ,∴4=−2a +6,∴a =1,∴点A(1,4),∵反比例函数y =k x 的图象过点A(1,4),∴k =1×4=4;∴反比例函数的解析式为:y =4x ,联立方程组可得:{y =4x y =−2x +6, 解得:{x 1=1y 1=4,{x 2=2y 2=2, ∴点B(2,2);(2)如图,过点A 作AE ⊥y 轴于E ,过点C 作CF ⊥y 轴于F ,∴AE//CF ,∴△AEH∽△CFH ,∴AE CF =AH CH =EH FH , 当AH CH =12时,则CF =2AE =2,∴点C(−2,−2),∴BC =√(2+2)2+(2+2)2=4√2,当AH CH =2时,则CF =12AE =12,∴点C(−12,−8),∴BC =√(2+12)2+(2+8)2=5√172, 综上所述:BC 的长为4√2或5√172;(3)如图,当∠AQP =∠ABP =90°时,设直线AB 与y 轴交于点E ,过点B 作BF ⊥y 轴于F ,设BP 与y 轴的交点为N ,连接BQ ,AP 交于点H ,∵直线y =−2x +6与y 轴交于点E ,∴点E(0,6),∵点B(2,2),∴BF =OF =2,∴EF =4,∵∠ABP =90°,∴∠ABF +∠FBN =90°=∠ABF +∠BEF ,∴∠BEF =∠FBN ,又∵∠EFB =∠ABN =90°,∴△EBF∽△BNF ,∴BF EF =FN BF ,∴FN =2×24=1, ∴点N(0,1),∴直线BN 的解析式为:y =12x +1,联立方程组得:{y =4x y =12x +1, 解得:{x 1=−4y 1=−1,{x 2=2y 2=2, ∴点P(−4,−1),∴直线AP 的解析式为:y =x +3,∵AP 垂直平分BQ ,∴设BQ 的解析式为y =−x +4,∴x +3=−x +4,∴x=12,∴点H(12,72 ),∵点H是BQ的中点,点B(2,2),∴点Q(−1,5).【解析】(1)将点A坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP,AP,BQ的解析式,联立方程组可求解.本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.19.【答案】72【解析】解:原式=(a2a −2a−1a)×a2a−1=(a−1)2a ×a2a−1=a(a−1)=a2−a,∵2a2−7=2a,∴2a2−2a=7,∴a2−a=72,∴代数式的值为72,故答案为:72.先将代数式化简为a2−a,再由2a2−7=2a可得a2−a=72,即可求解.本题考查代数式求值,解题的关键是正确化简代数式,利用题干条件进行解答.20.【答案】2√7【解析】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2−6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c=√a2+b2=√(a+b)2−2ab=√62−2×4=2√7,故答案为:2√7.设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.本题考查一元二次方程根与系数的关系,涉及勾股定理、完全平方公式的应用,解题的关键是掌握一元二次方程根与系数的关系,得到a+b=6,ab=4.21.【答案】π−24【解析】解:作OD⊥CD,OB⊥AB,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=√22r,∴AE=2r,CF=√2r,∴这个点取在阴影部分的概率是πr2−(√2r)2(2r)2=π−24,故答案为:π−24.作OD⊥CD,OB⊥AB,设⊙O的半径为r,根据⊙O是小正方形的外接圆,是大正方形的内切圆,可得OB=OC=r,△AOB、△COD是等腰直角三角形,即可得AE=2r,CF=√2r,从而求出答案.本题考查几何概率,涉及正方形的外切圆与内接圆,解题的关键是用含r的代数式表示阴影部分的面积.22.【答案】0≤w≤55≤w≤20【解析】解:∵物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,∴抛物线ℎ=−5t2+mt+n的顶点的纵坐标为20,且经过(3,0)点,∴{4×(−5)n−m24×(−5)=20−5×32+3m+n=0,解得:{m 1=10n 1=15,{m 2=50n 2=−105(不合题意,舍去), ∴抛物线的解析式为ℎ=−5t 2+10t +15,∵ℎ=−5t 2+10t +15=−5(t −1)2+20,∴抛物线的最高点的坐标为(1,20).∵20−15=5,∴当0≤t ≤1时,w 的取值范围是:0≤w ≤5;当t =2时,ℎ=15,当t =3时,ℎ=0,∵20−15=5,20−0=20,∴当2≤t ≤3时,w 的取值范围是:5≤w ≤20.故答案为:0≤w ≤5;5≤w ≤20.利用待定系数法求得抛物线的解析式,再利用配方法求得抛物线的顶点坐标,结合函数图象即可求解.本题主要考查了二次函数的应用,待定系数法确定函数的解析式,二次函数的性质,理解“极差”的意义是解题的关键.23.【答案】16√23【解析】解:如图,连接BD 交AC 于点O ,过点D 作DK ⊥BC 于点B ,延长DE 交AB 于点R ,连接EP′交AB 于点J ,作EJ 关于AC 的对称线段EJ′,则DP′的对应点P″在线段EJ′上.当点P 是定点时,DQ −QP′=AD −QP″,当D ,P″,Q 共线时,QD −QP′的值最大,最大值是线段DP″的长,当点P 与B 重合时,点P″与J′重合,此时DQ −QP′的值最大,最大值是线段DJ′的长,也就是线段BJ 的长.∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC ,∵AE =14.EC =18,∴AC =32,AO =OC =16,∴OE =AO −AE =16−14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO⋅EC=36,∴DE=EB=EJ=6,∴CD=√EC2−DE2=√182−62=12√2,∴OD=√DE2−OE2=√62−22=4√2,∴BD=8√2,∵S△DCB=12×OC×BD=BC⋅DK,∴DK=12×16×8√212√2=163,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK=DKCD =16312√2=4√29,∴RB=BE×4√29=8√23,∵EJ=EB,ER⊥BJ,∴JR=BR=8√23,∴JB=DJ′=16√23,∴DQ−P′Q的最大值为16√23.故答案为:16√23.如图,连接BD交AC于点O,过点D作DK⊥BC于点B,延长DE交AB于点R,连接EP′交AB 于点J,作EJ关于AC的对称线段EJ′,则DP′的对应点P″在线段EJ′上.当点P是定点时,DQ−QP′=AD−QP″,当D,P″,Q共线时,QD−QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ−QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.解直角三角形求出BJ,可得结论.本题考查轴对称−最短问题,菱形的性质,解直角三角形等知识,解题的关键是学会利用轴对称解决最值问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.24.【答案】解:(1)当0≤t ≤0.2时,设s =at ,把(0.2,3)代入解析式得,0.2a =3,解得:a =15,∴s =15t ;当t >0.2时,设s =kt +b ,把(0.2,3)和(0.5,9)代入解析式,得{0.5k +b =90.2k +b =3, 解得{k =20b =−1, ∴s =20t −1,∴s 与t 之间的函数表达式为{15t(0≤t ≤0.2)20t −1(t >0.2); (2)设t 小时后乙在甲前面,根据题意得:20t −1≥18t ,解得:t ≥0.5,答:0.5小时后乙骑行在甲的前面.【解析】(1)根据图象分段设出函数解析式,在用待定系数法求出函数解析式即可;(2)设t 小时后乙在甲前面,用乙的路程大于甲的路程列出不等式求解即可. 本题考查一次函数的应用,关键是根据图象用待定系数法分段求函数解析式.25.【答案】解:(1)当k =2时,直线为y =2x −3,由{y =2x −3y =−x2得:{x =−3y =−9或{x =1y =−1, ∴A(−3,−9),B(1,−1);(2)当k >0时,如图:∵△B′AB 的面积与△OAB 的面积相等,∴OB′//AB ,∴∠OB′B =∠B′BC ,∵B 、B′关于y 轴对称,∴OB =OB′,∠ODB =∠ODB′=90°,∴∠OB′B =∠OBB′,∴∠OBB′=∠B′BC ,∵∠ODB =90°=∠CDB ,BD =BD ,∴△BOD≌△BCD(ASA),∴OD =CD ,在y =kx −3中,令x =0得y =−3,∴C(0,−3),OC =3,∴OD =12OC =32,D(0,−32), 在y =−x 2中,令y =−32得−32=−x 2,解得x =√62或x =−√62, ∴B(√62,−32),把B(√62,−32)代入y =kx −3得: −32=√62k −3,解得k =√62; 当k <0时,过B′作B′F//AB 交y 轴于F ,如图:在y =kx −3中,令x =0得y =−3,∴E(0,−3),OE =3,∵△B′AB 的面积与△OAB 的面积相等,∴OE =EF =3,∵B 、B′关于y 轴对称,∴FB =FB′,∠FGB =∠FGB′=90°,∴∠FB′B =∠FBB′,∵B′F//AB ,∴∠EBB′=∠FB′B ,∴∠EBB′=∠FBB′,∵∠BGE =90°=∠BGF ,BG =BG ,∴△BGF≌△BGE(ASA),∴GE =GF =12EF =32,∴OG =OE +GE =92,G(0,−92),在y =−x 2中,令y =−92得−92=−x 2,解得x =3√22或x =−3√22, ∴B(3√22,−92), 把B(3√22,−92)代入y =kx −3得: −92=3√22k −3,解得k =−√22,综上所述,k 的值为√62或−√22; (3)直线AB′经过定点(0,3),理由如下:由{y =−x 2y =kx −3得: {x =−k−√k 2+122y =−k 2−k√k 2+12−62或{x =−k+√k 2+122y =−k 2+k√k 2+12−62, ∴A(−k−√k 2+122,−k 2−k√k 2+12−62),B(−k+√k 2+122,−k 2+k√k 2+12−62),∵B 、B′关于y 轴对称,∴B′(k−√k 2+122,−k 2+k√k 2+12−62),设直线AB′解析式为y =mx +n ,将A(−k−√k2+122,−k 2−k√k 2+12−62),B′(k−√k 2+122,−k 2+k√k 2+12−62)代入得:{−k 2−k√k 2+12−62=−k−√k 2+122m +n −k 2+k√k 2+12−62=k−√k 2+122m +n, 解得{m =√k 2+12n =3, ∴直线AB′解析式为y =√k 2+12⋅x +3,令x =0得y =3,∴直线AB′经过定点(0,3).【解析】(1)当k =2时,直线为y =2x −3,联立解析式解方程组即得A(−3,−9),B(1,−1);(2)分两种情况:当k >0时,根据△B′AB 的面积与△OAB 的面积相等,知OB′//AB ,可证明△BOD≌△BCD(ASA),得OD =12OC =32,D(0,−32),可求B(√62,−32),即可得k =√62; 当k <0时,过B′作B′F//AB 交y 轴于F ,由△B′AB 的面积与△OAB 的面积相等,可得OE =EF =3,证明△BGF≌△BGE(ASA),可得OG =OE +GE =92,G(0,−92),从而B(3√22,−92),即可得k =−√22; (3)由{y =−x 2y =kx −3得A(−k−√k 2+122,−k 2−k√k 2+12−62),B(−k+√k 2+122,−k 2+k√k 2+12−62),可得B′(k−√k 2+122,−k 2+k√k 2+12−62),设直线AB′解析式为y =mx +n ,将A(−k−√k 2+122,−k 2−k√k 2+12−62),B′(k−√k 2+122,−k 2+k√k 2+12−62)可得直线AB′解析式为y =√k 2+12⋅x +3,从而可得直线AB′经过定点(0,3).本题考查二次函数综合应用,涉及待定系数法,对称变换,三角形全等的判定与性质等知识,解题的关键是根据已知求出B点的坐标.26.【答案】解:(1)∵四边形EBFG和四边形ABCD是矩形,∴∠A=∠BEG=∠D=90°,∴∠ABE+∠AEB=∠AEB+∠DEH=90°,∴∠DEH=∠ABE,∴△ABE∽△DEH,∴在点E的运动过程中,△ABE与△DEH始终保持相似关系;(2)如图1,∵H是线段CD中点,∴DH=CH,设DH=x,AE=a,则AB=2x,AD=4x,DE=4x−a,由(1)知:△ABE∽△DEH,∴AEDH =ABDE,即ax=2x4x−a,∴2x2=4ax−a2,∴2x2−4ax+a2=0,∴x=4a±√16a2−4×2×a24=2a±√2a2,∵tan∠ABE=AEAB =a2x,当x=2a+√2a2时,tan∠ABE=2×2a+√2a2=2−√22,当x=2a−√2a2时,tan∠ABE=2×2a−√2a2=2+√22;综上,tan∠ABE的值是2±√22.(3)分两种情况:①如图2,BH=FH,设AB=x,AE=a,∵四边形BEGF是矩形,∴∠AEG=∠G=90°,BE=FG,∴Rt△BEH≌Rt△FGH(HL),∴EH=GH,∵矩形EBFG∽矩形ABCD,∴ADAB =EGBE=n,∴2EHBE=n,∴EHBE =n2,由(1)知:△ABE∽△DEH,∴DEAB =EHBE=n2,∴nx−ax =n2,∴nx=2a,∴ax =n2,∴tan∠ABE=AEAB =ax=n2;②如图3,BF=FH,∵矩形EBFG∽矩形ABCD,∴∠ABC=∠EBF=90°,ABBC =BEBF,∴∠ABE=∠CBF,∴△ABE∽△CBF,∴∠BCF=∠A=90°,∴D,C,F共线,∵BF=FH,∴∠FBH=∠FHB,∵EG//BF,∴∠FBH=∠EHB,∴∠EHB=∠CHB,∵BE⊥EH,BC⊥CH,∴BE=BC,由①可知:AB=x,AE=a,BE=BC=nx,由勾股定理得:AB2+AE2=BE2,∴x2+a2=(nx)2,∴x=√n2−1负值舍),∴tan∠ABE=AEAB =ax=√n2−1,综上,tan∠ABE的值是n2或√n2−1.【解析】(1)根据两角对应相等可证明△ABE∽△DEH;(2)设DH=x,AE=a,则AB=2x,AD=4x,DE=4x−a,由△ABE∽△DEH,列比例式可得x=2a±√2a2,最后根据正切的定义可得结论;(3)分两种情况:FH=BH和FH=BF,先根据三角形相似证明F在射线DC上,再根据三角形相似的性质和勾股定理列等式可得结论.此题是几何变换综合题,考查了相似三角形的判定与性质,矩形的相似的性质,矩形的性质以及直角三角形的性质,三角形全等的性质和判定等知识,注意运用参数表示线段的长,并结合方程解决问题,还要运用分类讨论的思想.。

