理想气体状态方程典型例题解析

合集下载

理想气体状态方程典型例题解析

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122211221127629074300点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单.【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变).解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成.轮胎内原有气体的状态为:p 1= atm ,T 1=293K ,V 1=20L .需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=充气后混合气体状态为:p =,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931.点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决.【例3】已知空气的平均摩尔质量为×10-2 kg/mol ,试估算室温下,空气的密度.点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT在具体估算时可取p 0=×105Pa ,T =300 K 来计算.参考答案:m 3【例4】贮气筒的容积为100 L ,贮有温度为27℃,压强为30atm 的氢气,使用后温度降为20℃,压强降为20个大气压,求用掉的氢气质量.点拨:方法一:选取筒内原有的全部氢气为研究对象,且没有用掉的氢气包含在末状态中.可求出用掉的氢气的体积.再取用掉的氢气为对象,同标准状态相比较,求出用掉氢气的质量,方法二:对使用前、后筒内的氢气用克拉珀龙方程.并可比较这两种方法的繁简程度.参考答案:跟踪反馈1.活塞把密闭容器分隔成容积相等的两部分A 和B ,如图13-59所示,在A 、B 中分别充进质量相同、温度相同的氢气和氧气,则活塞将:[ ]A .向右运动B .向左运动C.不动D.不能确定2.有一个充满氢气的氢气球,球的质量为球内充入氢气的3倍,氢气压强为外面空气压强的倍,温度相同,则氢气球开始上升的加速度为________(空气的平均摩尔质量为29g/mol)3.当温度为27℃,压强为×105Pa时,32g氧气的体积为多大密度是多大另有48g氧气,温度和压强跟上述数值相同,氧气密度是多大4.如图13-60所示,气缸A和容器B由一细管经阀门K相连,A和B的壁都是透热的,A放在27℃、1标准大气压的大气中,B浸在127℃的恒温槽内,开始时K是关断的,B内没有气体,容积V B=,A内装有气体,体积V A=,打开K,使气体由A流入B,等到活塞D停止移动时,A内气体体积是多大假设活塞D与气缸壁之间没有摩擦,细管的容积忽略不计.参考答案1.C 2. 3.m3 2kg/m3 4.3L。

专题:理想气体的状态方程(练习) (1)

专题:理想气体的状态方程(练习) (1)

