高考抛物线专题做题技巧与方法总结附精选提升训练练习题(含答案)
高三抛物线练习题答案

高三抛物线练习题答案1. 练习题一题目:求解抛物线y = ax^2 + bx + c的顶点坐标。
解答:首先,我们知道抛物线的顶点坐标为(-b/2a, c - b^2/4a)。
在题目中给定了抛物线的表达式为y = ax^2 + bx + c,因此我们可以直接利用该表达式计算顶点坐标。
答案:顶点坐标为(-b/2a, c - b^2/4a)。
2. 练习题二题目:已知抛物线的焦点为F,直线l是该抛物线的准线,证明直线l过焦点F的垂线。
解答:首先,根据焦准定义可知,抛物线上的每一点到焦点的距离与该点到准线的距离相等。
设P为抛物线上的任意一点,d1为焦点F到点P的距离,d2为点P到准线l的距离。
根据问题所求证,我们需要证明直线l过点P的垂线。
假设直线l不过点P的垂线,即直线l与过点P的垂线的交点为Q。
由于点P到焦点F的距离等于点P到准线l的距离,可知点Q也同时满足该条件。
然而,这与焦准定义相矛盾,因为焦准定义要求点P到焦点F的距离与点P到准线l的距离相等,但我们假设的交点Q违反了这个条件。
因此,通过反证法可证明直线l过焦点F的垂线。
答案:直线l过焦点F的垂线。
3. 练习题三题目:已知抛物线y = x^2的焦点为F,点P为抛物线上的一点,且点P到焦点F的距离为2。
求点P的坐标。
解答:根据已知条件,我们知道焦点F的坐标为(0, 1)。
要求点P的坐标,我们首先需要知道点P在抛物线上的纵坐标,即抛物线的函数表达式为y = x^2,代入点P的横坐标为x,得到点P的纵坐标为x^2。
由于点P到焦点F的距离为2,可以利用距离公式得到方程:√((x-0)^2 + (x^2-1)^2) = 2化简上述方程,得到:x^4 - x^2 - 3 = 0解这个方程,可以得到x的两个解,再带入y = x^2即可求得点P的坐标。
答案:点P的坐标为(-√3, 3)和(√3, 3)。
通过以上三个练习题的解答,我们可以发现在高三抛物线练习题中,需要灵活运用抛物线的性质和公式,进行问题求解。
江苏高考复习抛物线专题练习(带答案)

江苏高考复习抛物线专题练习(带答案)平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线,以下是江苏2021-2021高考温习抛物线专题练习,请考生仔细练习。
(2021泰州中学检测)给定圆P:x2+y2=2x及抛物线S:y2=4x,过圆心P作直线l,此直线与上述两曲线的四个交点,自上而下依次记为A,B,C,D,假设线段AB,BC,CD的长按此顺序构成一个等差数列,求直线l的方程.[解] 圆P的方程为(x-1)2+y2=1,那么其直径长|BC|=2,圆心为P(1,0),设l的方程为ky=x-1,即x=ky+1,代入抛物线方程得:y2=4ky+4,设A(x1,y1),D(x2,y2),有那么(y1-y2)2=(y1+y2)2-4y1y2=16(k2+1).故|AD|2=(y1-y2)2+(x1-x2)2=(y1-y2)2+2=(y1-y2)2=16(k2+1)2,因此|AD|=4(k2+1).依据等差数列性质得2|BC|=|AB|+|CD|=|AD|-|BC|,|AD|=3|BC|=6,即4(k2+1)=6,k=,即l方程为x-y-=0或x+y-=0.2.(2021苏州调研)设抛物线y2=2px(p0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在抛物线的准线上,且BCx轴.求证:直线AC经过原点O.【惯例证法】抛物线y2=2px(p0)的焦点为F,显然直线AB的斜率不为0,当AB斜率不存在时,直线AP方程为x=,无妨设A在第一象限,那么易知A,B,C,此时kOA==2,kOC==2.kOA=kOC,A,O,C三点共线,即直线AC经过原点O.当AB斜率存在且不为0时,设直线AB方程为y=k代入y2=2px 得k2x2-(k2+2)px+=0,设A(x1,y1),B(x2,y2),那么x1x2=,(y1y2)2=p4,由题意知y1y20,y1y2=-p2kOC======kOA直线AC过原点O,综上,直线AC经过原点O.【巧妙证法】由于抛物线y2=2px(p0)的焦点为F,而直线AB的斜率不为零,所以经过点F的直线AB的方程可设为x=my+.代入抛物线方程消去x得y2-2pmy-p2=0.假定记A(x1,y1),B(x2,y2),那么y1,y2是该方程的两个根,所以y1y2=-p2.