2024学年四川省成都外国语学校高一上学期期中考数学试题及答案

2024学年四川省成都外国语学校高一上学期期中考数学试题及答案

成都外国语学校2023-2024学年度上期半期考试高一数学试卷注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试120分钟,满分150分;3.答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题部分,共60分一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}1,2,3,4,5,6U =,{}1,3,6A =,{}2,3,4B =,则A B = ( )A. 3 B. {}1,3 C. {}3 D. {}2,32. 命题“3x ∃≥,2230x x -+<”的否定是( )A. 3x ∀≥,2230x x -+< B. 3x ∀≥,2230x x -+≥C. 3x ∀<,2230x x -+≥ D. 3x ∃<,2230x x -+≥3. 函数()f x =)A [)1,+∞ B. ()1,+∞C. [)1,2 D. [)()1,22,⋃+∞4. “1k >-”是“函数3y kx =+在R 上为增函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5. 若,,R,0a b c c ∈>且0a b >>,下列不等式一定成立的是( )A ac bc < B.11a b < C. a c b c -<- D. 11b b a a +>+6. 函数()2605y x x x =-+≤≤的值域是( )A. []0,5B. []0,9C. []5,9D. [)0,∞+..7. 函数()21x f x x -=的大致图象为( )A. B.C. D.8. 若函数()f x 是定义在R 上的偶函数,在区间(],0-∞上是减函数,且()10f =,则不等式()10f x x+≥的解集为( )A. [)2,-+∞ B. [)()2,00,-⋃+∞ C. [)0,∞+ D. [)(]2,00,2-U 二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列数学符号使用正确的是( )A. 1N-Ï B. {}1Z ⊆C. 0∈∅ D. ∅ {}010. 下列各选项给出两个函数中,表示相同函数的有( )A. ()1f x x =+与()0g x x x=+B. ()f x x =与()g x =C. ()f x x =与()2x g x x=D. ()f t t =与()g x x =11. 设正实数m n 、满足2m n +=,则( )A.12m n +的最小值为B.最小值为2C.的最大值为1的的D. 22m n +的最小值为212. 已知定义在R 的函数()f x 满足以下条件:(1)对任意实数,x y 恒有()()()()()f x y f x f y f x f y +=++;(2)当0x >时,()f x 的值域是()0,∞+(3)()11f =则下列说法正确的是( )A. ()f x 值域为[)1,-+∞B. ()f x 单调递增C. ()8255f =D. ()()()31f x f f x f x -⎡⎤≥⎣⎦+的解集为[)1,+∞第Ⅱ卷 非选择题部分,共90分三、填空题:本题共4小题,每小题5分,共20分.13. 已知集合{}{}21,,A B a a ==,且A B A = ,则a 的值为_________.14. 设函数()4,0,2,0,3x x x f x x x x ⎧-<⎪⎪=⎨⎪≥⎪+⎩则()()1f f -=__________.15. 一元二次不等式23280x x -++≤的解集为________.16. 设函数()f x 的定义域为D ,若存在实数()0T T >,使得对于任意x D ∈,都有()()f x f x T <+,则称()f x 为“T -严格增函数”,对于“T -严格增函数”,有以下四个结论:①“T -严格增函数”()f x 一定在D 上严格增;②“T -严格增函数”()f x 一定是“nT -严格增函数”(其中*N n ∈,且2n ≥)③函数()[]f x x =是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)④函数()[]f x x x =-不是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)其中,所有正确的结论序号是______.四、解答题:本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知集合U =R ,集合{}23A x x =-≤≤,{1B x x =<-或}4x >(1)求A B ⋃;(2)求()U A B ∩ð18. 已知函数()b f x x x =+过点(1,2).(1)判断()f x 在区间(1,)+∞上的单调性,并用定义证明;(2)求函数()f x 在[]2,7上的最大值和最小值.19. (1)已知函数()212f x x =+,则()f x 的值域;(2)已知1)f x +=+,求()f x 的解析式;(3)已知函数()f x 对于任意的x 都有()2()32f x f x x +-=-,求()f x 的解析式.20. 已知关于x 的不等式230x bx c ++-<的解集为()1,2-.(1)当[]0,3x ∈时,求2x bx c x++的最小值;(2)当x ∈R 时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,求实数m 的取值范围.21. 已知函数()21ax b f x x-=+是定义在[]1,1-上的奇函数,且()11f =-.(1)求函数()f x 的解析式;(2)判断()f x 在[]1,1-上单调性,并用单调性定义证明;(3)解不等式()()()210f t f t f -+>.22. 若函数()f x 在[],x a b ∈时,函数值y 的取值区间恰为11,b a⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()f x 的一个“倒域区间”.已知定义在[]22-,上的奇函数()g x ,当[]0,2x ∈时,()22g x x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在[]1,2内的“倒域区间”;(3)求函数()g x 在定义域内的所有“倒域区间”.的成都外国语学校2023-2024学年度上期半期考试高一数学试卷注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试120分钟,满分150分;3.答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题部分,共60分一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}1,2,3,4,5,6U =,{}1,3,6A =,{}2,3,4B =,则A B = ( )A. 3B. {}1,3C. {}3D. {}2,3【答案】C【解析】【分析】利用交集的运算求解即可.【详解】由题知,{}3A B ⋂=.故选:C2. 命题“3x ∃≥,2230x x -+<”的否定是( )A. 3x ∀≥,2230x x -+< B. 3x ∀≥,2230x x -+≥C. 3x ∀<,2230x x -+≥ D. 3x ∃<,2230x x -+≥【答案】B【解析】【分析】利用含有一个量词的命题的否定规律“改量词,否结论”分析判断即可得解.【详解】解:因为命题“3x ∃≥,2230x x -+<”为存在量词命题,所以其否定为“3x ∀≥,2230x x -+≥”.故选:B .3. 函数()f x = )A. [)1,+∞ B. ()1,+∞C. [)1,2 D. [)()1,22,⋃+∞【答案】D【解析】【分析】根据开偶数次发根号里的数大于等于零,分母不等于零计算即可.【详解】由()f x =得1020x x -≥⎧⎨-≠⎩,解得1x >且2x ≠,所以函数()f x =[)()1,22,⋃+∞.故选:D.4. “1k >-”是“函数3y kx =+在R 上为增函数”的( )A 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】【分析】根据一次函数的性质与必要不充分条件的判定即可得到答案.【详解】当12k =-时,满足1k >-,但是函数3y kx =+在R 上为减函数,则正推无法推出;反之,若函数3y kx =+在R 上为增函数,则01k >>-,则反向可以推出,则“1k >-”是“函数3y kx =+在R 上为增函数”的必要不充分条件,故选:B .5. 若,,R,0a b c c ∈>且0a b >>,下列不等式一定成立的是( )A. ac bc< B. 11a b < C. a c b c -<- D. 11b b a a +>+【答案】B【解析】【分析】ACD 举反例确定错误,B 作差法可判断..【详解】A ,2,1a c b ===时,2212⋅>⋅,A 错误;B ,11110,0,b a a b a b ab a b->>∴-=<∴< ,B 正确;C ,2,1a c b ===时,2212->-,C 错误;D ,2,1a c b ===时,111221+<+,D 错误.故选:B6. 函数()2605y x x x =-+≤≤的值域是( )A. []0,5 B. []0,9 C. []5,9 D. [)0,∞+【答案】B【解析】【分析】根据二次函数的性质即可求解.【详解】函数26y x x =-+的图象是一条开口向下的抛物线,对称轴为3x =,所以该函数在(0,3)上单调递增,在(3,5)上单调递减,所以max 39x y y ===,又050,5x x y y ====,所以min 0y =,即函数的值域为[0,9].故选:B.7. 函数()21x f x x -=的大致图象为( )A. B.C. D.【答案】D【解析】【详解】根据函数的奇偶性以及函数的解析式判断出正确答案.【分析】()21x f x x -=的定义域为{}|0x x ≠,()()()2211x x f x f x x x ----==-=--,所以()f x 是奇函数,图象关于原点对称,所以A 选项错误.当0x >时,()210x f x x -=≥,所以C 选项错误.当0x >时,令()210x f x x -==,解得1x =,所以B 选项错误.所以正确的是D.故选:D 8. 