专题:气体实验定律 理想气体的状态方程[重难点阐释]: 一.气体压强的计算气体压强的确定要根据气体所处的外部条件,往往需要利用跟气体接触的液柱和活塞等物体的受力情况和运动情况计算.几种常见情况的压强计算:1.封闭在容器内的气体,各处压强相等.如容器与外界相通,容器内外压强相等. 2.帕斯卡定律:加在密闭静止液体上的压强,能够大小不变地由液体向各个方向传递. 3.连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的.4.液柱封闭的气体:取一液柱为研究对象;分析液柱受力情况,根据物体的运动情况,利用力的平衡方程(或动力学方程)求解.5.固体封闭的气体:取固体为研究对象;分析固体受力情况,根据物体的运动情况,利用力的平衡方程(或动力学方程)求解. 二.气体的图象1.气体等温变化的P --V 图象 (1)、如图所示,关于图象的几点说明 ①平滑的曲线是双曲线的一支,反应了在等温情况下,一定质量的气体压强跟体积成反比的规律.②图线上的点,代表的是一定质量气体的一个状态.③这条曲线表示了一定质量的气体由一个状态变化到另一个状态的过程,这个过程是一个等温过程,因此这条曲线也叫等温线. (2)、如图所示,各条等温线都是双曲线,且离开坐标轴越远的图线表示P ·V 值越大,气体的温度越高,即T 1<T 2<T 3 .2.等容线反应了一定质量的气体在体积不变时,压强随温度的变化关系,如图所示是P-t 图线,图线与t 轴交点的温度是-273℃,从图中可以看出P 与t 是一次函数关系,但不成正比,由于同一温度下,同一气体的体积大时压强小,所以V 1>V 2,如图所示P -T 图线,这时气体的压强P 与温度T 是正比例关系,坐标原点的物理意义是“P =0时,T =0”坐标原点的温度就是热力学温度的0K .由PV /T =C 得P /T =C /V 可知,体积大时对应的直线斜率小,所以有V 1>V 2.3.等压线反映了一定质量的气体在压强不变时,体积随温度的变化关系,如图所示,V -t 图线与t 轴的交点是-273℃,从图中可以看出,发生等压变化时,V 与t 不成正比,由于同一气体在同一温度下体积大时压强小,所以P 1>P 2.如图所示,V --T 图线是延长线过坐标原点的直线.由PV /T =C 得V /T =C /P 可知,压强大时对应的直线斜率小,所以有P 1>P 2.[基础巩固]:一.气体的状态参量1.温度:温度在宏观上表示物体的________;在微观上是________的标志.温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的).绝对零度为____0C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到.2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________.3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律1.玻意耳定律(等温变化)一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化)(1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________.(2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________.(3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化)(1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________.(2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________.(3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程:222111T V P T V P = 3.密度方程:222111ρρT PT P =[典型分析]:题型一:气体压强的计算【例1】右图中气缸静止在水平面上,缸内用活塞封闭一定质量的空气.活塞的的质量为m ,横截面积为S ,下表面与水平方向成θ角,若大气压为P 0,求封闭气体的压强P .题型二:实验定律的定性分析 【例2】如图所示,把装有气体的上端封闭的玻璃管竖直插入水银槽内,管内水银面与槽内水银面的高度差为h ,当玻璃管缓慢竖直向下插入一些,问h 怎样变化?气体体积怎样变化?题型三:实验定律的定量计算【例3】一根两端开口、粗细均匀的细玻璃管,长L =30cm ,竖直插入水银槽中深h 0=10cm 处,用手指按住上端,轻轻提出水银槽,并缓缓倒转,则此时管内封闭空气柱多长?已知大气压P 0=75cmHg .题型四:气体状态方程的应用【例4】如图所示,用销钉将活塞固定,A 、B 两部分体积比为2∶1,开始时,A 中温度为127℃,压强为1.8 atm ,B 中温度为27℃,压强为1.2atm .将销钉拔掉,活塞在筒内无摩擦滑动,且不漏气,最后温度均为27℃,活塞停止,求气体的压强.题型五:图象问题的应用【例5】如图是一定质量的理想气体由状态A 经过状态B 变为状态C 的V --T 图象.已知气体在状态A 时的压强是1.5×105Pa.(1)说出A 到B 过程中压强变化的情形,并根据图像提供的信息,计算图中T A 的温度值. (2)请在图乙坐标系中,作出由状态A 经过状态B 变为状态C 的P --T 图像,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定有关坐标值,请写出计算过程.[当堂练习]1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( )A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强B .先保持压强不变而使体积减小,接着保持体积不变而减小压强C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小2.如图为0.2mol 某种气体的压强与温度关系.图中p 0为标准大气压.气体在B 状态时的体积是_____L .3.竖直平面内有右图所示的均匀玻璃管,内用两段水银柱封闭两段空气柱a 、b ,各段水银柱高度如图所示.大气压为p 0,求空气柱a 、b 的压强各多大?4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a 、b 两部分,倾斜放置时,上、下两段空气柱长度之比L a /L b =2.当两部分气体的温度同时升高时,水银柱将如何移动?5.如图所示,内径均匀的U 型玻璃管竖直放置,截面积为5cm 2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L =11cm 的空气柱A 和B ,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度差h=6cm ,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求:(1)活塞向上移动的距离是多少?(2)需用多大拉力才能使活塞静止在这个位置上?6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是( )A .p 1 =p 2,V 1=2V 2,T 1= 21T 2B .p 1 =p 2,V 1=21V 2,T 1= 2T 2C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2D .p 1 =2p 2,V 1=V 2,T 1= 2T 27、A 、B 两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。