由于BCx轴,且点C在准线x=-上,所以点C的坐标为,故直线CO的斜率为k===,即k也是直线OA的斜率,所以直线AC经过原点O.3.(2021南师附中检测)设A(x1,y1),B(x2,y2)为抛物线y2=2px(p0)上位于x轴两侧的两点.(1)假定y1y2=-2p,证明直线AB恒过一个定点;(2)假定p=2,AOB(O是坐标原点)为钝角,求直线AB在x轴上的截距的取值范围.[解] (1)设直线AB在x轴上的截距为t,那么可设直线AB 的方程为x=my+t.代入y2=2px得y2=2p(my+t),即y2-2pmy-2pt=0,于是-2p=y1y2=-2pt,所以t=1,即直线AB 恒过定点(1,0).(2)由于AOB为钝角,所以0,即x1x2+y1y20.y=2px1,y=2px2,yy=2px12px2,于是x1x2===t2,故x1x2+y1y2=t2-2pt=t2-4t.解不等式t2-4t0,得00)把点P(-2,-4)代入得(-4)2=-2p(-2).解得p=4,抛物线方程为y2=-8x.当焦点在y轴负半轴上时,设方程为x2=-2py(p0),把点P(-2,-4)代入得(-2)2=-2p(-4).解得p=.抛物线方程为x2=-y.综上可知抛物线方程为y2=-8x或x2=-y.[答案] y2=-8x或x2=-y4.(2021广东高考)抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF||BF|的最小值.[解题思绪] (1)由点到直线的距离求c的值,失掉F(0,c)后可得抛物线的方程;(2)采用设而不求战略,先设出A(x1,y1),B(x2,y2),结合导数求切线PA,PB的方程,代入点P 的坐标,依据结构,可得直线AB的方程;(3)将|AF||BF|转化为关于x(或y)的函数,再求最值.[解] (1)依题意,设抛物线C的方程为x2=4cy(c0),由点到直线的距离公式,得=,解得c=1(负值舍去),故抛物线C的方程为x2=4y.(2)由x2=4y,得y=x2,其导数为y=x.设A(x1,y1),B(x2,y2),那么x=4y1,x=4y2,切线PA,PB的斜率区分为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.由于切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以和为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF||BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1.由消去x并整理失掉关于y的方程为y2+(2y0-x)y+y=0.由一元二次方程根与系数的关系得y1+y2=x-2y0,y1y2=y.所以|AF||BF|=y1y2+(y1+y2)+1=y+x-2y0+1.又点P(x0,y0)在直线l上,所以x0-y0-2=0,即x0=y0+2,所以y+x-2y0+1=2y+2y0+5=22+,所以当y0=-时,|AF||BF|取得最小值,且最小值为.江苏2021-2021高考温习抛物线专题练习及答案的一切内容就是这些,更多精彩内容请继续关注查字典数学网。
2024届高考数学复习:精选历年真题、好题专项(抛物线)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(抛物线)练习一. 基础小题练透篇1.已知点P 到点F (0,1)的距离比它到直线l :y +2=0的距离小1,则点P 的轨迹方程为( )A .x 2=-4yB .x 2=4yC .y 2=-4xD .y 2=4x2.[2023ꞏ江西省南昌市摸底]设F 为抛物线C :x 2=16y 的焦点,直线l :y =-1,点A 为C 上一点且|AF |=5,过点A 作AP ⊥l 于P ,则|AP |=( )A.4 B .3 C .2 D .13.已知抛物线y 2=8x 的准线为l ,点P 是抛物线上的动点,直线l 1的方程为2x -y +3=0,过点P 分别作PM ⊥l ,垂足为M ,PN ⊥l 1,垂足为N ,则|PM |+|PN |的最小值为( )A .655 B .755C .5D .2+3554.已知抛物线y 2=16x ,过点M (2,0)的直线交抛物线于A ,B 两点,F 为抛物线的焦点,若|AF |=12,O 为坐标原点,则四边形OAFB 的面积是( )A.202 B .102 C .52 D .5225.