若函数()f x 是定义在R 上的偶函数,在区间(],0-∞上是减函数,且()10f =,则不等式()10f x x+≥的解集为( )A. [)2,-+∞ B. [)()2,00,-⋃+∞ C. [)0,∞+ D. [)(]2,00,2-U 【答案】B【解析】【分析】确定函数的单调性,考虑0x >和0x <两种情况,将问题转化为(1)0f x +≥或(1)0f x +≤,再根据函数值结合函数单调性得到答案.【详解】函数()f x 是定义在实数集R 上的偶函数,()f x 在区间(],0-∞上是严格减函数,故函数()f x 在()0,∞+上单调递增,且(1)(1)0f f -==,当0x >时,由(1)0f x x+≥,即(1)0f x +≥,得到11x +≥或11x +≤-(舍弃),所以0x >,当0x <时,由(1)0f x x +≥,即(1)0f x +≤,得到111x -≤+≤,所以20x -≤<,综上所述,20x -≤<或0x >,故选:B.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列数学符号使用正确的是( )A. 1N-Ï B. {}1Z ⊆C. 0∈∅D. ∅ {}0【答案】ABD【解析】【分析】根据集合与元素之间关系符号和集合与集合之间的关系符号来判断即可.【详解】对于A ,N 表示自然数集,1-不是自然数,故1N -Ï成立,则A 选项正确;对于B ,Z 表示整数集,1Z ∈,故{}1Z ⊆成立,则B 选项正确;对于C ,∅表示空集,没有任何一个元素,即0∉∅,故C 选项不正确;对于D ,空集是任何一个非空集合的真子集,故∅ {}0成立,则D 选项正确.故选:ABD.10. 下列各选项给出的两个函数中,表示相同函数的有( )A. ()1f x x =+与()0g x x x=+B. ()f x()g x =C. ()f x x =与()2x g x x=D. ()f t t =与()g x x =【答案】BD【解析】【分析】根据函数的“三要素”一一判断每个选项中的函数,看定义域和对应关系是否相同,即可得答案.【详解】对于A ,函数()1f x x =+的定义域为R ,()0g x x x =+的定义域为{|0}x x ≠,故二者不是相同函数,A 错误;对于B ,()f x x =的定义为域为R ,()||g x x ==的定义域为R ,二者对应关系也相同,值域都为[0,)+∞,故二者表示相同函数,B 正确;对于C ,()f x x =的定义域为R ,()2x g x x=的定义域为{|0}x x ≠,故二者不是相同函数,C 错误;对于D ,()f t t =与()g x x =的的定义域均为(,0]-∞,对应关系相同,的值域均为(,0]-∞,故二者表示相同函数,D 正确;故选:BD11. 设正实数m n 、满足2m n +=,则( )A.12m n +的最小值为B.的最小值为2C. 的最大值为1D. 22m n +的最小值为2【答案】CD【解析】【分析】由已知条件结合基本不等式及其相关变形,分别检验各个选项即可判断正误.【详解】对于选项A ,322121222m n n m m n m n m n ⎛⎫+=++⎛⎫=+ ⎪⎪⎭⎭+⎝⎝32≥+= ,当且仅当=m n 且2m n +=时,即2m =-,4n =-时取等号,则A 错误;对于选项B , 22m n =++=+24m n ≤++=,当且仅当1m n ==2+≤+的最大值为2,则B 错误;对于选项C ,m n +≥212m n mn +⎛⎫≤= ⎪⎝⎭,当且仅当1m n ==时,等号成立,则C 正确;对于选项D , ()222242m n m n mn mn +=+-=-24222m n +⎛⎫≥-= ⎪⎝⎭,当且仅当1m n ==时,等号成立,则D 正确,故选: CD .12. 已知定义在R 的函数()f x 满足以下条件:(1)对任意实数,x y 恒有()()()()()f x y f x f y f x f y +=++;(2)当0x >时,()f x 的值域是()0,∞+(3)()11f =则下列说法正确的是( )A. ()f x 值域为[)1,-+∞B. ()f x 单调递增C. ()8255f =D. ()()()31f x f f x f x -⎡⎤≥⎣⎦+的解集为[)1,+∞【答案】BCD 【解析】【分析】计算()00f =得到()()1111f x f x =-+>--+,A 错误,根据单调性的定义得到B 正确,计算()23f =,()415f =,()8255f =得到C 正确,题目转化为()()2f x f x f ⎡⎤+≥⎣⎦得到()2x f x +≥,根据函数的单调性得到D 正确,得到答案.【详解】对选项A :令1,0x y ==可得()()()()()11001f f f f f =++,故()00f =,令y x =-可得()()()()()0f f x f x f x f x =-++-,()1f x -≠-,()()()()1111f x f x f x f x --==-+-+-+,当0x <时,()0f x ->,则()()1111f x f x =-+>--+,综上所述:()()1,f x ∈-+∞,错误;对选项B :任取12,R x x ∈且12x x >,()120f x x ->,()21f x >-,则()()()()()()()12122212212f x f x f x x x f x f x x f x f x x -=-+-=-+-()()12210f x x f x ⎡⎤=-+>⎣⎦,所以函数()y f x =在R 上单调递增,正确;对选项C :取1x y ==得到()()()()()211113f f f f f =++=;取2x y ==得到()()()()()4222215f f f f f =++=;取4x y ==得到()()()()()84444255f f f f f =++=,正确;对选项D :()()()31f x f f x f x -⎡⎤≥⎣⎦+,()()()13f f x f x f x ⎡⎤⎡⎤+≥-⎣⎦⎣⎦,即()()()()()()2f f x f x f x f f x f x f x f ⎡⎤⎡⎤⎡⎤++=+≥⎣⎦⎣⎦⎣⎦,即()2x f x +≥,函数()()g x x f x =+单调递增,且()1112g =+=,故1x ≥,正确;故选:BCD【点睛】关键点睛:本题考查了抽象函数问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据题目信息转化得到()()2f x f x f ⎡⎤+≥⎣⎦,再利用函数的单调性解不等式是解题的关键.第Ⅱ卷 非选择题部分,共90分三、填空题:本题共4小题,每小题5分,共20分.13. 已知集合{}{}21,,A B a a ==,且A B A = ,则a 的值为_________.【答案】1-【解析】【分析】由A B A = 得A B ⊆,列式求解,然后检验元素的互异性.【详解】∵A B A = ,∴A B ⊆,又{}{}21,,A B a a ==,∴1a =或21a =,解得1a =或1a =-,当1a =不满足元素的互异性,舍去,所以1a =-.故答案为:1-.14. 设函数()4,0,2,0,3x x xf x x x x ⎧-<⎪⎪=⎨⎪≥⎪+⎩则()()1f f -=__________.【答案】1【解析】【分析】分段函数求值,根据自变量的取值范围代入相应的对应关系.【详解】当=1x -时,()f -=--=-41131,则()()231(3)133ff f ⋅-===+.故答案为:115. 一元二次不等式23280x x -++≤的解集为________.【答案】(][),47,-∞-+∞【解析】【分析】由一元二次不等式的解法进行求解即可.【详解】()()22328032804707x x x x x x x -++≤⇒--≥⇒+-≥⇒≥,或4x ≤-所以一元二次不等式23280x x -++≤的解集为(][),47,-∞-+∞ ,故答案为:(][),47,-∞-+∞ 16. 设函数()f x 的定义域为D ,若存在实数()0T T >,使得对于任意x D ∈,都有()()f x f x T <+,则称()f x 为“T -严格增函数”,对于“T -严格增函数”,有以下四个结论:①“T -严格增函数”()f x 一定在D 上严格增;②“T -严格增函数”()f x 一定是“nT -严格增函数”(其中*N n ∈,且2n ≥)③函数()[]f x x =是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)④函数()[]f x x x =-不是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)其中,所有正确的结论序号是______.【答案】②③④【解析】【分析】根据“T -严格增函数”的定义对四个结论逐一分析,从而确定正确答案.【详解】①,函数(),01,0x x f x x x <⎧=⎨-≥⎩,定义域为R ,存在2T =,对于任意x ∈R ,都有()()2f x f x <+,但()f x 在R 上不单调递增,所以①错误.②,()f x 是“T -严格增函数”,则存在0T >,使得对任意x D ∈,都有()()f x f x T <+,因为2,0n T ≥>,所以()()f x T f x nT +<+,故()()f x f x nT <+,即存在实数0nT >,使得对任意x D ∈,都有()()f x f x nT <+,所以()f x 是“nT -严格增函数”, ②正确.③,()[]f x x =,定义域为R ,当1T =时,对任意的x ∈R ,都有[][]1x x <+,即()()1f x f x <+,所以函数()[]f x x =是“T -严格增函数”.④,对于函数()[]f x x x =-,()[][][]()11111f x x x x x x x f x +=+-+=+--=-=,所以()f x 是周期为1的周期函数,11112222f ⎛⎫⎡⎤=-= ⎪⎢⎥⎝⎭⎣⎦,若1T =,则133********f f ⎛⎫⎡⎤⎛⎫+=-== ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭,不符合题意.当0T >且1T ≠时,若()()f x f x T <+,则[][]x x x T x T -<+-+,即[][]T x T x >+-(*),其中,若01T <<,则总存在,2n n ∈≥*N ,使得1nT >,当1T >时,若T 是正整数,则[][]x T x T +-=,(*)不成立,若T 不是正整数,[][]T x T x >+-不恒成立,所以函数()[]f x x x =-不是“T -严格增函数”.