理想气体状态方程练习及答案

理想气体状态方程练习及答案
气体练习
例1:如图所示,气缸A和容器B由一细管经阀门K相 连,A和B的壁都是透热的,A是放置在27℃、1atm 的空气中,B浸在127℃的恒温槽内.开始时,K是关 闭的,B内为真空,容积VB=10L,A内装有理想气体 ,体积VA=10L.假设气缸壁和活塞D之间无摩擦,细 管的容积可忽略不计,打开K,使气体由A流入B, 等到活塞D停止移动时,A内气体的体积将是多少? 答案:A内气体的体积将是2.5L
答案: ① p=1.43×105pa ,②fm=600N
例7:一个质量可不计的活塞将一定量的气体封闭在上端开口 的直圆柱形气缸内,活塞的面积为600cm3,活塞上堆放着铁砂, 如图所示。最初活塞搁置在气缸内壁的固定卡环上,气体柱的 高度为H0=20cm,温度为20℃,气体压强为1atm。 (不计活塞 与气缸之间的摩擦) ①现对气体缓缓加热,当气体温度升高到57℃时,活塞(及铁砂) 刚好开始离开卡环而上升,求铁砂的质量。 ②继续加热,当温度又升高多少时,气体柱高度H1长为30cm。 ③此后维持温度不变,逐渐取走铁砂,则直到铁砂全部取走 时,气柱长H2为多少?
答案: ①铁砂的质量为60kg。 ②温度为495K,又升高了165K。 ③H2为33cm。
例8: 、如图所示,气缸放置在水平平台上,活塞质量为 10kg,横截面积50cm2,厚度1cm,气缸全长21cm, 气缸质量20kg,大气压强为1×105Pa,当温度为7℃时, 活塞封闭的气柱长10cm,若将气缸倒过来放置时,活塞 下方的空气能通过平台上的缺口与大气相通 。g取10m/s2求: (1)气柱多长? (2)当温度多高时,活塞刚好接触平台? (3)当温度多高时,缸筒刚好对地面无压力。 (活塞摩擦不计)。
答案:(1)28cm(2)237℃
例5:如图所示,一个内径均匀的双U形曲管,用水银柱 将管的A部分封闭了一定质量的气体,当温度为T1 (K)时,空气柱A的长度为40 cm,右侧曲管的水银面 高度差为16 cm,当温度变为T2(K)时,量得曲管B处 的水银面比原来升高了10 cm,若外界大气压为76 cmHg,则T1: T2应为( ). A.2:1 B.3:1 C.4:1 D.3:2

高中物理 理想气体的状态方程 (提纲、例题、练习、解析)

高中物理  理想气体的状态方程 (提纲、例题、练习、解析)
2.理想气体的状态方程
一定质量的理想气体,由初状态( )变化到末状态( )时,各量满足:
或 ( 为恒量).
上面两式都叫做一定质量的理想气体的状态方程.
要点诠释:
(1)气体的三个实验定律是理想气体状态方程的特例:
当 时, (玻意耳定律).
当 时, (查理定律).
当 时, (盖—吕萨克定律).
(2) 适用条件:
该方程是在理想气体质量不变的条件下才适用.是一定量理想气体两个状态参量的关系,与变化过程无关.
(3) 中的恒量 仅由气体的种类和质量决定,与其他参量无关.
要点二、应用理想气体状态方程解题的一般思路
1.应用理想气体状态方程解题的一般思路
(1)确定研究对象(某一部分气体),明确气体所处系统的力学状态(是否具有加速度).
A.理想气体实际上并不存在,只是一种理想模型
B.实只要气体压强不是很高就可视为理想气体
C.一定质量的某种理想气体的内能与温度、体积都有关
D.在任何温度、任何压强下,理想气体都遵循气体实验定律
【思路点拨】根据理想气体的特点。
【答案】A、D
【解析】理想气体是在忽略了实际气体分子间相互作用力的情况下而抽象出的一种理想化模型,A正确;实际气体能视为理想气体的条件是温度不太低、压强不太大,B错误;理想气体分子间无分子力作用,也就无分子势能,故一定质量的理想气体,其内能与体积无关,只取决于温度,C错误;由理想气体模型的定义可知D正确。

从中间态→末态,由盖一吕萨克定律得

由①②式得

其余5组大家可试证明一下.
2.克拉珀龙方程
某种理想气体,设质量为 ,摩尔质量为 ,则该理想气体状态方程为 。
式中 为摩尔气体常量,在国际单位制中 .