[2023ꞏ湖南省湘潭市一模]已知抛物线C :y 2=2px (p >0)的焦点为F ,点T 在C 上,且|FT |=52 ,若点M 的坐标为(0,1),且MF ⊥MT ,则C 的方程为( )A .y 2=2x 或y 2=8xB .y 2=x 或y 2=8xC .y 2=2x 或y 2=4xD .y 2=x 或y 2=4x6.已知直线l :y =k (x -2)(k >0)与抛物线C :y 2=8x 交于A ,B 两点,F 为抛物线C 的焦点,若AF → =2FB →,则k 的值是( )A .13 B .223 C .22 D .247.[2023ꞏ江苏省高三月考]已知抛物线C :y 2=8x 的焦点为F ,在C 上有一点P ,||PF =8,则点P 到x 轴的距离为____________.8.[2023ꞏ广东省深圳市月考]已知抛物线C :y 2=2px 的焦点为F ,点A 为抛物线C 上横坐标为3的点,过点A 的直线交x 轴的正半轴于点B ,且△ABF 为正三角形,则p =________.二. 能力小题提升篇1.[2023ꞏ广西柳州市摸底考试]已知F 是抛物线y 2=8x 的焦点,直线l 是抛物线的准线,则F 到直线l 的距离为( )A .2B .4C .6D .82.[2023ꞏ陕西省西安市高三模拟]已知抛物线E :y 2=2px (p >0)的焦点为F ,点A 是抛物线E 的准线与坐标轴的交点,点P 在抛物线E 上,若∠P AF =30°,则sin ∠PF A =( )A .12B .33C .34D .323.[2023ꞏ四川大学模拟]设点P 是抛物线C 1:x 2=4y 上的动点,点M 是圆C 2:(x -5)2+(y +4)2=4上的动点,d 是点P 到直线y =-2的距离,则d +|PM |的最小值是( )A .52 -2B .52 -1C .52D .52 +14.[2023ꞏ四川省高三模拟]已知△ABC 的三个顶点都在抛物线y 2=4x 上,点M (2,0)为△ABC 的重心,直线AB 经过该抛物线的焦点,则线段AB 的长为( )A .8B .6C .5D .45.[2023ꞏ广东省开平市高三检测]已知F 是抛物线C :y 2=16x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若3FM → =2MN →,则||FN =__________.6.[2023ꞏ江苏省南京模拟]已知圆C: (x -3)2+y 2=4,点M 在抛物线T :y 2=4x 上运动,过点M 引直线l 1,l 2与圆C 相切,切点分别为P ,Q ,则|PQ |的取值范围为________.三. 高考小题重现篇1.[2022ꞏ全国乙卷]设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若||AF =||BF ,则||AB =( )A .2B .2 2C .3D .322.[2020ꞏ全国卷Ⅰ]已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .93.[2020ꞏ全国卷Ⅲ]设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A .⎝⎛⎭⎫14,0B .⎝⎛⎭⎫12,0C .(1,0)D .(2,0)4.[2020ꞏ北京卷]设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( )A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP5.[2021ꞏ北京卷]已知抛物线C :y 2=4x ,C 的焦点为F ,点M 在C 上,若|FM |=6,则M 的横坐标是________.6.[2021ꞏ山东卷]已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP ,若|FQ |=6,则C 的准线方程为________.四. 经典大题强化篇1.[2023ꞏ湖北省高三联考]记以坐标原点为顶点、F (1,0)为焦点的抛物线为C ,过点F 的直线l 与抛物线C 交于A ,B 两点.(1)已知点M 的坐标为(-2,0),求∠AMB 最大时直线AB 的倾斜角;(2)当l 的斜率为12 时,若平行l 的直线m 与C 交于M ,N 两点,且AM 与BN 相交于点T ,证明:点T 在定直线上.2.