小学数学六年级奥数竞赛试题

合集下载

六年级奥数竞赛题集锦(已整理)

六年级奥数竞赛题集锦(已整理)

小学数学竞赛题选(一)1.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总量就就超过计划的16%。

那么原计划生产插秧机()台。

2.如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999。

那么在这个数里,从左到右的第2000个数字是()。

3.从1999这个数里减去253以后,再加上244,然后在减去253,再加上244……这样一直算下去,减到()次,得数恰好等于0。

4.把一长2.4米的长方体的木料锯成5段,表面积比原来加了96平方厘米。

这根木料原来的体积是()立方厘米。

5.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个。

那么,徒弟一共加工了()个零件。

6.A、B、C三人要从甲地到乙地,步行速度都是每小时5千米,骑车速度都是每小时20千米;A骑了一段后,换步行而把车放在途中,留给B接着骑;B骑了一段后,再换步行而把车放在途中,留给C接着骑到乙地。

这样A、B、C 三人恰好同时到达乙地。

已知甲地到乙地全长12千米,那么甲地到乙地他们用了()小时。

7.一辆大轿车与一辆小轿车都从甲地驶往乙地。

大轿车的速度是小轿车的速度的80%。

已知大轿车比小轿车早出发17分钟,但在两地重中点停了5分钟后,才继续驶往乙地;而小轿车出发中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。

又知大轿车是早上10时从甲地出发的。

那么小轿车是在上午()时()分追上大轿车的。

8.如果一个四位数与一个三位的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么,这样的四位数最多有()个。

9.一部书搞,甲单独打字要14小时完成,乙单独打字要20小时完成。

如果甲先打1小时然后由乙接替甲1小时,再由甲接替乙1小时…….两人如此交替工作,那么,打完这部书稿是,甲、乙二人工用了多少小时。

(完整版)小学六年级奥数题附答案

(完整版)小学六年级奥数题附答案

小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A 仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

六年级奥数竞赛数学竞赛试卷及答案

六年级奥数竞赛数学竞赛试卷及答案

六年级奥数竞赛数学竞赛试卷及答案一、拓展提优试题1.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.2.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.如图所示的“鱼”形图案中共有个三角形.5.若质数a,b满足5a+b=2027,则a+b=.6.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.7.若一个十位数是99的倍数,则a+b=.8.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.9.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).10.被11除余7,被7除余5,并且不大于200的所有自然数的和是.11.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.13.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.14.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.【参考答案】一、拓展提优试题1.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.2.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.5.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.6.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.7.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.8.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.9.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.10.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.11.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.13.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.14.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.。

六年级上册数学竞赛试题-奥数题习题(含答案)

六年级上册数学竞赛试题-奥数题习题(含答案)

六年级上册数学竞赛试题-奥数题习题(含答案)1.一辆汽车以60km/h的速度行驶4小时,再以40km/h的速度行驶2小时,求它行驶的总路程。

解:根据路程等于速度乘以时间的公式,第一段路程为60km/h×4h=240km,第二段路程为40km/h×2h=80km,总路程为240km+80km=320km。

答:该汽车行驶的总路程为320km。

2.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,如果他们相距60km,问他们多长时间能相遇?解:根据相遇公式,时间等于距离除以速度之和,即60km÷(5km/h+7km/h)=6h。

答:甲、乙两人相遇需要6小时。

3.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,他们相遇后,甲又行驶了2小时,问甲、乙两人分别行驶了多少路程?解:根据相遇公式,他们相遇时的路程之和等于他们分别行驶的路程之和,即(5km/h+7km/h)×t=60km,解XXX。

甲行驶的路程为5km/h×8h=40km,乙行驶的路程为7km/h×8h=56km。

答:甲行驶了40km,乙行驶了56km。

4.一辆汽车以每小时60km的速度行驶,行驶了2小时后,因故障而减速为每小时40km,又行驶了3小时,问它行驶的总路程。

解:前两小时行驶的路程为60km/h×2h=120km,后三小时行驶的路程为40km/h×3h=120km,总路程为120km+120km=240km。

答:该汽车行驶的总路程为240km。

1.根据题目给出的条件,可以得出马每步长为7/4倍狗的步长。

因为狗已经跑出了30米,所以马需要追赶的距离是30米。

根据速度比可以得出马与狗相差的路程份额为1,所以马需要跑21倍狗才能追上它,即21/20倍狗已经跑的距离,计算得出马需要跑630米才能追上狗。

2.根据题目给出的信息,可以得出甲、乙两车相遇时,甲车行驶了10份路程,乙车行驶了8份路程,两车的路程差是80千米。

小学奥数计数专题--排列(六年级)竞赛测试.doc

小学奥数计数专题--排列(六年级)竞赛测试.doc

小学奥数计数专题--排列(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【答案】(1)5040(2)720(3)1440(4)240(5)2400(6)5040(7)2880【解析】(1)(种)。

(2)只需排其余6个人站剩下的6个位置.(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置. (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3××2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

【题文】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【答案】20【解析】个位数字已知,问题变成从从个元素中取个元素的排列问题,已知,,根据排列数公式,一共可以组成(个)符合题意的三位数。