理想气体状态方程典型例题解析

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析【例1】某房间的容积为20m 3 ,在温度为17 ℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克?解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m,变化后的质量为m′,由克拉珀龙方程pV =mRT可得:MMpV Mp 2 Vm=①RT1m′=②RT2②÷①得:m =p 2 T1m p1T2∴m′=p 2T1p 1T2m=76×290 ×25kg=24.81kg.74 ×300点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单.【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为 1.5 个大气压,温度为20 ℃,体积为20L ,充气后,轮胎内空气压强增大为7.5 个大气压,温度升为25 ℃,若充入的空气温度为20 ℃,压强为 1 个大气压,则需充入多少升这样的空气(设轮胎体积不变).解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成.轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1 =20L .需充入空气的状态为:p2=1atm ,T2 =293K ,V 2=?充气后混合气体状态为:p=7.5atm ,T=298K ,V=20L由混合气体的状态方程:p1V 1+T1p2 V 2T2pV=得:TpV V 2 =(T -p 1 V1 ) ·T2T1 p 27.5× 20=( -2981.5× 30) ×2932931=117.5(L)点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决.【例3】已知空气的平均摩尔质量为 2.9 ×10 -2 kg/mol ,试估算室温下,空气的密度.m m pM 点拨:利用克拉珀龙方程pV =RT及密度公式ρ=可得ρ=,M V RT 在具体估算时可取p 0=1.01 ×105Pa ,T=300 K 来计算.参考答案:1.2Kg/m 3【例4】贮气筒的容积为100 L,贮有温度为27 ℃,压强为30atm 的氢气,使用后温度降为20℃,压强降为20 个大气压,求用掉的氢气质量.点拨:方法一:选取筒内原有的全部氢气为研究对象,且没有用掉的氢气包含在末状态中.可求出用掉的氢气的体积.再取用掉的氢气为对象,同标准状态相比较,求出用掉氢气的质量,方法二:对使用前、后筒内的氢气用克拉珀龙方程.并可比较这两种方法的繁简程度.参考答案:87.5g跟踪反馈1..活塞把密闭容器分隔成容积相等的两部分 A 和B,如图13-59 所示,在A、B 中分别充进质量相同、温度相同的氢气和氧气,则活塞将:[ ] A.向右运动B.向左运动C.不动D.不能确定2..有一个充满氢气的氢气球,球的质量为球内充入氢气的 3 倍,氢气压强为外面空气压强的 1.45 倍,温度相同,则氢气球开始上升的加速度为( 空气的平均摩尔质量为29g/mol)3..当温度为27 ℃,压强为 2.0 ×105 Pa 时,32g 氧气的体积为多大?密度是多大?另有48g 氧气,温度和压强跟上述数值相同,氧气密度是多大?4..如图13 -60 所示,气缸 A 和容器B 由一细管经阀门K 相连,A 和B的壁都是透热的, A 放在27 ℃、1 标准大气压的大气中,B 浸在127 ℃的恒温槽内,开始时K 是关断的,B 内没有气体,容积V B=2.4L ,A 内装有气体,体积V A=4.8L ,打开K,使气体由 A 流入B ,等到活塞 D 停止移动时, A 内气体体积是多大?假设活塞D 与气缸壁之间没有摩擦,细管的容积忽略不计.参考答案1 .C 2.1.5g 3.12.5dm 32kg/m 3 2kg/m 3 4 .3LWelcome To Download !!!欢迎您的下载,资料仅供参考!。

高中物理热学--理想气体状态方程试题及答案

高中物理热学--理想气体状态方程试题及答案

高中物理热学--理想气体状态方程试题及答案、单选题1•一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为压强、体积和温度分别为P2、V2、A. p i =p2, V i=2V2, T i= 1T22 C. p i =2p2, V i=2V2, T i= 2T2 T2,下列关系正确的是iB. p i =p2, V i= 2 V2 , T i= 2T2D . p i =2p2 , V i=V2, T i= 2T22.已知理想气体的内能与温度成正比。