故答案为:②③④【点睛】本题主要考查新定义函数的理解,对于新定义函数的题,解题方法是通过转化法,将“新”转化为“旧”来解题,选择题中,可利用特殊值进行举反例来排除.四、解答题:本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知集合U =R ,集合{}23A x x =-≤≤,{1B x x =<-或}4x >(1)求A B ⋃;(2)求()U A B∩ð【答案】(1){3x x ≤或}4x > (2){}13x x -≤≤【解析】【分析】(1)根据并集概念进行计算;(2)先求出{}14U B x x =-≤≤ð,进而利用交集概念进行计算.【小问1详解】{}{|231A B x x x x ⋃=-≤≤⋃<-或}4x >{3x x =≤或}4x >;【小问2详解】{}14U B x x =-≤≤ð,(){}{}{}|231413U A B x x x x x x ⋂=-≤≤⋂-≤≤=-≤≤ð18. 已知函数()bf x x x=+过点(1,2).(1)判断()f x 在区间(1,)+∞上的单调性,并用定义证明;(2)求函数()f x 在[]2,7上的最大值和最小值.【答案】(1)()f x 在区间(1,)+∞上单调递增,证明见解析 (2)最大值507,最小值为52【解析】【分析】(1)求出函数的表达式,利用单调性定义即可判断函数的单调性;(2)根据单调性即可得出函数()f x 在[]2,7上最大值和最小值.【小问1详解】单调递增,由题意证明如下,由函数()b f x x x=+过点(1,2),有121b+=,解得1b =,所以()f x 的解析式为:1()f x x x=+.设12,(1,)x x ∀∈+∞,且12x x <,有()()()()121212121212111x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭.由1212,(1,),x x x x ∈+∞<,得121210,0x x x x ->-<.则()()12121210x x x x x x --<,即()()12f x f x <.∴()f x 在区间(1,)+∞上单调递增.【小问2详解】由()f x 在(1,)+∞上是增函数,所以()f x 在区间[2,7]上的最小值为5(2)2f =,最大值为50(7)7f =.19. (1)已知函数()212f x x =+,则()f x 的值域;为的(2)已知1)f x +=+,求()f x 的解析式;(3)已知函数()f x 对于任意的x 都有()2()32f x f x x +-=-,求()f x 的解析式.【答案】(1)1|02y y ⎧⎫<≤⎨⎬⎩⎭;(2)2()1f x x =-,其中1x ≥;(3)2()33f x x =--【解析】【分析】(1)根据函数的性质即可得函数的值域;(2)配凑法或换元法求函数的解析式(3)列方程组法求函数的解析式【详解】(1)由于220,22x x ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭(2))221)1111f =++-=+-,,故所求函数的解析式为2()1f x x =-,其中1x ≥.(3)∵对于任意的x 都有()2()32f x f x x +-=-,∴将x 替换为-x ,得()2()32f x f x x -+=--,联立方程组:()2()32()2()32f x f x x f x f x x +-=-⎧⎨-+=--⎩消去()f x -,可得2()33f x x =--.20. 已知关于x 的不等式230x bx c ++-<的解集为()1,2-.(1)当[]0,3x ∈时,求2x bx cx++的最小值;(2)当x ∈R 时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,求实数m 的取值范围.【答案】(1)1 (2)5,4⎛⎫-∞-⎪⎝⎭【解析】【分析】(1)依题意可得,1-和2是方程230x bx c ++-=的两根,从而可求得b ,c 的值,再利用基本不等式即可求解;(2)依题意可得,已知条件等价于212x x x m -+>+在(),-∞+∞上恒成立,分离参数转化为最值问题即可求解.【小问1详解】因为关于x 的不等式230x bx c ++-<的解集为()1,2-,所以1-和2是方程230x bx c ++-=的两根,所以12123b c -+=-⎧⎨-⨯=-⎩,解得11b c =-⎧⎨=⎩,由2x bx c x++可知,0x ≠,所以当(]0,3x ∈时,2211111x bx c x x x x x x ++-+==+-≥-=,当且仅当1x =时,等号成立,所以2x bx c x ++的最小值为1.【小问2详解】结合(1)可得221y x bx c x x =++=-+,对于R x ∀∈,函数2y x bx c =++的图象恒在函数2y x m =+的图象的上方,等价于212x x x m -+>+在(),x ∈-∞+∞上恒成立,即231m x x <-+在(),x ∈-∞+∞上恒成立,则()2min31m x x <-+即可,因为2235531()244x x x -+=--≥-,所以54m <-,所以实数m 的取值范围为5,4⎛⎫-∞- ⎪⎝⎭.21. 已知函数()21ax bf x x -=+是定义在[]1,1-上的奇函数,且()11f =-.(1)求函数()f x 的解析式;(2)判断()f x 在[]1,1-上的单调性,并用单调性定义证明;(3)解不等式()()()210f t f t f -+>.【答案】21. ()221xf x x -=+,[]1,1x ∈- 22. 减函数;证明见解析;23. ⎡⎢⎣【解析】【分析】(1)根据奇函数的性质和()11f =求解即可.(2)利用函数单调性定义证明即可.(3)首先将题意转化为解不等式()()21f t f t >-,再结合()f x 的单调性求解即可.【小问1详解】函数()21ax bf x x-=+是定义在[]1,1-上的奇函数,()()f x f x -=-;2211ax b ax bx x---=-++,解得0b =,∴()21axf x x =+,而()11f =-,解得2a =-,∴()221xf x x-=+,[]1,1x ∈-.小问2详解】函数()221xf x x-=+在[]1,1-上为减函数;证明如下:任意[]12,1,1x x ∈-且12x x <,则()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++因为12x x <,所以120x x -<,又因为[]12,1,1x x ∈-,所以1210x x ->,所以()()120f x f x ->,即()()12f x f x >,所以函数()()12f x f x >在[]1,1-上为减函数.【小问3详解】由题意,()()()210f t f t f -+>,又()00f =,所以()()210f t f t -+>,即解不等式()()21f tf t >--,所以()()21f t f t >-,所以22111111t t t t⎧-≤≤⎪-≤-≤⎨⎪<-⎩,解得0t ≤<,所以该不等式的解集为⎡⎢⎣.22. 若函数()f x 在[],x a b ∈时,函数值y 的取值区间恰为11,b a⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()f x 的一个“倒【域区间”.已知定义在[]22-,上的奇函数()g x ,当[]0,2x ∈时,()22g x x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在[]1,2内的“倒域区间”;(3)求函数()g x 在定义域内的所有“倒域区间”.【答案】(1)()222,022,20x x x g x x x x ⎧-+≤≤=⎨+-≤<⎩(2)⎡⎢⎣(3)⎡⎢⎣和1⎤-⎥⎦【解析】【分析】(1)设[)2,0x ∈-,利用奇函数的定义可求得函数()g x 在[)2,0-上的解析式,由此可得出函数()g x 在[]22-,上的解析式;(2)设12a b ≤<≤,分析函数()g x 在[]1,2上的单调性,可出关于a 、b 的方程组,解之即可;(3)分析可知0a bab <⎧⎨>⎩,只需讨论02a b <<≤或20a b -≤<<,分析二次函数()g x 的单调性,根据题中定义可得出关于实数a 、b 的等式组,求出a 、b 的值,即可得出结果.【小问1详解】解:当[)2,0x ∈-时,则(]0,2x -∈,由奇函数的定义可得()()()()2222x g x g x x x x ⎡⎤=--=---=⎣⎦++-,所以,()222,022,20x x x g x x x x ⎧-+≤≤=⎨+-≤<⎩.【小问2详解】解:设12a b ≤<≤,因为函数()g x 在[]1,2上递减,且()g x 在[],a b 上的值域为11,b a⎡⎤⎢⎥⎣⎦,所以,()()22121212g b b b bg a a a a a b ⎧=-+=⎪⎪⎪=-+=⎨⎪≤<≤⎪⎪⎩,解得1a b =⎧⎪⎨=⎪⎩,所以,函数()g x 在[]1,2内的“倒域区间”为⎡⎢⎣.【小问3详解】解:()g x 在[],a b 时,函数值()g x 的取值区间恰为11,b a⎡⎤⎢⎥⎣⎦,其中a b ¹且0a ≠,0b ≠,所以,11a bb a<⎧⎪⎨<⎪⎩,则0a b ab <⎧⎨>⎩,只考虑02a b <<≤或20a b -≤<<,①当02a b <<≤时,因为函数()g x 在[]0,1上单调递增,在[]1,2上单调递减,故当[]0,2x ∈时,()()max 11g x g ==,则11a≤,所以,12a ≤<,所以,12a b ≤<≤,由(2)知()g x 在[]1,2内的“倒域区间”为⎡⎢⎣;②当20a b -≤<<时,()g x 在[]2,1--上单调递减,在[]1,0-上单调递增,故当[]2,0x ∈-时,()()min 11g x g =-=-,所以,11b≥-,所以,21b -<≤-.21a b ∴-≤<≤-,因为()g x 在[]2,1--上单调递减,则()()22121221g a a a ag b b b b a b ⎧=+=⎪⎪⎪=+=⎨⎪-≤<≤-⎪⎪⎩,解得1a b ⎧=⎪⎨⎪=-⎩,所以,()g x 在[]2,1--内的“倒域区间”为1⎤-⎥⎦.综上所述,函数()g x 在定义域内的“倒域区间”为⎡⎢⎣和1⎤-⎥⎦.【点睛】关键点点睛:本题考查函数的新定义,解题的关键在于分析函数的单调性,结合题意得出关于参数的方程,进行求解即可.。