奥数小学六年级数学竞赛试题及详细答案

奥数小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。

那么,这个等腰梯形的周长是_ _厘米。

3.一排长椅共有90个座位,其中一些座位已经有人就座了。

这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。

原来至少有_ _人已经就座。

4.用某自然数a去除1992,得到商是46,余数是r。

a=_ _,r=_ _。

5.“重阳节”那天,延龄茶社来了25位老人品茶。

他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。

其中年龄最大的老人今年_ ___岁。

6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。

那么,至少__ __个学生中一定有两人所借的图书属于同一种。

7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。

那么得分最少的选手至少得__ __分,至多得__ __分。

(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。

那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。

三、解答下面的应用题(要写出列式解答过程。

列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。

现由甲工程队先修3天。

余下的路段由甲、乙两队合修,正好花6天时间修完。

问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。

A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。

第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。

此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。

题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。

两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。

完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。

题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。

分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。

题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。

第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。

问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。

如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

3.妈妈每四天去一次杂货店,每五天去一次百货商店。

妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。

2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。

如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。

2.从五年级的六个班级中选出一个学习、体育、健康先进集体。

有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。

他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。

所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。

有50道测试题。

评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迁西县第四小学2008-2009学年度
第二学期六年级数学竞赛试题
班级:_______ 姓名:_______
一、填空题。

(每题2分,共20 分)
1、牛的头数比羊多25%,羊的头数比牛的头数少( )%。

2、用两个同样的正方体拼成一个长方体,表面积减少14.4平方
分米,这个长方体的表面积是( )平方米。

3、把6米长的铁丝平均分成7段,每段长是1米的(——)。

4、已知x 19 <45 <y 19
,x ,y 为连续自然数,x=( ),y=( )。

5、512
的分母加上24,要使分数的大小不变,分子应该加上( )。

6、一个分数,分子比分母大21,约分后等于135
,那么原分数是( )。

7、一个三角形和一个平行四边形的底和高都相等,他们的面积之
比是( )。

8、浓度为25%的盐水,盐与盐水的比是( )。

9、1996年2月1日是星期四,这个月的最后一天是星期( )。

10、一只挂钟的分针长20厘米。

经过45分钟后,这根分针的尖端所走的路程是( )厘米。

二、判断题。

(20分)
1、最小质数与最小合数的和,是最大一位数的23。

( ) 2、圆柱体的侧面积一定,其底面半径和高成反比例。

( )
3、一个面积为1公顷正方形苗圃,其边长各加150米,则苗圃面积增加了2.25公顷。

( )
4、半径是2厘米的圆,它的周长和面积恰好相等。

( )
5、最小的整数单位,是最大的小数单位的10倍。

( )
6、一个数的27 是14,这个数的倒数是149。

( ) 7、a 和b 互为倒数,则a 和b 成反比例。

( )
8、两个数互质,这两个数没有公约数。

( )
9、比值一定,比的前项和后项成反比例。

( )
10、边长为1米的正方形里面有10个边长为1分米的正方形。

( )
三、选择题。

(10分)
1、将圆柱的侧面展开,不可能得到下面的图形有( )
A 、长方形
B 、正方形
< C 、平行四边形 D 、梯形
2、高有无数条并且都相等的有( )
A 、平行四边形
B 、 等边三角形
C 、梯形
D 、 长方体
3、奇数( )结果是偶数。

A 、加上2
B 、 减去2
C 、乘以2
D 、 除以2
4、三根同样长的铁丝分别围成长方形、正方形、圆、其中( )
面积最大。

A 、长方形
B 、 正方形
C 、 圆
5、有30.3千克盐水,盐和水的比是 1:100,其中水占( )。

A 、3千克
B 、 30千克
C 、 0.303千克
D 、 0.3千克
四、计算题:能简算的要简酸。

(20分)
1、1+3+5+7+……+97+99
2、3.5×114 +125%+112 ÷45
3、19971998 ×1999
4、12 + 16 + 112 + 120 + 130
+140
五、应用题。

(30分)
1、有两个圆柱形玻璃容器,一个底面直径是8厘米,高是6厘米,
里面装满水。

另一个底面直径是10厘米,高是8厘米,里面空着。

将有水的容器中的水倒一些给没有水的容器,使两个容
器中的水位一样高。

有水的容器中应该倒出多少水?
2、有一块棱长分别为6分米,8分米,10分米的长方体木块,把
它切割成体积尽可能大的圆锥体木块。

求这个圆锥体木块的体积?
3、一个圆柱,高减少2厘米,表面积就减少18.84平方厘米,这
个圆柱的底面积是多少?
4、如下图,长方形铁皮的长是24.84分米,利用图中的阴影部分刚好能做成一个圆柱体油桶(接头处忽略不计)。

这个油桶的表面积是多少平方分米?
5、下图中,正方形的面积是64平方厘米,正方形的一个顶点正好是圆的圆心。

阴影部分的面积是多少平方厘米?
6、一只老鼠沿着平行四边形A B C 的方向逃跑,同时一只猫也从点A
出发,沿着
A D C 的方向追捕老鼠,在E 点猫抓住老鼠,老鼠的速度是猫速度的11
14 ,且CE 长6米。

求平行四边形的周
长。

B。

相关文档
最新文档