如图所示的实线为汽缸内一定质量的理想气体由状态i到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小C.单调变化B.先减小后增大D.保持不变3•地面附近有一正在上升的空气团,它与外界的热交热忽略不计•已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C•体积增大,温度降低 D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5 .气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C.温度和压强 D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。

气体开始处于状态a,然后经过程ab到达状态b或进过过程ac到状态c, b、c状态温度相同,如V-T所示。

设气体在状态b和状态c的压强分别为Pb、和PC ,在过程ab和ac 吸收的热量分别为Qab和Qac,贝UA. Pb >Pc, Qab>QacB. Pb >Pc, Qab<QacC. Pb <Pc, Qab>QacD. Pb <Pc, Qab<Qac中7.下列说法中正确的是A. 气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B. 气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C. 压缩一定量的气体,气体的内能一定增加D. 分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大&对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则p i、V i、T i,在另一平衡状态下的14.一定质量的理想气体由状态A 经状态B 变为状A 当体积减小时,V 必定增加B 当温度升高时,N 必定增加C 当压强不变而体积和温度变化时,D 当压强不变而体积和温度变化时,二、双选题9•一位质量为60 kg 的同学为了表演“轻功”,他用打气筒 只相同的气球充以相等质量的空气(可视为理想气体) ,然 这4只气球以相同的方式放在水平放置的木板上, 在气球的 放置一轻质塑料板,如图所示。