2021年四川省成都市中考数学试题及参考答案(word解析版)

2021年四川省成都市中考数学试题及参考答案(word解析版)

2021年成都市高中阶段教育学校统一招生考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2 6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAFC.AE=AD D.∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π第Ⅱ卷(非选择题共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.因式分解:x2﹣4=.12.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.根据图表信息,解答下列问题:(1)分别求出表中m ,n 的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角∠MBC =33°,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角∠MEC =45°(点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x+的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.20.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为,△ABC 的面积为2,求CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若=,求BF 的长. B 卷(共50分)课程人数 篮球 m 足球 21 排球 30 乒乓球 n一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.答案与解析A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.7【知识考点】倒数.【思路分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解题过程】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.【总结归纳】此题主要考查了倒数,正确掌握倒数的定义是解题关键.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解题过程】解:3亿=300000000=3×108.故选:D.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()。

2022年四川省成都市中考数学真题(含解析)

2022年四川省成都市中考数学真题(含解析)

z2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1. 的相反数是( ) A. B.C. D.2. 2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( ) A.B.C.D.3. 下列计算正确的是( ) AB. C.D.4. 如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定是( )A.B. C. D.5. 在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( ) A. 56B. 60C. 63D. 726. 如图,正六边形内接于⊙,若⊙的周长等于,则正六边形的边长为( )37-3737-73-7321.610´51.610´61.610´71.610´2m m m +=()22m n m n -=-222(2)4m n m n +=+2(3)(3)9m m m +-=-ABC !DEF !A E B D AC DF !AC DF =ABC DEF△≌△的BC DE =AE DB =A DEF Ð=ÐABC D Ð=ÐABCDEF O O 6pzA.B.C. 3D.7. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有个,甜果有个,则可列方程组为( )A. B. C.D.8. 如图,二次函数图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )A.B. 当时,的值随值的增大而增大C. 点的坐标为D.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9. 计算:______.x y 100041199979x y x y +=ìïí+=ïî100079909411x y x y +=ìïí+=ïî100079999x y x y +=ìí+=î1000411999x y x y +=ìí+=î2y ax bx c =++的x ()1,0A -B 1x =0a >1x >-y x B ()4,0420a b c ++>()23a -=z10. 关于x 的反比例函数的图像位于第二、四象限,则m 的取值范围是________. 11. 如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.12. 分式方程的解是_________. 13. 如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.三、解答题(本大题共5个小题)14. 计算:. (2)解不等式组:. 15. 2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.2m y x-=ABC !DEF !O :2:3OA AD =ABC !DEF!31144x x x-+=--ABC !B C 12BC M N MN AB E 5AC =4BE =45B Ð=°AB 113tan 3022-æö-°+-ç÷èø3(2)252123x x x x +³+ìïí--<ïî①②z等级 时长:(单位:分钟) 人数 所占百分比420根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中的值为_________; (2)该校共有500名学生,请你估计等级为学生人数;(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16. 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)A 02t £<xB 24t £<C 46t £<36%D 6t ³16%x B的A 150AOB Ð=°A AC 10cm 108A OB ¢Ð=°A ¢A A ¢AD ¢1cm sin 720.95°»cos720.31°»tan 72 3.08°»z17. 如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:; (2)若,,求及的长. 18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)求反比例函数的表达式及点的坐标;(2)过点作直线,交反比例函数图象于另一点,连接,当线段被轴分成长度比为的两部分时,求的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设是第三象限内的反比例函数图象上一点,是平面内一点,当四边形是完美筝形时,求,两点的坐标.B 卷一、填空题(本大题共5个小题)19. 已知,则代数式的值为_________. Rt ABC △90ACB Ð=°BC O AB D CD E BE CD =DE CE ABF A ACF Ð=Ð8AC =4cos 5ACF Ð=BF DE xOy 26y x =-+ky x=(),4A a B B A AC C BC AC y 1:2BC P Q ABPQ P Q 2272a a -=2211a a a a a--æö-÷ç÷èøz20. 若一个直角三角形两条直角边的长分别是一元二次方程的两个实数根,则这个直角三角形斜边的长是_________.21. 如图,已知⊙是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.23. 如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.二、解答题24. 随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是2640x x -+=O h t 25h t mt n =-++w t h t h 01t ££w 23t ££w ABCD D DE CD ^AC E BE P BE P DE P ¢Q AC P Q ¢DQ 14AE =18CE =DQ P Q ¢-z,乙骑行的路程与骑行的时间之间的关系如图所示.(1)直接写出当和时,与之间的函数表达式; (2)何时乙骑行在甲的前面?25. 如图,在平面直角坐标系中,直线与抛物线相交于,两点(点在点左侧),点关于轴的对称点为.(1)当时,求,两点的坐标;(2)连接,,,,若的面积与的面积相等,求的值; (3)试探究直线是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由. 26. 如图,在矩形中,,点是边上一动点(点不与,重合),连接,以为边在直线的右侧作矩形,使得矩形矩形,交直线于点.18km/h ()km s ()ht 00.2t ££0.2t >s t xOy ()30y kx k =-¹2y x =-A B AB的B y B¢2k =A B OA OB AB ¢BB ¢B AB ¢V OAB !k 'AB ABCD ()1AD nABn =>E AD E A D BE BE BE EBFG EBFG ∽ABCD EG CDH(1)【尝试初探】在点的运动过程中,与始终保持相似关系,请说明理由. (2)【深入探究】若,随着点位置的变化,点的位置随之发生变化,当是线段中点时,求的值.(3)【拓展延伸】连接,,当是以为腰的等腰三角形时,求的值(用含的代数式表示).E ABE △DEH △2n =E H H CD tan ABE ÐBH FH BFH △FH tan ABE Ðn2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1. 的相反数是( ) A.B. C. D.【答案】A 【解析】【分析】直接根据相反数的求法求解即可. 【详解】解:任意一个实数a 的相反数为-a 由 −的相反数是 ; 故选A .【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2. 2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A. B.C.D.【答案】C 【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是非负数;当原数的绝对值<1时,n 是负数. 【详解】解答:解:160万=1600000=, 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3. 下列计算正确的是( ) A.B.37-3737-73-73373721.610´51.610´61.610´71.610´61.610´2m m m +=()22m n m n -=-zC. D.【答案】D 【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意; C.,故该选项错误,不符合题意; D.,故该选项正确,符合题意; 故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4. 