2014年四川省成都市中考数学试卷(附答案与解析)
2014年四川省自贡市中考数学试卷及答案(Word版)

四川省自贡市2014年初中毕业生学业考试数 学 试 卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页;选择题部分40分,非选择题110分共150分.注意事项:1、答卷前,考生务必将自己的姓名,准考证号、考试科目涂写(用0.5毫米的黑色签字笔)在答题卡上, 并检查条形码粘贴是否正确.2、选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后,再选涂其它答案标号,不能答在试卷中;非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡、试卷、草稿纸从上往下依次放好,并等待监考老师验收后一并收回.第Ⅰ卷 选择题 (共40分)一、选择题(共10个小题,每小题4分,共40分)1、比-1大1的数是 ( ) A .2 B .1 C .0 D .-2 2.()24x 等于 ( )A .6xB .8xC .16xD .42x3.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是 ( )4.拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为 ( )A .5×1010B .0.5×1011C .5×1011D .0.5×10105.一元二次方程x 2-4x+5=0的根的情况是 ( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根.6.下面的图形中,既是轴对称图形 又是中心对称图形的是 ( )7.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为 ( )A .8B .5C .D .38.一个扇形的半径为8cm ,弧长为16cm 3π,则扇形的圆心角为 ( )A .60°B .120°C .150°D .180°9.关于x 的函数()y k x 1=+和()ky k 0x=≠在同一坐标系中的 图像大致是( )10.如图,在半径为1的⊙O 中,∠AOB=45°,则sinC 的值为( )A B C D第Ⅱ卷 非选择题( 共110分)二、填空题(共5个小题,每小题4分,共20分)11.因式分解:x 2y -y= .12.不等式组⎩⎨⎧-≥+01x 03x 2->的解集是 .13.一个多边形的内角和比它的外角和的3倍少180°,则它的边数是 .14.如图,一个边长为4cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C 与AC 相交于点E 。
【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)一、解答题1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.7.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:8.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。
2024年四川省凉山州中考数学试卷(附答案)

2024年四川省凉山州中考数学试卷(附答案)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。
1.(4分)下列各数中:5,﹣,﹣3,0,﹣25.8,+2,负数有()A.1个B.2个C.3个D.4个【分析】根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.【解答】解:5>0,是正数;,是负数;﹣3<0,是负数;0既不是正数,也不是负数;﹣25.8<0,是负数;+2>0,是正数;∴负数有,﹣3,﹣25.8,共3个.故选:C.2.(4分)如图,由3个相同的小正方体搭成的几何体的俯视图是()A.B.C.D.【答案】B.3.(4分)下列运算正确的是()A.2ab+3ab=5ab B.(ab2)3=a3b5C.a8÷a2=a4D.a2•a3=a6【答案】A.4.(4分)一副直角三角板按如图所示的方式摆放,点E在AB的延长线上,当DF∥AB时,∠EDB的度数为()A .10°B .15°C .30°D .45°【答案】B .5.(4分)点P (a ,﹣3)关于原点对称的点是P ′(2,b ),则a +b 的值是()A .1B .﹣1C .﹣5D .5【答案】A .6.(4分)如图,在Rt △ABC 中,∠ACB =90°,DE 垂直平分AB 交BC 于点D ,若△ACD 的周长为50cm ,则AC +BC =()A .25cmB .45cmC .50cmD .55cm【答案】C .7.(4分)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h 随时间t 变化的大致图象是()A .B .C .D .【答案】C .8.(4分)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的8位女演员身高的折线统计图如下.则甲、乙两团女演员身高的方差s甲2、s乙2大小关系正确的是()A.s甲2>s乙2B.s甲2<s乙2C.s甲2=s乙2D.无法确定【答案】B.9.(4分)若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是x=0,则a的值为()A.2B.﹣2C.2或﹣2D.【答案】A.10.(4分)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点A,B,连接AB,作AB的垂直平分线CD交AB于点D,交于点C,测出AB=40cm,CD=10cm,则圆形工件的半径为()A.50cm B.35cm C.25cm D.20cm【答案】C.11.(4分)如图,一块面积为60cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O的照射下形成的投影是△A1B1C1,若OB:BB1=2:3,则△A1B1C1的面积是()A.90cm2B.135cm2C.150cm2D.375cm2【答案】D.12.(4分)抛物线y=(x﹣1)2+c经过(﹣2,y1),(0,y2),(,y3)三点,则y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y1>y3>y2【答案】D.二、填空题(共5小题,每小题4分,共20分)13.(4分)已知a2﹣b2=12,且a﹣b=﹣2,则a+b=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b)计算即可.【解答】解:∵a2﹣b2=12,∴(a+b)(a﹣b)=12,∵a﹣b=﹣2,∴a+b=﹣6,故答案为:﹣6.【点评】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.14.(4分)方程=的解是.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是100°.【分析】由CD是边AB上的高,∠BCD=30°,∠ACB=80°,可求得∠CAB、∠CBA的度数,因为AE是∠CAB的平分线,可得∠EAB的度数,根据三角形内角和定理,可得∠AEB的度数.【解答】解:∵CD是边AB上的高,∴∠CDB=∠CDA=90°,∵∠BCD=30°,∠ACB=80°,∴∠ACD=∠ACB﹣∠BCD=50°,∠CBD=90°﹣∠BCD=60°,∴∠CAB=90°﹣∠ACD=40°,∵AE是∠CAB的平分线,∴∠EAB=∠CAB=20°,∴∠AEB=180°﹣∠EAB﹣∠EBA=100°,故答案为:100°.【点评】本题考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和定理,角平分线的定义.16.(4分)如图,四边形ABCD各边中点分别是E、F、G、H,若对角线AC=24,BD=18,则四边形EFGH的周长是.【解答】解:∵四边形ABCD各边中点分别是E、F、G、H,∴EF、FG、GH、HE分别为△ABC、△BCD、△ADC、△ABD的中位线,∴EF=AC=×24=12,GH=AC=12,FG=BD=×18=9,HE=BD=9,∴四边形EFGH的周长为:12+9+12+9=42,故答案为:42.17.(4分)如图,一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,交x轴于点C,则△AOC的面积为.【分析】先利用待定系数法求出直线AB的解析式,再求出点C坐标,根据三角形面积公式计算面积即可.【解答】解:∵一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,∴,解得,∴一次函数解析式为y=x+3,当y=0时,x=﹣3,∴C(﹣3,0),==9.∴S△AOC故答案为:9.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.(5分)计算:+|2﹣|+2﹣1+cos30°﹣(﹣1)0.