高中物理:理想气体状态方程应用及解析

高中物理:理想气体状态方程应用及解析

高中物理:理想气体状态方程综合及解析A 基础1.空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L .设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为( )A .2.5 atmB .2.0 atmC .1.5 atmD .1.0 atm解析:取全部气体为研究对象,由p 1V 1+p 2V 2=pV 1得p =2.5 atm ,故A 正确.答案:A2.用打气筒将压强为1 atm 的空气打进自行车胎内,如果打气筒容积ΔV =500 cm 3,轮胎容积V =3 L ,原来压强p =1.5 atm.现要使轮胎内压强变为p ′=4 atm ,问用这个打气筒要打气(设打气过程中空气的温度不变( )A .5次B .10次C .15次D .20次解析:因为温度不变,可应用玻意耳定律的分态气态方程求解.pV +np 1ΔV =p ′V ,代入数据得1.5 atm ×3 L +n ×1 atm ×0.5 L =4 atm ×3 L ,解得n =15.答案:C3.用活塞气筒向一个容积为V 的容器中打气,每次能把体积为V 0、压强为p 0的空气打入容器内.若容器内原有空气的压强为p 0,打气过程中温度不变,则打了n 次后容器内气体的压强为 W.解析:气体初状态为(nV 0,p 0)和(V ,p 0),末状态为(V ,p ).由玻意耳定律得p 0nV 0+p 0V =pV ,得p =p 0⎝ ⎛⎭⎪⎫1+nV 0V .答案:p 0⎝ ⎛⎭⎪⎫1+nV 0V 4.钢筒内装有3 kg 气体,其温度是-23 ℃,压强为4 atm ,如果用掉1 kg后温度升高到27 ℃,求筒内气体压强.解析:本题是变质量问题,如果我们在研究对象上做一下处理,可以使变质量问题成为一定质量的问题,本题的做法是选取筒内的23质量为研究对象,这样,初始状态体积占钢筒体积的23,末状态占全部体积. 以钢筒内剩下的2 kg 气体为研究对象.设钢筒容积为V ,则该部分气体在初状态占有的体积为23V ,末状态时恰好充满整个钢筒.由一定质量理想气体的状态方程p 1V 1T 1=p 2V 2T 2得p 2=p 1V 1T 2V 2T 1=4×23V ×300V ×250atm =3.2 atm. 答案:3.2 atm B 能力5.(多选)装有两种不同气体的容积相同的两个容器A 、B ,用均匀的长直玻璃管水平连接,管内有一段水银柱,将两部分气体隔开,当A 的温度低于B 的温度17 ℃时,水银恰好平衡,位于管中央,如图所示.为使水银柱保持在中央,则两容器的温度变化是( )A.升高相同温度B.使A 、B 升高到相同温度C.使两容器升温后的热力学温度之比等于它们的初状态的热力学温度之比D.使两容器温度变化量之比等于它们的初状态的热力学温度之比解析:假设水银柱不动,对A :p A T A =p A ′T A ′, Δp A =p A ′-p A =p A T A T A ′-p A =ΔT A T A p A ,同理对B得:Δp B=ΔT BT B p B,初始时,T A=T B-17,p A=p B,整理得:ΔT AT A=ΔT BT B或ΔT AT B-17=ΔT BT B.由此判断C、D正确. 答案:CD6.(多选)如图所示,在光滑的水平面上,有一个内外壁都光滑的气缸,气缸的质量为M,气缸内有一质量为m(m<M)的活塞,密封一部分理想气体,气缸处于静止状态.现用水平恒力F向左推活塞.当活塞与气缸的加速度均为a 时,封闭气体的压强为p1,体积为V1;若用同样大小的水平恒力F向右推气缸,当活塞与气缸的加速度均为a时,封闭气体的压强为p2,体积为V2,设封闭气体的质量和温度均不变,则()A.p1>p2B.p1<p2C.V1>V2D.V1<V2解析:向左推时,对于气缸p1S-p0S=Ma,解得p1=p0+MaS;向右推时,对于活塞p2S-p0S=ma,解得p2=p0+maS,可见p1>p2,由玻意耳定律得V1<V2.故选项A、D正确. 答案:AD7.如图,A,B是体积相同的气缸,B内有一导热的、可在气缸内无摩擦滑动的、体积不计的活塞C,D为不导热的阀门.起初,阀门关闭,A内装有压强p1=2.0×105 Pa,温度T1=300 K的氮气.B内装有压强p2=1.0×105 Pa,温度T2=600 K的氧气.打开阀门D,活塞C向右移动,最后达到平衡,以V1和V2分别表示平衡后氮气和氧气的体积,则V1∶V2=(假定氧气和氮气均为理想气体,并与外界无热交换,连接气缸的管道体积可忽略).解析:对于A容器中的氮气,其气体状态为初状态:p1=2.0×105 Pa,V1=V,T1=300 K,末状态:p1′=p,V1′=V1(题目所设),T1′=T.由气体状态方程可知:p1VT1=pV1T.①对于B容器中的氧气,其气体状态为初状态:p2=1.0×105 Pa,V2=V,T2=600 K,末状态:p2′=p,V2′=V2(题目所设),T2′=T,由气态方程可知:p2VT2=pV2T.②联立①②消去T、V,可得:V1 V2=p1T2p2T1=2.0×105Pa×600 K1.0×105Pa×300 K=41. 答案:4∶18.如图甲所示,一导热性能良好、内壁光滑的汽缸水平放置,横截面积为S =2×10-3 m2、质量为m=4 kg、厚度不计的活塞与汽缸底部之间封闭了一部分理想气体,此时活塞与汽缸底部之间的距离为24 cm,在活塞的右侧12 cm处有一对与汽缸固定连接的卡环,气体的温度为300 K,大气压强p0=1.0×105Pa.现将汽缸竖直放置,如图乙所示,取g=10 m/s2.求:图甲图乙(1)活塞与汽缸底部之间的距离;(2)加热到675 K时封闭气体的压强.解析:(1)p1=p0=1×105 PaT1=300 K,V1=24 cm×S,p2=p0+mgS=1.2×105 PaT1=T2,V2=HS由p1V1=p2V2,解得H=20 cm.(2)假设活塞能到达卡环处,则T3=675 K,V3=36 cm×S由p2V2T2=p3V3T3得p3=1.5×105 Pa>p2=1.2×105 Pa所以活塞到达卡环处,气体压强为1.5×105 Pa. 答案:(1)20 cm(2)1.5×105 Pa。