如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是( )A. B.C.D.【答案】B 【解析】【分析】根据三角形全等的判定做出选择即可.【详解】A 、,不能判断,选项不符合题意; B 、,利用SAS 定理可以判断,选项符合题意; C 、,不能判断,选项不符合题意; D 、,不能判断,选项不符合题意; 故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.5. 在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据众222(2)4m n m n +=+2(3)(3)9m m m +-=-2m m m +=()222m n m n -=-2224(2)4m n m n mn ++=+2(3)(3)9m m m +-=-ABC !DEF !A E B D AC DF !AC DF =ABC DEF △≌△BC DE =AE DB =A DEF Ð=ÐABC D Ð=ÐBC DE =ABC DEF △≌△AE DB =ABC DEF △≌△A DEF Ð=ÐABC DEF △≌△ABC D Ð=ÐABC DEF △≌△的z数是( ) A. 56 B. 60C. 63D. 72【答案】B 【解析】【分析】结合题意,根据众数的性质分析即可得到答案.【详解】根据题意,56,60,63,60,60,72这组数据的众数是:60 故选:B .【点睛】本题考查了众数的知识;解题的关键是熟练掌握众数的定义: 众数是指在统计分布上具有明显集中趋势点的数值,也就是一组数据中出现次数最多的数值.6. 如图,正六边形内接于⊙,若⊙的周长等于,则正六边形的边长为( )A.B.C. 3D.【答案】C 【解析】【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案. 【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π, ∴⊙O 的半径为:3, ∵∠BOC 360°=60°, ABCDEF O O 6p 61=´∵OB =OC ,∴△OBC 是等边三角形, ∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3, 故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.7. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有个,甜果有个,则可列方程组为( )A. B. C.D. 【答案】A 【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【详解】解:设苦果有个,甜果有个,由题意可得,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键.8. 如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )x y 100041199979x y x y +=ìïí+=ïî100079909411x y x y +=ìïí+=ïî100079999x y x y +=ìí+=î1000411999x y x y +=ìí+=îx y 100041199979x y x y +=ìïí+=ïî2y ax bx c =++x ()1,0A -B 1x =zA. B. 当时,的值随值的增大而增大C. 点的坐标为D.【答案】D 【解析】【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即,故该选项不符合题意; B 、根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;C 、根据二次函数的图像与轴相交于,两点,对称轴是直线,可得对称轴,解得,即,故该选项不符合题意; D 、根据可知,当时,,故该选项符合题意;故选:D .【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9. 计算:______.【答案】 【解析】【分析】根据幂的乘方可直接进行求解. 【详解】解:;0a >1x >-y x B ()4,0420a b c ++>0a <1x =1x >y x 1x <y x 11x -<<y x 1x >y x 2y ax bx c =++x ()1,0A -B 1x =()112B x x +-==3B x =()3,0B ()3,0B 2x =420y a b c =++>x ()1,0A -()3,0B ()23a -=6a ()236a a -=z故答案为.【点睛】本题主要考查幂的乘方,熟练掌握幂的乘方是解题的关键. 10. 关于x 的反比例函数的图像位于第二、四象限,则m 的取值范围是________. 【答案】 【解析】【分析】根据反比例函数的性质即可确定m-2的符号,从而求解. 【详解】根据题意得:m-2<0, 解得:m <2. 故答案为:m <2.【点睛】本题考查了反比例函数的性质,对于反比例函数y =(k≠0),(1)k >0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内. 11. 如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.【答案】 【解析】【分析】根据位似图形的性质,得到,根据得到相似比为,再结合三角形的周长比等于相似比即可得到结论. 【详解】解:和是以点为位似中心的位似图形,, , ,, 6a 2m y x-=2m <kxABC !DEF !O :2:3OA AD =ABC !DEF !2:5OCA OFD D D !:2:3OA AD =25CA OA OA FD OD OA AD ===+!ABC !DEF !O \OCA OFD D D !\CA OAFD OD=!:2:3OA AD=\25CA OA OA FD OD OA AD ===+根据与的周长比等于相似比可得, 故答案为:.【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键. 12. 分式方程的解是_________. 【答案】 【解析】【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:解:化整式方程为:3﹣x ﹣1=x ﹣4, 解得:x =3,经检验x =3是原方程的解, 故答案为:.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.13. 如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.【答案】7 【解析】【分析】连接EC ,依据垂直平分线的性质得.由已知易得,在Rt △AEC 中运用勾股定理求得AE ,即可求得答案.\ABC !DEF !25ABC DEF C CA C FD D D ==2:531144x x x-+=--3x =31144x x x-+=--为3x =ABC !B C 12BC M N MN AB E 5AC =4BE =45B Ð=°AB EB EC =90BEC CEA ÐÐ=°=zc【详解】解:由已知作图方法可得,是线段的垂直平分线, 连接EC ,如图,所以,所以, 所以∠BEC =∠CEA =90°, 因为,, 所以, 在中,,所以, 因此的长为7. 故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得即可.三、解答题(本大题共5个小题)14. 计算:. (2)解不等式组:. 【答案】(1)1;(2) 【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解. 【详解】解:MNBC BE CE =45ECB B Ð=Ð=°5AC =4BE =4CE =AEC△3AE =347AB AE BE =+=+=ABAE 113tan 3022-æö°+ç÷èø3(2)252123x x x x +³+ìïí--<ïî①②12x -£<(1)===1.(2)不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15. 2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个113tan3022-æö°+ç÷èø-+´+23323-123(2)252123x xx x+³+ìïí--<ïî①②根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中的值为_________; (2)该校共有500名学生,请你估计等级为的学生人数;(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率. 【答案】(1)50, (2)200 (3) 【解析】【分析】(1)利用概率计算公式先求出总人数,再求出等级为A 的学生人数;(2)利用概率计算公式先求出等级为B 的学生所占的百分比,再求出等级为B 的学生人数;(3)记两名男生为a ,b ,记两名女生为c ,d ,通过列出表格列出所有可能的结果,用恰有一男一女的结果数除以总的结果数,即可得到恰好抽到一名男生和一名女生的概率. 【小问1详解】解:∵D 组人数为8人,所占百分比为16%, ∴总人数为人, ∴. 【小问2详解】解:等级为B 的学生所占的百分比为, ∴等级为B 的学生人数为人.小问3详解】解:记两名男生为a ,b ,记两名女生为c ,d ,列出表格如下:∴一共有12种情况,其中恰有一男一女的有8种, ∴恰好抽到一名男生和一名女生的概率. 【点睛】本题考查了列表法与树状图法,概率计算公式的熟练应用是解答本题的关键. 16. 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角x B A 8%23816%50÷=4508%x =÷=205040%÷=50040%200´=【82123P ==z时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)【答案】约为 【解析】【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △中,根据正弦函数求得的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =, 在Rt △中,,cm ,∴cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键. 17. 如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:; (2)若,,求及的长. 150AOB Ð=°A AC 10cm 108A OB ¢Ð=°A ¢A A ¢A D ¢1cm sin 720.95°»cos 720.31°»tan 72 3.08°»19cm A DO ¢A D ¢10201sin 302OC ==A DO ¢18072A OCA OB 20OA OA ¢==sin 72200.9519A D OA =盎唇!Rt ABC △90ACB Ð=°BC O ABD CDE BE CD =DE CE ABF A ACF Ð=Ð8AC =4cos 5ACF Ð=BF DEz【答案】(1)见解析 (2)BF =5, 【解析】【分析】(1)根据中,,得到∠A +∠B =∠ACF +∠BCF =90°,根据,得到∠B =∠BCF ,推出∠A =∠ACF ;(2)根据∠B =∠BCF ,∠A =∠ACF ,得到AF =CF ,BF =CF ,推出AF =BF = AB ,根据,AC =8,得到AB =10,得到BF =5,根据,得到,连接CD ,根据BC 是⊙O 的直径,得到∠BDC =90°,推出∠B +∠BCD =90°,推出∠A =∠BCD ,得到,推出,得到,根据∠FDE =∠BCE ,∠B =∠BCE ,得到∠FDE =∠B ,推出DE ∥BC ,得到△FDE ∽△FBC ,推出,得到. 