【分析】利用分母有理化法则,零指数幂,特殊锐角三角函数值,绝对值的性质计算即可.【解答】解:原式=+2﹣++﹣1=+2﹣++﹣1=2.【点评】本题考查分母有理化,特殊锐角三角函数值,零指数幂,绝对值,熟练掌握相关运算法则是解题的关键.19.(5分)求不等式组﹣3<4x﹣7≤9的整数解.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集,最后求出不等式组的整数解即可.【解答】解:﹣3<4x﹣7≤9,即,解不等式①,得x>1,解不等式②,得x≤4,所以不等式组的解集是1<x≤4,所以不等式组﹣3<4x﹣7≤9的整数解是2,3,4.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键.20.(7分)为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是50人,估计全校1500名学生中最喜欢乒乓球项目的约有120人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)根据最喜欢足球的有18人,对应的百分比是36%,据此即可求得总人数;利用1500除以最喜欢乒乓球所占的百分数,即可求解;(2)求出喜欢篮球的人数和喜欢羽毛球的人数,然后补全统计图即可;(3)首先画出树状图,得出共有12种等可能的结果数,其中抽取两人恰好是甲乙的结果数为2,再根据概率公式,计算即可.【解答】解:(1)本次调查的总人数是为:18×36%=50(人),估计全校1500名学生中最喜欢乒乓球项目的约有1500×=120(人),故答案为:50,120;(2)喜欢篮球的人数为:50×24%=12(人),喜欢乒乓球的人数为:50﹣18﹣12﹣10﹣4=6(人),补全条形统计图如下:(3)解:画树状图如下:共有12种等可能的结果数,其中抽取两人恰好是甲乙的结果数为2,∴甲乙两位同学同时被抽中的概率为:=.【点评】本题考查了条形统计图、扇形统计图、用样本估计总体、利用树状图法求概率、概率公式,解本题的关键在充分利用统计图解答.21.(7分)为建设全城旅游西昌,加快旅游产业发展.2022年9月29日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为1845.4平方米,塔顶金碧辉煌,为“火珠垂莲”窣(sū)堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级(2)班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上A点处,测得塔顶C的仰角为30°,眼睛B距离地面1.8m,向塔前行67m,到达点D处,测得塔顶C的仰角为60°,求塔高CF.(参考数据:≈1.414,≈1.732,结果精确到0.01m)【分析】先用CG表示EG,BG,再根据BG﹣EG=67m,列方程求出CG,进一步可求出CF,从而解决问题.【解答】解:由题意,知∠CBG=30°,∠CEG=60°,∠CGB=∠CGE=90°,GF=ED=BA=1.8m,BE=67m,在Rt△CBG中,BG==CG,在Rt△CEG中,EG==CG,∵BG﹣EG=BE,∴CG﹣CG=67,解得CG≈58.02(m),∴CF=CG+GF=58.02+1.8=59.82(m),答:塔高CF为59.82m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,理解题意,熟练运用三角函数关系是解题的关键.22.(8分)如图,正比例函数y1=x与反比例函数y2=(x>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)把直线y1=x向上平移3个单位长度与y2=(x>0)的图象交于点B,连接AB、OB,求△AOB 的面积.【分析】(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线可得S △AOB =S △ADO 代入数据计算即可.【解答】解:(1)∵点A (m ,2)在正比例函数图象上,∴2=,解得x =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=.(2)把直线y 1=x 向上平移3个单位得到解析式为y =,直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组,解得,(舍去),∴B (2,4),∴S △AOB =S △ADO ==6.【点评】本题考查了一次函数与反比例函数的交点问题,熟练掌握函数的平移法则是关键.四、填空题(共2小题,每小题5分,共10分)23.(5分)已知y2﹣x=0,x2﹣3y2+x﹣3=0,则x的值为3.【分析】由已知条件可得y2=x,将其代入x2﹣3y2+x﹣3=0中整理后解一元二次方程求得符合题意的x 的值即可.【解答】解:∵y2﹣x=0,∴y2=x≥0,∵x2﹣3y2+x﹣3=0,∴x2﹣3x+x﹣3=0,即x2﹣2x﹣3=0,解得:x1=3,x2=﹣1(舍去),即x的值为3,故答案为:3.【点评】本题考查一元二次方程的解,结合已知条件得到关于x的方程是解题的关键.24.(5分)如图,⊙M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则PQ的最小值为2.【解答】解:如图,连接MP、MQ,∵PQ是⊙M的切线,∴MQ⊥PQ,∴PQ==,当PM最小时,PQ最小,当MP⊥AB时,MP最小,直线y=x+4与x轴的交点A的坐标为(﹣4,0),与y轴的交点B的坐标为(0,4),∴OA=OB=4,∴∠BAO=45°,AM=8,当MP⊥AB时,MP=AM•sin∠BAO=8×=4,∴PQ的最小值为:==2,故答案为:2.五、解答题(共4小题,共40分)25.(8分)阅读下面材料,并解决相关问题:如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n行有n个点…,容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为36,前15行的点数之和为120,那么,前n行的点数之和为.(2)体验:三角点阵中前n行的点数之和不能(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆,…,第n排2n盆的规律摆放而成,则一共能摆放多少排?【解答】解:(1)由题知,三角点阵中前1行的点数之和为:1;三角点阵中前2行的点数之和为:1+2;三角点阵中前3行的点数之和为:1+2+3;三角点阵中前4行的点数之和为:1+2+3+4;…,所以三角点阵中前n行的点数之和为:1+2+3+…+n=.当n=8时,,即三角点阵中前8行的点数之和为36.当n=15时,,即三角点阵中前15行的点数之和为120.故答案为:36,120,.(2)不能.令得,解得n=,因为n为正整数,所以三角点阵中前n行的点数之和不能为500.故答案为:不能.(3)由题知,前n排盆景的总数可表示为n(n+1),令n(n+1)=420得,解得n1=﹣21,n2=20.因为n为正整数,所以n=20,即一共能摆20排.26.(10分)如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD于点N,连接EN、CN.(1)求证:EN=CN;【分析】(1)利用线段垂直平分线的性质和菱形的性质即可证明出结论;(2)过点N作NG⊥BC于点G,连接AN,AG,过点A作AH⊥BC于点H,证明出2EN+BN的最小值为2AH,再求出AH即可解决问题.【解答】解:(1)连接AN,如图,∵四边形ABCD是菱形,∴点A,点C关于直线BD轴对称,∴AN=CN,∵AE的垂直平分线MN交AE于点M,交BD于点N,∴AN=EN,∴EN=CN;(2)过点N作NG⊥BC于点G,连接AN,AG,过点A作AH⊥BC于点H,∵四边形ABCD是菱形,∠ABC=60°,∴∠DBC=30°,∴BN=2NG,∵AE的垂直平分线MN交AE于点M,交BD于点N,∴EN=AN,∴2EN+BN=2AN+2NG=2(AN+NG)≥2AG≥2AH,∵∠ABC=60°,AB=2,∴AH=AB•sin60°=,∴2EN+BN的最小值为2.27.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD平分∠BAC交⊙O于点D,过点D的直线DE ⊥AC,交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)连接EO并延长,分别交⊙O于M、N两点,交AD于点G,若⊙O的半径为2,∠F=30°,求GM•GN的值.【解答】.(1)证明:连接OD,∵AD平分∠BAC,∴∠DAE=∠OAD,∵OA=OD,∴∠OAD=∠ODA,∴∠DAE=∠ODA,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接MD,AN,在Rt△ODF中,OB=OD=2,∠F=30°,∴OD=OF,∠BOD=60°,∴OF=4,∴DF==2,∴AF=2+4=6,在Rt△AEF中,∠F=30°,∴AE=AF=3,∵∠F=30°,OD⊥EF,∴∠DOF=60°=∠2+∠3,∵OA=OD,∵∠2=∠3,∴∠2=30°,∴∠2=∠F,∴AD=DF=2,∵OD∥AE,∴△DGO∽△AGE,∴==,∴DG=AD,AG=AD,∵∠ANM=∠MDG,∠MGD=∠AGN,∴△MGD∽△AGN,∴=,∴GM•GN=GD•GA=AD•AD=AD2=×(2)2=.28.