高中物理 第八章 气体 第3节 理想气体的状态方程练习(含解析)新人教版选修3-3

高中物理 第八章 气体 第3节 理想气体的状态方程练习(含解析)新人教版选修3-3

第3节理想气体的状态方程1.了解理想气体模型,知道实际气体可以近似看成理想气体的条件。

2.能够从气体实验定律推导出理想气体的状态方程。

3.掌握理想气体状态方程的内容、表达式和适用条件,并能应用理想气体的状态方程分析解决实际问题。

一、理想气体1.定义:在任何温度、任何压强下都严格遵从□01气体实验定律的气体。

2.理想气体与实际气体二、理想气体的状态方程1.内容:一定质量的某种理想气体,在从状态1变化到状态2时,尽管p、V、T都可能03热力学温度的比值保持不变。

改变,但是□01压强跟□02体积的乘积与□2.公式:□04pV T =C 或□05p 1V 1T 1=p 2V 2T 2。

3.适用条件:一定质量的□06某种理想气体。

判一判(1)一定质量的理想气体,先等温膨胀,再等压压缩,其体积必小于起始体积。

( ) (2)气体的状态由1变到2时,一定满足方程p 1V 1T 1=p 2V 2T 2。

( ) (3)描述气体的三个状态参量中,可以保持其中两个不变,仅使第三个发生变化。

( ) 提示:(1)× (2)× (3)×课堂任务 对理想气体的理解理想气体的特点1.严格遵守气体实验定律及理想气体状态方程。

2.理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子可视为质点。

3.理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能,理想气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能只与温度有关。

例1 (多选)关于理想气体,下面说法哪些是正确的( )A.理想气体是严格遵守气体实验定律的气体模型B.理想气体的分子没有体积C.理想气体是一种理想模型,没有实际意义D.实际气体在温度不太低、压强不太大的情况下,可当成理想气体[规范解答] 理想气体是指严格遵守气体实验三定律的气体,实际的气体在压强不太高、温度不太低时可以认为是理想气体,A、D正确。

理想气体分子间没有分子力,但分子有大小,B错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理想气体状态方程·典型例题解析
【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克?
解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程
pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122
211221127629074300
点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单.
【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为1.5个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为7.5个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变).
解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成.
轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1=20L .
需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=?
充气后混合气体状态为:p =7.5atm ,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T
111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931
. 点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决.
【例3】已知空气的平均摩尔质量为2.9×10-2 kg/mol ,试估算室温下,空气的密度.
点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT
在具体估算时可取p0=1.01×105Pa,T=300 K来计算.
参考答案:1.2Kg/m3
【例4】贮气筒的容积为100 L,贮有温度为27℃,压强为30atm的氢气,使用后温度降为20℃,压强降为20个大气压,求用掉的氢气质量.点拨:方法一:选取筒内原有的全部氢气为研究对象,且没有用掉的氢气包含在末状态中.可求出用掉的氢气的体积.再取用掉的氢气为对象,同标准状态相比较,求出用掉氢气的质量,方法二:对使用前、后筒内的氢气用克拉珀龙方程.并可比较这两种方法的繁简程度.
参考答案:87.5g
跟踪反馈
1.活塞把密闭容器分隔成容积相等的两部分A和B,如图13-59所示,在A、B中分别充进质量相同、温度相同的氢气和氧气,则活塞将:
[ ] A.向右运动
B.向左运动
C.不动
D.不能确定
2.有一个充满氢气的氢气球,球的质量为球内充入氢气的3倍,氢气压强为外面空气压强的 1.45倍,温度相同,则氢气球开始上升的加速度为________(空气的平均摩尔质量为29g/mol)
3.当温度为27℃,压强为2.0×105Pa时,32g氧气的体积为多大?密度
是多大?另有48g氧气,温度和压强跟上述数值相同,氧气密度是多大?
4.如图13-60所示,气缸A和容器B由一细管经阀门K相连,A和B 的壁都是透热的,A放在27℃、1标准大气压的大气中,B浸在127℃的恒温
槽内,开始时K是关断的,B内没有气体,容积V B=2.4L,A内装有气体,体积V A=4.8L,打开K,使气体由A流入B,等到活塞D停止移动时,A内气体体积是多大?假设活塞D与气缸壁之间没有摩擦,细管的容积忽略不计.
参考答案
1.C 2.1.5g 3.12.5dm32kg/m32kg/m34.3L。

相关文档
最新文档