【小问1详解】解:∵中,, ∴∠A +∠B =∠ACF +∠BCF =90°, ∵, ∴∠B =∠BCF , ∴∠A =∠ACF ; 【小问2详解】∵∠B =∠BCF ,∠A =∠ACF ∴AF =CF ,BF =CF , ∴AF =BF = AB , ∵,AC =8, ∴AB =10, ∴BF =5, ∵,∴, 连接CD ,∵BC 是⊙O 的直径,4225DE =Rt ABC △90ACB Ð=°BE CD =124cos cos 5AC ACF A AB Ð===6BC ==3sin 5BC A AB ==3sin 5BD BCD BC Ð==185BD =75DF BF BD =-=DE DF BC BF =4225DE =Rt ABC △90ACB Ð=°BE CD =124cos cos 5AC ACF A AB Ð===6BC ==3sin 5BC A AB ==z∴∠BDC =90°, ∴∠B +∠BCD =90°, ∴∠A =∠BCD , ∴, ∴, ∴, ∵∠FDE =∠BCE ,∠B =∠BCE , ∴∠FDE =∠B , ∴DE ∥BC , ∴△FDE ∽△FBC , ∴, ∴.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.3sin 5BD BCD BC Ð==185BD =75DF BF BD =-=DE DFBC BF=4225DE =xOy 26y x =-+k y x=(),4A a Bz(1)求反比例函数的表达式及点的坐标;(2)过点作直线,交反比例函数图象于另一点,连接,当线段被轴分成长度比为的两部分时,求的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设是第三象限内的反比例函数图象上一点,是平面内一点,当四边形是完美筝形时,求,两点的坐标. 【答案】(1)反比例函数的表达式为,点的坐标为 (2)(3), 【解析】【分析】(1)首先把点A 的坐标代入,即可求得点A 的坐标,再把点A 的坐标代入,即可求得反比例函数的解析式,再利用方程组,即可求得点B 的坐标; (2)设直线AC 的解析式为y =kx +b ,点C 的坐标为,直线AC 与y 轴的交点为点D , 把点A 、C 的坐标分别代入y =kx +b ,可求得点D 的坐标为,可求得AD 、CD 的长,再分两种情况分别计算,即可分别求得; (3)方法一:如图,过点作,交的另一支于点,过点作轴的平行线,过点作轴的垂线,交于点,作交于点,设交于点,根据,求得点的坐标,进而求得的解析式,设点D 的坐标为(a ,b ),根据定义以及在直线上,建立方程组,即可求得点的坐标.B A AC C BC AC y 1:2BC P Q ABPQ P Q 4yx=B ()2,2()4,1--()1,5-26y x =-+ky x=4,m m æöç÷èø40,4m æö+ç÷èøB PB AB ^4y x=P P x B x C AD BC ^D ,BQ AP M ADB BCP !!∽P AP AQ AB =M AP Q【小问1详解】解:把点A 的坐标代入, 得,解得a =1, 故点A 的坐标为(1,4), 把点A 的坐标代入, 得k =4,故反比例函数的表达式为, , 得, 解得,,故点A 的坐标为(1,4),点的坐标为; 【小问2详解】解:设直线AC 的解析式为y =kx +b ,点C 的坐标为,直线AC 与y 轴的交点为点D ,把点A 、C 的坐标分别代入y =kx +b ,得, 解得,故点D 的坐标为,26y x =-+426a =-+k y x=4yx=264y x y x =-+ìïí=ïî232=0x x -+11x =22x =B ()2,24,m m æöç÷èø44k b mk b m +=ìïí+=ïî444k m b m ì=-ïïíï=+ïî40,4m æö+ç÷èøAD \==CD ==z如图:当AD :CD =1:2时,连接BC ,,得,得, 解得或(舍去), 故或(舍去), 故此时点C 的坐标为(-2,-2),如图:当CD :AD =1:2时,连接BC ,,得, 得, 解得或(舍去), 12=2264120m m -+=4212640m m +-=24m =216m =-2m =-2m =BC \==12=22164630m m -+=4263160m m +-=214m =216m =-z故或(舍去), 故此时点C 的坐标为 ,综上,BC 的长为【小问3详解】解:如图,过点作,交的另一支于点,过点作轴的平行线,过点作轴的垂线,交于点,作交于点,设交于点,如图∵设,,则又即解得或(舍去) 则点设直线的解析式为,将点,解得 直线的解析式为12m =-12m =1,82æö--ç÷èøBC \==2B PB AB ^4y x=P P x B x C AD BC ^D ,BQ AP M ()()1,4,2,2A B \()2,4D 4,P m m æöç÷èø0m <42,2,2,1PC m BC DB AD m=-=-==90°Ð=!ABP 90ABD PBC BPC \Ð=°-Ð=ÐD C Ð=Ð\ADB BCP !!∽AD DBBC PC \=12=422m m --4m =-2m =()4,1P --PA y sx t =+()1,4A ()4,1P --414s t s t -+=-ìí+=î13s t =ìí=î\PA 3y x =+z设,根据题意,的中点在直线上,则 ∵则解得或(在直线上,舍去).综上所述,.【点睛】本题考查一次函数与反比例函数的综合,利用待定系数法求一次函数及反比例函数的解析式,平面直角坐标系中两点间距离公式,相似三角形的判定与性质等知识,采用分类讨论的思想和待定系数法求解析式是解决本题的关键.B 卷一、填空题(本大题共5个小题)19. 已知,则代数式的值为_________.【答案】##3.5##3 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值; 【详解】解: (),Q a b BQ M PB M 2222a b ++æöç÷èø,QA AB ====()()22223=22145a b a b ++ì+ïíï-+-=î15a b =-ìí=î06a b =ìí=îAB ()1,5Q \-()()4,1,1,5P Q ---2272a a -=2211a a a a a--æö-÷ç÷èø72122211a a a a a --æö-÷ç÷èø=== = =.,移项得,左边提取公因式得, 两边同除以2得, ∴原式=. 故答案为:. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20. 若一个直角三角形两条直角边的长分别是一元二次方程的两个实数根,则这个直角三角形斜边的长是_________. 【答案】【解析】【分析】由题意解一元二次方程得到再根据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程的两个实数根,由公式法解一元二次方程可得根据勾股定理可得直角三角形斜故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.22211a a a aa a æö---÷ç÷èø22211a a a a a -+-÷22(1)1a a a a -´-(1)a a -2-a a 2272a a -=2227a a -=22()7a a -=272a a -=72722640x x -+=2640x x -+=3x =3x =!2640x x -+=\2640x x -+=66322x ±±===±\==zc21. 如图,已知⊙是小正方形外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.【答案】【解析】【分析】如图,设OA =a ,则OB =OC =a ,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可. 【详解】解:如图,设OA =a ,则OB =OC =a , 由正方形的性质可知∠AOB =90°,,由正方形的性质可得CD =CE =OC =a , ∴DE =2a ,S 阴影=S 圆-S 小正方形=,S 大正方形=,∴这个点取在阴影部分的概率是,故答案为:【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与O的24p-AB ==)()2222222a a a a p p p -=-=-()2224a a =()222244a a p p --=24p -hz物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.【答案】 ①. ②. 【解析】【分析】根据题意,得-45+3m +n =0,,确定m ,n 的值,从而确定函数的解析式,根据定义计算确定即可.【详解】根据题意,得-45+3m +n =0,,∴ , ∴ ,解得m =50,m =10,当m =50时,n =-105;当m =10时,n =15; ∵抛物线与y 轴交于正半轴, ∴n >0,∴, ∵对称轴为t ==1,a =-5<0,∴时,h 随t 的增大而增大,当t =1时,h 最大,且(米);当t =0时,h 最最小,且(米); ∴w =, ∴w 的取值范围是, 故答案为:. 当时,的取值范围是t 25h t mt n =-++w t h t h 01t ££w 23t ££w 05w ££520w ££24(5)204(5)n m ´-´-=´-24(5)204(5)n m ´-´-=´-2204000m n +-=2605000m m -+=251015h t t =-++102(5)-´-01t ££max 20h =min 15h =max min 20155h h -=-=05w ££05w ££23t ££wz∵对称轴为t ==1,a =-5<0,∴时,h 随t 的增大而减小,当t =2时,h =15米,且(米);当t =3时,h 最最小,且(米); ∴w =,w =, ∴w 的取值范围是, 故答案为:.【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.23. 如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.【解析】【分析】延长DE ,交AB 于点H ,确定点B 关于直线DE 的对称点F ,由点B ,D 关于直线AC 对称可知QD=QB ,求最大,即求最大,点Q ,B ,共线时,,根据“三角形两边之差小于第三边”可得最大,当点与点F 重合时,得到最大值.连接BD ,即可求出CO ,EO ,再说明,可得DO ,根据勾股定理求出DE ,然后证明,可求BH ,即可得出答案.【详解】延长DE ,交AB 于点H ,∵,ED ⊥CD , ∴DH ⊥AB .102(5)-´-123t ££<max 20h =min 0h =max min 20155h h -=-=max min 20020h h -=-=520w ££520w ££ABCD D DE CD ^AC E BE P BE P DE P ¢Q AC P Q ¢DQ 14AE =18CE =DQ P Q ¢-Q D Q P ¢-Q B Q P ¢-P ¢Q D Q P Q B Q P B P ¢¢¢-=-=BP ¢P ¢E O D D O C V :V E O D B H D V :V AB CD !。