(12分)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把B(3,m)代入y=x+2求出B(3,5),再用待定系数法可得抛物线的解析式为y=﹣x2+2x+8;(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),由PE=2DE,可得﹣t2+2t+8﹣(t+2)=2(t+2),解出t的值可得P的坐标为(1,9);=×6×5=15,设M (3)过M作MK∥y轴交直线AB于K,求出C(4,0),知AC=6,故S△ABC(m,﹣m2+2m+8),则K(m,m+2),可得MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,S△ABM=MK •|x B﹣x A|=|﹣m2+m+6|,根据△ABM的面积等于△ABC面积的一半,有|﹣m2+m+6|=×15,可得|﹣m2+m+6|=3,即﹣m2+m+6=3或﹣m2+m+6=﹣3,解出m的值可得答案.【解答】解:(1)把B(3,m)代入y=x+2得:m=3+2=5,∴B(3,5),把A(﹣2,0),B(3,5)代入y=﹣x2+bx+c得:,解得,∴抛物线的解析式为y=﹣x2+2x+8;(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),∵PE=2DE,∴﹣t2+2t+8﹣(t+2)=2(t+2),解得t=1或t=﹣2(此时P不在直线AB上方,舍去);∴P的坐标为(1,9);(3)抛物线上存在点M,使△ABM的面积等于△ABC面积的一半,理由如下:过M作MK∥y轴交直线AB于K,如图:在y=﹣x2+2x+8中,令y=0得0=﹣x2+2x+8,解得x=﹣2或x=4,∴A(﹣2,0),C(4,0),∴AC=6,∵B(3,5),=×6×5=15,∴S△ABC设M(m,﹣m2+2m+8),则K(m,m+2),∴MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,=MK•|x B﹣x A|=|﹣m2+m+6|×5=|﹣m2+m+6|,∴S△ABM∵△ABM的面积等于△ABC面积的一半,∴|﹣m2+m+6|=×15,∴|﹣m2+m+6|=3,∴﹣m2+m+6=3或﹣m2+m+6=﹣3,解得m=或m=,∴M的坐标为(,)或(,)或(,)或(,).。
历年四川省成都市中考数学试卷(A卷)(含答案)

2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。
2023年四川省成都市数学中考真题(解析版)

【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
6. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某
班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供 6 张背面完全相同的卡片,其中蔬菜
类有 4 张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有 2 张,正面分别印有草莓、西瓜图案,
【详解】解:由平移性质得: EF BC 8 , ∴ CF EF CE 8 5 3 ,
故答案为:3. 【点睛】本题考查平移性质,熟练掌握平移性质是解答的关键.
12. 在平面直角坐标系 xOy 中,点 P 5, 1 关于 y 轴对称的点的坐标是___________. 【答案】 5, 1
6 1
6
,
∵ 2 6 ,
∴ y1 y2 , 故答案为: .
【点睛】本题考查了比较反比例函数值,熟练掌握反比例函数的性质是解题的关键.
11. 如图,已知△ABC ≌△DEF ,点 B,E,C,F 依次在同一条直线上.若 BC 8,CE 5 ,则 CF 的
长为___________.
【答案】3 【解析】 【分析】利用平移性质求解即可.
2023 年四川省成都市数学中考真题
A 卷(共 100 分) 第 I 卷(选择题,共 32 分) 一、选择题(本大题共 8 个小题,每小题 4 分,共 32 分,每小题均有四个选项,其中只有一 项符合题目要求)
1 1. 在 3 , 7 , 0 , 9 四个数中,最大的数是( )
A. 3
B. 7
C. 0
每个图案对应该种植项目.把这 6 张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概
2024年四川省成都市新都区中考数学一诊试卷(含解析)

2024年四川省成都市新都区中考数学一诊试卷一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.(4分)﹣2024的绝对值是( )A.2024B.﹣2024C.D.2.(4分)提高交通安全意识是每一位青少年的“必修课”,以下有关交通安全的标识图,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.(4分)据统计,仅2024年大年初一这一天,我国全社会跨区域人员流动量约为1.9亿人次.将1.9亿用科学记数法表示为( )A.19×108B.1.9×109C.0.19×1010D.1.9×1084.(4分)下列各式计算正确的是( )A.(x+y)2=x2+y2B.(2x2)3=6x6C.4x3÷2x=2x2D.x2﹣4y2=(x+4y)(x﹣4y)5.(4分)在平面直角坐标系中,点P(﹣2,﹣4)关于x轴对称的点的坐标是( )A.(2,4)B.(0,﹣4)C.(﹣2,4)D.(2,﹣4)6.(4分)2024年,中国将迎来一系列重要的周年纪念活动,某校开展了主题为“牢记历史•吾辈自强”的演讲比赛,九年级8名同学参加该演讲比赛的成绩分别为76,78,80,85,80,74,78,80.则这组数据的众数和中位数分别为( )A.80,79B.80,78C.78,79D.80,807.(4分)如图,点E是▱ABCD的边AD上一点,且AE:DE=1:2,连接CE并延长,交BA的延长线于点F.若AE=4,AF=6,则▱ABCD的周长为( )A.21B.34C.48D.608.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②该抛物线一定过原点;③b2﹣4ac>0;④a﹣b+c<0;⑤b>0.其中结论正确的个数有( )个.A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:3a3﹣12a= .10.(4分)如图,直线:y=2x+4与直线l2:y=kx+b相交于点P(1,m),则方程组的解为 .11.(4分)一个箱子装有除颜色外都相同的3个蓝球,3个灰球和一定数量的粉球.从中随机抽取1个球,被抽到粉球的概率是,那么箱内粉球有 个.12.(4分)如图,经过原点的直线交反比例函数的图象于A,B两点,过点A作AC⊥x轴于点C,连接BC,当S△ABC=2时,k的值为 .13.(4分)如图,在Rt△ABC中,∠BAC=90°,按以下步骤作图:①分别以点A和点C 为圆心,大于的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD=2,则△ACD的面积为 .三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)先化简,再求值:,其中a=﹣1.15.(8分)为提升同学们的综合素质,丰富课余生活,某校举行了“爱新都”为主题的视频制作评比活动.某兴趣小组同学积极参与,计划制作有代表性景点的城市宣传短片,现抽样调查了部分学生,从A锦门民国小镇,B桂湖公园,C宝光寺,D新繁东湖,E泥巴沱公园五个景点中,选出最具有新都代表性的地方,并将调查情况绘制成如图两幅不完整统计图.根据统计图中的信息解答下列问题:(1)本次被调查的学生有 人,扇形统计图中表示A的扇形圆心角α的度数等于 度,并把条形图补充完整;(2)该校学生共计1500人,请估算出该校认为最具有新都代表性的是宝光寺的学生人数;(3)该兴趣小组准备从校内四位“优秀共青团员”(两男两女)中,挑选两人作为宣传片中的讲解员,请利用列表或画树状图的方法,求所选两人恰好是1名男生和1名女生的概率.16.(8分)某校学生利用课余时间,使用卷尺和测角仪测量某公园古城门的高度.如图所示,他们先在公园广场点M处架设测角仪,测得古城门最高点A的仰角为22°,然后前进20m到达点N处,测得点A的仰角为45°;已知测角仪的高度为1.4m.求古城门最高点A距离地面的高度.(结果精确到0.1m;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)17.(10分)如图,已知矩形ABCD和矩形AEFG共用顶点A,点E在线段BD上,连接EG,DG,且.(1)求证:∠ABE=∠ADG;(2)若,,,求EG的长.18.(10分)在平面直角坐标系xOy中,直线与反比例函数的图象交于A (3,m),B两点.(1)求直线AB的函数表达式及点B的坐标;(2)如图1,过点A的直线分别与x轴,反比例函数的图象(x<0)交于点M,N,且,连接BM,求△ABM的面积;(3)如图2,点D在另一条反比例函数的图象上,点C在x轴正半轴上,连接DC交该反比例函数图象于点E,且DE=2EC,再连接AD,BC,若此时四边形ABCD 恰好为平行四边形,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)满足的整数x有 个.20.(4分)x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,则x1+x2﹣3x1x2= .21.(4分)将抛物线C1:y=x2向左平移a(a>0)个单位长度后,再向下平移b个单位长度,得到新的抛物线C2,若A(﹣a﹣2,y1),B(﹣a+1,y2),C(﹣a+3,y3)为抛物线C2图象上的三点,则y1、y2、y3的大小关系 .(请用“<”表示)22.(4分)如图1,以矩形ABCD的宽BC为边在其内部作正方形BCFE,若,则称矩形ABCD为“黄金矩形”,=称为“黄金比率”,如图2,以矩形ABCD 的宽BC为边在其内部作两个正方形BCHG,GHFE,若,则称矩形ABCD为“白银矩形”,=称为“白银比率”,则该比率为 ;如图3,A4纸的长与宽的比值近似可以看作,若沿某条直线裁剪一次,使得A4纸剩下部分为一个“白银矩形”,则该“白银矩形”的面积是 .23.(4分)如图,在矩形ABCD中,BC=2AB,点M,N为直线AD上的两个动点,且∠MBN =30°,将线段BM关于BN翻折得线段BM′,连接CM′.当线段CM′的长度最小时,∠MM'C的度数为 度.24.(10分)为了美化校园,某校准备在校园广场中心安装一个圆形喷水池,喷水池中央设置一柱形喷水装置OA高2米,点A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.O位于圆形喷水池中心的水面处,按照如图所示建立直角坐标系,该设计水流与OA的水平距离为1米时,喷出的水柱可以达到最大高度3米.(1)求出该抛物线的函数表达式;(2)为了使喷出的水流不至于溅落在圆形喷水池外,需要在水流落回水面处的外侧预留1米距离,则该圆形喷水池的半径至少设计为多少米合理?25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c,经过点M(2,3),与y轴交于点A(0,﹣1),直线BC与抛物线交于异于点A的B,C两点.(1)求抛物线的函数表达式;(2)若三角形BOM是以OM为底的等腰三角形,试求出此时点B的横坐标;(3)若BA⊥CA,探究直线BC是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(10分)如图1,在四边形ABFE中,∠F=90°,点C为线段EF上一点,使得AC⊥BC,AC=2BC=4,此时BF=CF,连接BE,BE⊥AE,且AE=BE.(1)求CE的长度;(2)如图2,点D为线段AC上一动点(点D不与A,C重合),连接BD,以BD为斜边向右侧作等腰直角三角形BGD.①当DG∥AB时,试求AD的长度;②如图3,点H为AB的中点,连接HG,试问HG是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.2024年四川省成都市新都区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.【分析】根据绝对值的意义解答即可.【解答】解:﹣2024的绝对值是2024.故选:A.【点评】本题主要考查了绝对值的意义,解题的关键是熟练掌握.2.【分析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图形既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;D.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1.9亿=190000000=1.9×108,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.【分析】计算出各个选项中式子的正确结果,即可判断哪个选项符合题意.【解答】解:(x+y)2=x2+2xy+y2,故选项A错误,不符合题意;(2x2)3=8x6,故选项B错误,不符合题意;4x3÷2x=2x2,故选项C正确,符合题意;x2﹣4y2=(x+2y)(x﹣2y),故选项D错误,不符合题意;故选:C.【点评】本题考查整式的混合运算、因式分解,熟练掌握运算法则是解答本题的关键.5.【分析】根据关于x轴对称的点的坐标特点解答即可.【解答】解:点P(﹣2,﹣4)关于x轴对称的点的坐标是(﹣2,4).故选:C.【点评】本题考查的是关于x轴对称的点的坐标,熟知关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题的关键.6.【分析】将数据重新排列,再根据众数和中位数的定义求解即可.【解答】解:将这组数据重新排列为74,76,78,78,80,80,80,85,所以这组数据的众数为80,中位数为=79,故选:A.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.7.【分析】由平行四边形的性质推出CD∥AB,DC=AB,AD=BC,得到△FAE∽△CDE,推出FA:CD=AE:DE=1:2,求出CD=12,由AE=4,AE:DE=1:2求出DE=8,得到AD=AE+ED=12,即可求出▱ABCD的周长=2(AD+CD)=48.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,DC=AB,AD=BC,∴△FAE∽△CDE,∴FA:CD=AE:DE=1:2,∵FA=6,∴CD=12,∵AE=4,AE:DE=1:2,∴DE=8,∴AD=AE+ED=12,∴▱ABCD的周长=2(AD+CD)=2×(12+12)=48.故选:C.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,得到FA:CD=AE:DE=1:2,求出CD的长.8.【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据由函数图象可知,与x轴有两个交点;④根据当x=﹣1时,y的函数值的位置进行判断;⑤根据开口方向和对称轴的位置解答即可.【解答】解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另一个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵由函数图象可知,与x轴有两个交点,b2﹣4ac>0;则此小题结论正确;④由函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;⑤∵开口向下,∴a<0,对称轴为直线x=﹣2,∴b<0,则此小题结论错误;故选:B.【点评】本题考查了抛物线与x轴的交点,二次函数与不等式的关系,二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】首先利用待定系数法求出m的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【解答】解:∵直线y=2x+4经过点P(1,m),∴m=2+4=6,∴P(1,6),∴方程组的解为.故答案为:.【点评】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点的坐标就是两函数组成的二元一次去方程组的解.11.【分析】设箱内粉球有x个,根据概率公式列出方程,解方程即可.【解答】解:设箱内粉球有x个,由题意得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,即箱内粉球有6个,故答案为:6.【点评】此题考查了概率公式:概率=所求情况数与总情况数之比,熟记概率公式是解题的关键.12.【分析】根据反比例函数图象的对称性可得出A,B两点关于点O对称,进而得出△AOC 与△BOC的面积相等,据此可解决问题.【解答】解:因为反比例函数是中心对称图形,且坐标原点是对称中心,所以点A和点B关于点O对称,则OA=OB.又因为S△ABC=2,所以.因为AC⊥x轴,所以,则x A y A=2,所以k=x A y A=2.故答案为:2.【点评】本题考查反比例函数与一次函数图象交点问题,熟知反比例函数图象的对称性是解题的关键.13.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABC即可解决问题.【解答】解:由作法得MN垂直平分AC,∴DA=DC∴∠DAC=∠C,∴∠ADB=∠DAC+∠C=2∠C,∵AB=BD,∴∠BAD=∠ADB=2∠C,∵∠BAC=90°,∴∠BAD+∠C=90°,即2∠C+∠C=90°,∴∠C=30°,∴AC=AB=2.∴△ACD的面积=S△ABC=××2×2=,故答案为:.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.