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。

A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。

据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。

往年成都中考数学试题及答案

往年成都中考数学试题及答案

往年成都中考数学试题及答案往年成都中考数学试题及答案是考生备考中的重要参考资料,通过查阅这些历年试题,考生可以了解中考数学的考点、题型分布以及难易程度。

本文将对往年成都中考数学试题及答案进行整理和介绍,供考生进行参考和复习。

第一部分:选择题1. 下列选项中,哪一个不是整数?A. -4B. 0C. 3/4D. 1答案:C2. 已知正整数a,b满足a/b=5/8,且(a-b)/(a+b)=3/5,则a的值是多少?A. 5/2B. 10/3C. 15/4D. 20/7答案:B3. 在平面直角坐标系中,点A(-3,4)关于y轴的对称点是?A. (-3,-4)B. (3,-4)C. (4,-3)D. (-4,3)答案:D4. 从0~9中共有多少个整数不含7?A. 3B. 4C. 5D. 6答案:D5. 若正数a和b满足a+b=12,且a/b=3/5,则a的值是多少?A. 4B. 6C. 8D. 10答案:C第二部分:填空题1. 用12构成一个不超过100的最大的偶数共有__个。

答案:82. 设函数f(x) = 5x - 3,那么f(2) = __。

答案:73. 化简√(24/4)的值为__。

答案:2√34. 若a:b = 3:4,b:c = 2:5,则a:c = __:__。

答案:6:105. 设平行四边形的长是2x+1,宽是x-5,则其周长等于__。

答案:6x-6第三部分:解答题1. 解方程6x+3=9。

解答:将等式两边减去3得到6x=6,再将等式两边除以6得到x=1。

因此,方程的解为x=1。

2. 某商品原价为120元,现在降价20%,求现价。

解答:原价120元降价20%,即价格减少120×0.2=24元。

因此,现价为120-24=96元。

3. 已知正方形的面积是16平方厘米,求正方形的边长。

解答:设正方形的边长为x厘米,根据面积的定义可得x²=16。

解方程得到x=4。

因此,正方形的边长为4厘米。

2024成都中考数学真题及答案

2024成都中考数学真题及答案

2024成都中考数学真题及答案第一部分:选择题1.若一条直线的斜率为1/2,该直线在坐标系中的斜率为() A. 1/2 B.-1/2 C. 2 D. -22.计算 3 - |-7| + 2×(-5) 的值是() A. -21 B. -13 C. -7 D. 13.已知若两个角互补,则其中一个角一定是() A. 锐角 B. 直角 C. 钝角D. 旋转角4.若一个正方形的边长为x,则其面积为() A. x^2 B. 2x C. x/2 D. 4x5.设直线L1和直线L2垂直,直线L1的斜率为3/4,则L2的斜率为() A. 4/3 B. 3/4 C. -3/4 D. -4/3第二部分:解答题问题1:三角形的内角和公式证明:一个三角形的三个内角之和等于180度。

解析:设三角形的三个内角分别为A、B、C度。

我们可以通过以下步骤来证明这个结论:1.假设线段AB、BC、AC分别构成三角形。

2.通过对角度度量的定义,我们知道直线AB与直线AC的夹角等于角A。

3.同样地,直线AB与直线BC的夹角等于角B,直线BC与直线AC的夹角等于角C。

4.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角B = 直线AB与AC的夹角——(1)角B + 角C = 直线AB与BC的夹角——(2)5.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角C = 直线AC与BC的夹角——(3)6.由于直线AC与BC的夹角等于180度(直线在平面上的性质),我们可以得出以下等式:角A + 角B + 角C = 180度——(4)7.因此,一个三角形的三个内角之和等于180度。

问题2:一元一次方程的解解:考虑以下一元一次方程:2x - 5 = 3x + 1。

我们需要找到满足这个方程的x的值。

首先,我们可以将方程转化为标准形式,即将未知数放在等号左边,常数放在右边:2x - 3x = 1 + 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市二○一一年高中阶段教育学校统一招生考试试卷数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答,郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束,监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁,不得折叠、污染、破损等。

A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3.在函数y =自变量x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥(D) 12x > 4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。

据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 (A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人(A)(B)(C)(D )B时间人数5.下列计算正确的是(A )2x x x += (B) 2x x x ⋅=(C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0m > (B)0n < (C)0mn <(D)0m n ->9. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时(C) 4小时、4小时 (D)4小时、6小时10.已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是(A)相交 (B)相切(C)相离 (D)无法确定BBB 第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共l 6分)11. 分解因式:.221x x ++=________________。

12. 如图,在△ABC 中,D,E 分别是边AC 、BC 的中点,若AB=________________。

13. 已知1x =是分式方程131kx x=+的根,则实数k =___________。

14. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为»BD,则图中阴影部分的面积是___________。

三、解答题:(本大题共6个小题,共54分) 1 5. (本小题满分12分,每题6分)(1)计算:0020112cos303)(1)π+--+-。

(2)解不等式组:20312123x x x +≥⎧⎪-+⎨<⎪⎩,并写出该不等式组的最小整数解。

16.(本小题满分6分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B 处时,发现灯塔A 在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C 处时,发现灯塔A 在我军舰的北偏东60°的方向。

求该军舰行驶的路程.(计算过程和结果均不取近似值)17.(本小题满分8分) 先化简,再求值:232()111x x x x x x --÷+--,其中2x =。

xBD18.(本小题满分8分)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。

规定:每位考生先在三个笔试题(题签分别用代码123B B B 、、表示)中抽取一个,再在三个上机题(题签分别用代码123J J J 、、表示)中抽取一个进行考试。

小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。

(1)用树状图或列表法表示出所有可能的结构;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“1B ”的下表为“1”)均为奇数的概率。

1 9. (本小题满分1 0分) 如图,已知反比例函数(0)k y k x =≠的图象经过点(12,8)y x b =-+经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.20.(本小题满分1 0分)如图,已知线段AB∥CD,AD 与B C 相交于点K ,E 是线段AD 上一动点。

(1)若BK=52KC ,求CD AB的值; (2)连接BE ,若BE 平分∠ABC ,则当AE=12AD 时,猜想线段AB 、BC 、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=1nAD (n>2),而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.B 卷(共5 0分)一、填空题:(每小题4分,共20分)21.在平面直角坐标系xOy 中,点P(2,a )在正比例函数12y x =的图象上,则点Q( 35a a -,)位于第______象限。

22.某校在“爱护地球 绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:则这l 00名同学平均每人植树 __________棵;若该校共有1 000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.23.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设...S =S=_________ (用含n 的代数式表示,其中n 为正整数). 24.在三角形纸片ABC 中,已知∠ABC=90°,AB=6,BC=8。

过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为_________ (计算结果不取近似值). 25.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小。

若该反比例函数的图象与直线y x =-都经过点P ,且OP =,则实数k=_________.二、解答题:(本大题共3个小题,共30分) 26.(本小题满分8分)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD 。

已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(量x 的取值范围).当x 为何值时,S 取得最值(出是最大值还是最小值)?并求出这个最值;(2)图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,清说明理由.27.(本小题满分1 0分)已知:如图,以矩形ABCD 的对角线AC 的中点O 为圆心,OA 长为半径作⊙O ,⊙O 经过B 、D 两点,过点B 作BK ⊥ A C ,垂足为K 。

过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE=CK ; (2)如果AB=a ,AD=13a (a 为大于零的常数),求BK 的长:(3)若F 是EG 的中点,且DE=6,求⊙O 的半径和GH 的长.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知:1:5OA OB =,OB OC =,△ABC 的面积15ABC S ∆=,抛物线2(0)y ax bx c a =++≠经过A 、B 、C 三点。

(1)求此抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为2M 的坐标;若不存在,请说明理由.成都2011年中考数学答案A 卷一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案CDABDDBCAC二、填空题11、2(1)x + 12、8 13、16 14、6π三、解答题 15、(1)2 (2)21x -≤<,最小整数解为2-。

16、BC=317、解:化简得2x , 当22x =时,原式2 18、(1)树状图(2)由树状图或表格可知,所有可能的结果共有9种, 其中笔试题和上机题的题签代码下标均为奇数的有4种, ∴题签代码下标均为奇数的概率是P=49CD19、(1)∵反比例函数k y x =的图象经过点(12,8), ∴4k xy ==。

相关文档
最新文档