【分析】(1)根据特殊角的三角函数值、二次根式的性质、零指数幂计算;(2)根据分式的减法法则、除法法则把原式化简,把a的值代入计算,得到答案.【解答】解:(1)原式=3×﹣﹣×+1=﹣2﹣1+1=﹣;(2)原式=÷(+)=÷=•=,当a=﹣1时,原式===.【点评】本题考查的是实数的运算、分式的化简求值,掌握实数的运算法则、分式的混合运算法则是解题的关键》15.【分析】(1)用条形统计图中B的人数除以扇形统计图中B的百分比可得本次被调查的学生人数;用360°乘以本次调查中选择A景点的人数所占的百分比,可得扇形统计图中表示A的扇形圆心角α的度数;求出选择D景点的人数,补全条形统计图即可.(2)根据用样本估计总体,用1500乘以样本中选择C的学生人数所占的百分比,即可得出答案.(3)画树状图得出所有等可能的结果数以及所选两人恰好是1名男生和1名女生的结果数,再利用概率公式可得出答案.【解答】解:(1)本次被调查的学生有18÷22.5%=80(人).扇形统计图中表示A的扇形圆心角α的度数等于360°×=72°.故答案为:80;72.选择D景点的人数为80﹣16﹣18﹣20﹣8=18(人).补全条形统计图如图所示.(2)1500×=375(人).∴该校认为最具有新都代表性的是宝光寺的学生人数约375人.(3)将2名男生分别记为甲,乙,2名女生分别记为丙,丁,画树状图如下:共有12种等可能的结果,其中所选两人恰好是1名男生和1名女生的结果有:甲丙,甲丁,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙,共8种,∴所选两人恰好是1名男生和1名女生的概率为=.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.16.【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE 是矩形,于是得到BC=MN=20m,DE=CN=BM=1.4m,求得CE=AE,设AE=CE=x,得到BE=20+x,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC,交BC延长线于点E,交MP于点F,则BMNC,四边形BMDE是矩形,∴BC=MN=16m,ED=BM,设AE=xm,在Rt△ACE中,∠ACE=45°,∴AE=CE=xm,∵BC=20m,∴BE=x+20,在Rt△ABE中,∠ABE=22°,∴tan22°=,∴0.40=,解得:x≈13.33,∴ED=BM=1.4m,∴AF=13.33+1.4=14.73≈14.7(m).答:古城门最高点A距离地面的高度约为14.7m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,能借助仰角构造直角三角形并解直角三角形是解决问题的关键.17.【分析】(3)利用同角的余角相等可得∠BAE=∠DAG,结合条件即可证明△ABE∽△ADG,以此即可得证;(2)易得∠ADB=∠CBD,结合(1)中结论并根据等角加等角相等得∠EDG=90°,再由勾股定理求得BD的长,于是得出BE的长,由△ABE∽△ADG可求出DG的长,最后再利用勾股定理即可求解.【解答】(1)证明:∵四边形ABCD和四边形AEFG均为矩形,∴∠BAD=∠EAG=90°,即∠BAE+∠DAE=∠DAG+∠DAE=90°,∴∠BAE=∠DAG,又∵,∴△ABE∽△ADG,∴∠ABE=∠ADG.(2)解:∵四边形ABCD为矩形,∴AD∥BC,∠ABC=∠ABE+∠CBD=90°,∴∠ADB=∠CBD,∵∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠CBD=90°,即∠EDG=90°,在Rt△ABD中,AB=,AD=,∴==,∴BE=BD=,DE=,由(1)知,△ABE∽△ADG,∴,∠ABE=∠ADG,∴,∴DG=,在Rt△DEG中,EG===.【点评】本题主要考查相似三角形的判定与性质、矩形的性质、勾股定理,解题关键:(1)由同角的余角相等得到∠BAE=∠DAG;(2)根据角之间的关系推理证明∠EDG=90°.18.【分析】(1)将A(3,m)代入直线y=﹣x+b与反比例函数y=,可得答案;(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,根据平行线分线段成比例得,可得N(﹣4,﹣3),从而得出直线AM的解析式为y=x+1,M(﹣1,0),再计算S△ABM=S△AHM﹣S△BHM即可;(3)利用平行四边形的性质可得AB∥CD,设直线CD的解析式为y=﹣x+t,可得C(t,0),则D(t﹣3,2),过D作DG⊥x轴于G,过点E作EF⊥x轴于F,则DG∥EF,可得△CEF∽CDG,利用相似三角形的性质得,可得出EF=,OF=t﹣1,则E(t﹣1,),根据反比例函数图象上点的坐标特征可得t=,即可解决问题.【解答】解:(1)将A(3,m)代入反比例函数y=得,m=4,∴A(3,4),将点A(3,4)代入y=﹣x+b得,b=6,∴直线AB的函数表达式为y=﹣x+6,联立直线y=﹣x+6与反比例函数y=得,,解得,∴点B的坐标为(6,2);(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,设AB与x轴交于H,∴MP∥NQ,∴,∵A(3,4),∴AP=4,∴PQ=3,∴N(﹣4,﹣3),设线AM的解析式为y=k′x+b′,∴,解得,∴直线AM的解析式为y=x+1,令y=0,则x=﹣1,∴M(﹣1,0),∵直线AB的函数表达式为y=﹣x+6,令y=0,则x=9,∴H(9,0),∴S△ABM=S△AHM﹣S△BHM=×4×(1+9)﹣×2×(1+9)=10;(3)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴设直线CD的解析式为y=﹣x+t,令y=0,则x=t,∴C(t,0),∵A(3,4),B(6,2),∴D(t﹣3,2),∵DE=2EC,∴,过D作DG⊥x轴于G,过点E作EF⊥x轴于F,∴DG∥EF,∴△CEF∽CDG,∴,∴,,∴EF=,OF=t﹣1,∴E(t﹣1,),∵D,E都在另一条反比例函数(k>0)的图象上,∴k=(t﹣1)=2(t﹣3),∴t=,∴k=×(×﹣1)=2.【点评】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,反比例函数图象与一次函数图象的交点问题,平行四边形的性质,相似三角形的判定与性质等知识,作辅助线构造相似三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】求出﹣,的取值范围,进而可得出答案.【解答】解:∵﹣2<﹣<﹣1,2<<3,∴满足<x<的整数x有﹣1,0,1,2共4个,故答案为:4.【点评】本题考查了估算无理数的大小,解题的关键是确定﹣,的取值范围.20.【分析】先把方程整理为一元二次方程的一般形式,再求出x1+x2与x1•x2的值,代入代数式进行计算即可.【解答】解:一元二次方程x(3x﹣1)﹣1=0可化为3x2﹣x﹣1=0,∵x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,∴x1+x2=,x1•x2=﹣,∴x1+x2﹣3x1x2=﹣3×(﹣)=+1=.故答案为:.【点评】本题考查的是一元二次方程根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=是解题的关键.21.【分析】求出A,B,C三个点离抛物线对称轴的远近,结合抛物线的开口方向即可解决问题.【解答】解:由题知,平移后的抛物线函数解析式为:y=(x+a)2﹣b,则此抛物线的对称轴为直线x=﹣a,且开口向上,所以抛物线上的点离对称轴越近,其纵坐标越小.因为﹣a﹣(﹣a﹣2)=2,﹣a+1﹣(﹣a)=1,﹣a+3﹣(﹣a)=3,且1<2<3,所以y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.22.【分析】根据“白银矩形”的定义,列出方程即可求出“白银比率”,再利用求出的“白银比率”即可解决问题.【解答】解:令BC=x,由得,,解得AE=(舍负),所以AB=2x+AE=,则“白银比率”为:.如图所示,,x=,经检验x=是原方程的解,且符合题意.所以该“白银矩形”的面积为:.故答案为:,.【点评】本题考查矩形的性质及黄金分割,理解题中所给定义是解题的关键.23.【分析】将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,得到△ABM≌△EBM′,再由当CM⊥EF时,CM'有最小值,可得△EBG与△M′CG均为30°、60°、90°直角三角形,再证明△ABM为等腰直角三角形,△MBM是等边三角形,进而得到∠EM'B=∠AMB=60°,最后当CM′⊥EF于H时,CM′有最小值,由此可以求出∠MM'C =∠EM'C﹣∠EM'M=90°﹣15°=75°.【解答】解:将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,设EM交BC于G点,如下图所示:在矩形ABCD中,∠A=∠ABC=90°,AD=BC,根据折叠可知,∠MBM'=60°,BM=BM',∴∠ABM=∠ABE﹣∠MBE=60°﹣∠MBE,∠EBM'=∠MBM'﹣∠MBE=60°﹣∠MBE,∴∠ABM=∠EBM′,∵BA=BE,BM=BM′,∴△ABM≌△EBM′(SAS),∵AM=EM′,∠E=∠A=90°,∵∠EBG=90°﹣60°=30°,∴∠BGM'=∠EBG+∠BEG=90°+30°=120°,∴∠EGC=120°,∴∠CGM'=∠EGB=180°﹣120°=60°,∴点M在EF上,∵垂线段最短,∴当CM′⊥EF时,CM′有最小值,∴△EBG与△M′CG均为30°、60°、90°直角三角形,设EG=x,BC=2y,则BG=2EG=2x,CG=BC﹣BG=2y﹣2x,,∴,∵BC=2AB,,∴EM′=AB,∵AM=EM′,∴AB=AM,∴△ABM为等腰直角三角形,∴∠EM′B=∠AMB=45°,∵∠MBM'=60°,BM=M′B,∴△MBM是等边三角形,∴∠BM'M=60°,∴∠EM'M=∠BM'M﹣∠EM'B=60°﹣45°=15°,∴∠MM'C=∠EM'C﹣∠EM'M=90°﹣15°=75°,故答案为:75.【点评】本题考查了三角形全等的判定方法、矩形的性质、旋转的性质、轴对称的性质,等边三角形的判定和性质,属于四边形的综合题,难度较大,熟练掌握各图形的性质是解题的关键.24.【分析】(1)易得抛物线的顶点坐标为(1,3),用顶点式设出抛物线解析式,把点A 的坐标代入可得抛物线二次项系数的值,即可求得抛物线的解析式;(2)水流落回水面,即抛物线与x轴相交,那么纵坐标为0求得符合题意的x的值,再加上预留的一米即为该圆形喷水池的半径最少的米数.【解答】解:(1)由题意得:抛物线的顶点坐标为(1,3).∴设抛物线的解析式为:y=a(x﹣1)2+3(a≠0).∵抛物线经过点(0,2),∴a+3=2.解得:a=﹣1.∴该抛物线的函数表达式为:y=﹣(x﹣1)2+3;(2)∵水流落回水面,∴抛物线与x轴相交.∴﹣(x﹣1)2+3=0.(x﹣1)2=3,x﹣1=,x﹣1=﹣.∴x1=+1,x2=1﹣(不合题意,舍去).∴该圆形喷水池的半径至少设计为:+1+1=(+2)米.答:该圆形喷水池的半径至少设计为(+2)米.【点评】本题考查二次函数的应用.根据题意设出符合题意的函数解析式是解决本题的关键.用到的知识点为:若二次函数有顶点坐标,设二次函数的解析式为:y=a(x﹣h)2+k(a≠0)计算比较简便.25.【分析】(1)由待定系数法即可求解;(2)求出OM中垂线表达式中的k值为﹣,得到直线OM中垂线的表达式,即可求解;(3)证明tan∠ACN=tan∠BAM,得到,整理得:mn=﹣1,进而求解.【解答】解:(1)将点A、M的坐标代入函数表达式得:,解得:,则抛物线的表达式为:y=x2﹣1;(2)由点O、M的坐标得,直线OM的表达式为:y=x,则OM中垂线表达式中的k值为﹣,OM的中点坐标为:(1,),则直线OM中垂线的表达式为:y=﹣(x﹣1)+,联立上式和抛物线的表达式得:x2﹣1=﹣(x﹣1)+,解得:x=,即点B的横坐标为:;(3)直线BC过定点(0,0),理由:过点A作x轴的平行线交过点B和y轴的平行线于点M,交过点C和y轴的平行线于点N,设点B(m,m2﹣1)、C(n,n2﹣1),∵BA⊥CA,∴∠BAM+∠CAN=90°,∵∠ACN+∠CAN=90°,∴∠ACN=∠BAM,∴tan∠ACN=tan∠BAM,即,即,整理得:mn=﹣1,由点B、C的坐标得,直线BC的表达式为:y=(m+n)(x﹣m)+m2﹣1=(m+n)x﹣mn ﹣1=(m+n)x,当x=0时,y=(m+n)x=0,即直线BC过定点(0,0).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、中垂线的性质,数据处理是本题的难点,题目有一定的综合性,难度适中.26.【分析】(1)取AB的中点为H,连接EH、HC,证明△BCF是等腰直角三角形,∠BCF =45°,得BF=CF=,再证明△AEB是等腰直角三角形,得∠ABE=45°,然后证明∠BAC=∠BEF,即可解决问题;(2)①过点D作DM⊥EF于点M,DK⊥AB于点K,证明△CMD是等腰直角三角形,得CD=DM,再证明△DBC∽△GBF,得∠BCD=∠BFG=90°,==,进而证明△BKD是等腰直角三角形,得DK=BK,然后证明DK=AB,求出DK=,即可解决问题;②过点H作HP⊥EF于点P,连接EH,由①得点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,即N与①中的D重合,由等腰直角三角形的性质得AE=,再由锐角三角函数定义得sin∠ENA=,设∠BEF=∠BAC=α,则∠HEF=α+45°,然后证明∠HEF=∠EAN,即可得出结论.【解答】解:(1)如图1,取AB的中点为H,连接EH、HC,设AC交BE于点N,∵AC=2BC=4,∴BC=2,∵∠F=90°,BF=CF,∴△BCF是等腰直角三角形,∠BCF=45°,∴BF=CF=BC=×2=,∵AC⊥BC,∴∠ACB=90°,∴∠ACE=180°﹣∠ACB﹣∠BCF=180°﹣90°﹣45°=45°,∵BE⊥AE,AE=BE,∴△AEB是等腰直角三角形,∴∠ABE=45°,∴∠ABN=∠NCE,∵∠ANB=∠CNE,∴∠BAC=∠BEF,∴tan∠BAC=tan∠BEF,∵tan∠BAC===,∴tan∠BEF==,∴EF=2BF=2,∴CE=EF﹣CF=2﹣=;(2)①如图2,过点D作DM⊥EF于点M,DK⊥AB于点K,则∠DMG=90°,由(1)得:∠ACE=45°,∴△CMD是等腰直角三角形,∴CD=DM,∵△BCF、△BGD都是等腰直角三角形,∴DG=BG,∠BGD=90°,∠DBG=∠CBF=45°,==,∴∠DBG﹣∠CBG=∠CBF﹣∠CBG,即∠DBC=∠GBF,=,∴△DBC∽△GBF,∴∠BCD=∠BFG=90°,==,∴CD=FG,∴DM=FG,∵∠BFE=90°,∴点G在EF上,∵DG∥AB,∠BGD=90°,∴∠GBA=90°,∵∠ABE=45°,∠DBG=45°,∴D在BE上,∵tan∠BAC=,∴=,∴AK=2DK,∴AD===DK,∵DK⊥AB,∠ABE=45°,∴△BKD是等腰直角三角形,∴DK=BK,∵AK=2DK,AB=AK+BK,∴DK=AB,在Rt△ABC中,由勾股定理得:AB===2,∴DK=AB=×2=,∴AD=DK=×=;②HG存在最小值,理由如下:如图3,过点H作HP⊥EF于点P,连接EH,由①得:点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,则N与①中的D重合,由①得:AN=,∵△AEB是等腰直角三角形,∴AE=AB=×2=,∵点H为AB的中点,∴EH=AB=×2=,∠BEH=45°,∴sin∠ENA===,设∠BEF=∠BAC=α,则∠HEF=α+45°,∵∠EAN=∠ABE+∠BAC=45°+α,∴∠HEF=∠EAN,在Rt△PEH中,PH=EH•sin∠HEF=EH•sin∠ETA=×=,∴HG的最小值为.【点评】本题是三角形综合题,考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、平行线的性质以及锐角三角函数定义等知识,本题综合性强,难度较大,熟练掌握等腰直角三角形的判定与性质和锐角三角函数定义,证明三角形相似是解题的关键,属于中考常考题型.。
四川省南充市2014年中考数学试题(含答案)

2014年四川省南充市中考数学试卷(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分) 1.(2014四川南充,1,3分)31-的值是( ) A .3 B .-3 C .13 D .-13【答案】C2.(2014四川南充,2,3分)下列运算正确的是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2 【答案】A3.(2014四川南充,3,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A B C D【答案】D4.(2014四川南充,4,3分)如图,已知AB ∥CD ,65C ∠=︒,30E ∠=︒,则A ∠的度数为( )DA(第2题图)A .30°B .32.5°C .35°D .37.5°【答案】C5.(2014四川南充,5,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()(第5题图)A.1)B.(-1C.D.1)【答案】A6.(2014四川南充,6,3分)不等式组1(1)22331xx x⎧+⎪⎨⎪-<+⎩…的解集在数轴上表示正确的是()【答案】D7.(2014四川南充,7,3分)为积极响应南充市创建“全国卫生城市”的号召,某校1 500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等。
从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是()DBA.样本容量是200 B.D等所在扇形的圆心角为15°-23A B C DC .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等大约有900人 【答案】B8.(2014四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°(第8题图)【答案】B9.(2014四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )(第9题图)A .25π2B .13πC .25π D.【答案】B10.(2014四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤(第10题图)AB CDl【答案】D二、填空题(本大题共6个小题,每小题3分,共18分) 11.(2014四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2014四川南充,12,3分)因式分解3269x x x -+=__________. 【答案】2-x x 3()13.(2014四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的方差是__________. 【答案】5314.(2014四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB =8,则图中阴影部分的面积是__________.(结果保留π)【答案】16π15. (2014四川南充,15,3分)一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则 1232014a a a a ++++=L L __________.【答案】2011216.(2014四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是.(第14题图)【答案】28x ≤≤三、解答题(本大题共9个小题,共72分)17.(2014四川南充,17,6分)计算:103130tan 3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:13130tan 3)23()12014(-⎪⎭⎫⎝⎛++---=12+3 +113=123=618. (2014四川南充,18,8分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB .求证:AB=CD.【答案】证明:∵∠OBD=∠ODB . ∴OB=OD在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ) ∴AB=CD.19.(2014四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A 、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B 组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A 组中随机抽取一张记为x ,乙从B 组中随机抽取一张记为y .(1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax -y =5的解,求a 的值;ABOCD(18题图)(2)求甲、乙随机抽取一次的数恰好是方程ax -y =5的解的概率.(请用树形图或列表法求解) 【答案】解:20. (2014四川南充,20,8分)(8分)已知关于x 的一元二次方程x 2-22x +m =0,有两个不相等的实数根.⑴求实数m 的最大整数值;⑵在⑴的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值. 【答案】解:⑴由题意,得:△>0,即:(24m -- >0,m <2,∴m 的最大整数值为m=1(2)把m=1代入关于x 的一元二次方程x 2-22x +m =0得x 2-22x +1=0,根据根与系数的关系:x 1+x 2 = 22,x 1x 2=1,∴x 12+x 22-x 1x 2= (x 1+x 2)2-3x 1x 2=(22)2-3×1=521.(2014四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=m x 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7). (1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .【答案】解:∵反比例函数y 2=mx 的图象过点A (2,5)∴5=2m,m=10即反比例函数的解析式为y =10x。
2014年重庆市中考数学试卷(附答案与解析)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( ) A .17B .117C .17-D .117- 2.计算642x x ÷的结果是( ) A .2xB .22xC .42x D .102x 3.中,a 的取值范围是( ) A .0a ≥ B .0a ≤C .0a >D .0a < 4.五边形的内角和是( ) A .°180B .°360C .°540D .°6005.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( ) A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4012.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.数学试卷 第5页(共30页) 数学试卷 第6页(共30页)21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页) 数学试卷 第8页(共30页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.5 / 15重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B . 【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义数学试卷第11页(共30页)数学试卷第12页(共30页)7 / 15,OA OB =43=,43S AB OC ∴=242=3π.所以,DC BC =62210BC CE CF BE ⨯==CF BE ⊥45OCB ∠=OBM CBF ∠+∠△≌△O B M O C F数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=2(1)(x 1)x x -+-11+补图如下:(2)用1A,2A表示餐饮企业,1B,2B表示非餐饮企业,画树状图如下:9 / 15数学试卷 第19页(共30页)数学试卷 第20页(共30页)10%)150(19-则3(1)(1x +24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =B FCA ∠=∠ABF ∴≅△BE CF ∴=45B ∠=︒BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC ∠=∠,∴∠15=MC MC∴∠=∠78∠=BAC∴∠=ACB∴∠=∠57∠=ADE∴=DE DN 【解析】1ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'1A ∠=∠4A ∴∠=∠设QB QA =③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前四川省成都市2014年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在2-,1-,0,2这四个数中,最大的数是 ( ) A .2- B .1- C .0 D .22.下列几何体的主视图是三角形的是 ( )ABCD3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为 ( )A .829010⨯元B .929010⨯元C .102.9010⨯元D .112.9010⨯元 4.下列计算正确的是( )A .23x x x +=B .235x x x +=C .235()x x =D .632x x x ÷= 5.下列图形中,不是轴对称图形的是( )ABC D6.函数5y x =-中,自变量x 的取值范围是( )A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤7.如图,把三角板的直角顶点放在直尺的一边上,若130∠=,则2∠的度数为 ( )A .60B .50C .40D .308.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分) 60 70 80 90 100 人 数4 812 115则该班学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分 9.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为 ( )A .2(1)4y x =++B .2(1)2y x =++C .2(1)4y x =-+D .2(1)2y x =-+ 10.在圆心角为120的扇形AOB 中,半径6cm OA =,则扇形AOB 的面积是 ( )A .26π cmB .28πcmC .212πcmD .224πcm第Ⅱ卷(非选择题 共70分)二.填空题(本大题共4小题,每小题4分,共16分,请把答案填在题中的横线上)11.计算:|2|=- .12.如图,为估计池塘岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得32m MN =,则A ,B 两点间的距离是 m .13.在平面直角坐标系中,已知一次函数21y x =+的图象经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y (填“>”“<”或“=”). 14.如图,AB 是O 的直径,点C 在AB 的延长线上,CD 切O 于点D ,连接AD .若25A ∠=,则C ∠= 度.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共28页)三、解答题(本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:0294sin30(2014π)2-+--.(2)解不等式组:315,2(2)7xx x-⎧⎨++⎩>①<②.16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37,20mBC=,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)17.(本小题满分8分)先化简,再求值:22(1)b ba b a b-÷--,其中31a=+,31b=-.18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5y kx=+(k为常数,且0k≠)的图像与反比例函数8yx=-的图象交于(2,)A b-,B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移(0)m m>个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.20.(本小题满分10分)如图,矩形ABCD中,2AD AB=,E是AD边上一点,1DE ADn=(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB a=(a为常数),3n=时,求FG的长;(3)记四边形BFEG的面积为1S,矩形ABCD的面积为2S,当121730SS=时,求n的值(直接写出结果,不必写出解答过程).B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1 300名学生一周的课外阅读时间不少于7小时的人数是.22.已知关于x的分式方程111x k kx x+-=+-的解为负数,则k的取值范围是.23.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如,图中的三角形ABC是格点三角形,其中2S=,0N=,6L=;图中格点多边形DEFGHI所对应的S,N,L分别是.经探究发现,任意格点多边形的面积S可表示为S aN bL c=++,其中,,a b c为常数,则当5N=,14L=时,S=(用数值作答).数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)24.如图,在边长为2的菱形ABCD 中,=60A ∠,M 是AD 边的中点,N 是AB 边上一动点,将AMN △沿MN 所在的直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是 .25.如图,在平面直角坐标系xOy 中,直线32y x =与双曲线6y x=相交于A ,B 两点, C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若PBC △的面积是20,则点C 的坐标为 .二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设m AB x =.(1)若花园的面积为2192m ,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.27.(本小题满分10分)如图,在O 的内接ABC △中,90ACB ∠=,2AC BC =,过C 作AB 的垂线l 交O于另一点D ,垂足为E .设P 是AB 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:PAC PDF △∽△; (2)若5AB =,AP BP =,求PD 的长;(3)在点P 运动过程中,设AGx BG=,tan AFD y ∠=,求y 与x 之间的函数关系式(不要求写出x 的取值范围).28.(本小题满分12分)如图,已知抛物线(2)(4)8ky x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y x b =+与抛物线的另一交点为D . (1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC △相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF .一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页)数学试卷 第8页(共28页)四川省成都市2014年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】D【解析】将各数在数轴上表示,通过数轴比较大小,其中最大的是2,故选D . 【考点】有理数的大小比较 2.【答案】B【解析】观察四种几何体,可以判断主视图为三角形的为圆锥,故选B . 【考点】简单几何体的三视图. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a <<,n 为整数,a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,为负整数,n 的绝对值等于原数左起第一个非零数字前零的个数(含整数位上的零).1029029 000 000 000 2.910==⨯亿,故选C .【考点】科学记数法 4.【答案】B【解析】A ,B 为整式的加减运算,整式加减运算的实质为合并同类项,A 中两项不是同类项,不能合并,A 错误,B 正确;C 为幂的乘方,底数不变,指数应相乘,C 错误;D 为同底数幂的除法,同底数幂相除,底数不变,指数相减,D 错误,故选B . 【考点】整式的计算 5.【答案】A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,B ,C ,D 选项中的图形沿竖直的直线折叠直线两旁的部分都能重合,A 中的图形不能重合,故选A . 【考点】轴对称图形 6.【答案】C第Ⅱ卷5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)tan BC C . 2037BC m C ==,∠20tan3720AB ∴=≈答:树高AB 约为15m. 【考点】三角函数 17.【答案】23【解析】解:=原式(2)用列表法表示如下:或画树状图如下:)点7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)平移后的直线与反比例函数的图像有且只有一个公共点FC GBO ∠BOG ∴△BG EF ∴=∴四边形BFEG 又FG BE ⊥平行四边形2)当AB Rt ABE △2+BE AB =A EOF =∠∠9 / 1456=483aOE AB a a AE a =【考点】四边形的综合应用B 卷22数学试卷 第19页(共28页)数学试卷 第20页(共28页)00000166166(33)2(33)2022x x x x x ++-+++-=,得ACB =∠是O 的直径 APB ∴∠ CPB PBA +∠l AB ⊥于点FAE +=∠PB ∴=∠∠ABP AFE ACP ==∠∠PAC =又∠(2)在Rt ABC △由勾股定理,得1122ABC S AB CE AC BC ==△,2CE ∴=,可得4AE =.当AP BP =时,有PA PB =,则OABP 为等腰直角三角形25222PAB AP AB ∴===∠,EF AB ⊥由垂径定理,得由(1)知故5622DF PA PD AC ⨯==)方法一:过点G 作,ACH ∠,,l AB AC AD ⊥∴=∠tan GHPH ∴=AP AD AG DB BG=12BD AG BC x AD BG AC == 1tan 2AP AFD ABP x PB ==∠=之间的的函数关系式为12y x = 【考点】圆,相似三角形,勾股定理,三角函数直线点22144144(6)81616k k -++26=2216k -=,即 又0,2k k >∴=A P AB227272(6)44k k -++2166=45k -=,即,0,k k >∴4255或 作DG y ⊥轴于点G ,过点A 作43)3。