[2023ꞏ山西省运城市模拟]已知P (1,2)在抛物线C :y 2=2px 上. (1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.参考答案一 基础小题练透篇1.答案:B答案解析:由题意,点P 到点F (0,1)的距离等于它到直线y =-1的距离,则点P的轨迹是以F 为焦点,y =-1为准线的抛物线,则点P 的轨迹方程为x 2=4y .2.答案:C答案解析:抛物线方程C :x 2=16y ,准线方程为:y =-4,因为|AF |=5,所以点A 到准线的距离为5,且y A >0,直线l :y =-1与准线方程的距离为d =3,所以|AP |=5-3=2 .3.答案:B答案解析:令抛物线y 2=8x 的焦点为F ,则F (2,0),连接PF ,如图,因为l 是抛物线y 2=8x 的准线,点P 是抛物线上的动点,且PM ⊥l 于M ,于是得|PM |=|PF |,点F (2,0)到直线l 1:2x -y +3=0的距离d =|2×2-0+3|22+(-1)2=755 ,又PN ⊥l 1于N ,显然点P 在点F 与N 之间,于是有|PM |+|PN |=|PF |+|PN |≥d ,当且仅当F ,P ,N三点共线时取“=”,所以|PM |+|PN |的最小值为d =755.4.答案:A答案解析:抛物线y 2=16x 的准线方程为x =-4,设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知,x 1+4=12,x 1=8,y 21 =16×8,由抛物线的对称性,不妨令y 1=82 ,设直线AB 的方程为x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=16x , 得y 2-16my -32=0,y 1y 2=-32,∴y 2=-22 ,四边形OAFB 的面积S =12 |OF |·|y 1-y 2|=12×4×102 =202 .5.答案:A答案解析:设T (x 0,y 0),则MT → =(x 0,y 0-1),又由F (p 2 ,0),所以MF →=(p 2,-1),因为MF ⊥MT ,所以MF → ·MT →=0,可得p 2x 0-y 0+1=0,由y 20 =2px 0,联立方程组,消去x 0,可得y 20 -4y 0+4=0,所以y 0=2,x 0=2p,故T(2p,2),又由|FT |=x 0+p 2 =52 ,所以52 -p 2 =2p ,即p 2-5p +4=0,解得p =1或p =4,所以C 的方程为y 2=2x 或y 2=8x .6.答案:C答案解析:直线l :y =k (x -2)(k >0)过(2,0),即直线l 过抛物线的焦点F (2,0),画出图象如图所示,过A 作直线垂直于抛物线的准线,垂足为D ;过B 作直线垂直于抛物线的准线,垂足为C ,过B 作BE ⊥AD ,交AD 于E .依题意AF → =2FB →,设|AF |=2|BF |=2t (t >0), 则|AE |=|AD |-|BC |=t ,|AB |=|AF |+|BF |=3t ,|BE |=(3t )2-t 2=22 t ,所以直线l 的斜率k =|BE ||AE | =22 . 7.答案:43答案解析:由抛物线的定义可知:||PF =x p +2=8,所以x p =6,代入y 2=8x 中,得y 2p =48,所以||y p =43 ,故点P 到x 轴的距离为43 . 8.答案:2答案解析:由题意可知,当B 在焦点F 的右侧时,|AF |=3+p 2 ,|FD |=3-p2,又|FD |=12 ⎝ ⎛⎭⎪⎫3+p 2 ,所以12 ⎝⎛⎭⎪⎫3+p 2 =3-p2 ,解得p =2;当B 在焦点F 的左侧时,同理可得p =18,此时点B 在x 轴的负半轴,不合题意.二 能力小题提升篇1.答案:B答案解析:由y 2=8x 得p =4,所以F 到直线l 的距离为p =4. 2.答案:B答案解析:过P 作准线的垂线,垂足为Q ,由∠PAF =30°,可得∠APQ =30°,由题意如图所示:在Rt△AQP 中,cos ∠APQ =|QP ||PA | =32, 由抛物线的性质可得|PQ |=|PF |,所以|PF ||PA | =32 , 在△PAF 中,由正弦定理可得:|PA |sin ∠PFA =|PF |sin ∠PAF ,所以sin ∠PFA =|AP ||PF | ·sin ∠PAF =23·12 =33 . 故选B.3.答案:B答案解析:由题知圆C 2:(x -5)2+(y +4)2=4, ∴C 2()5,-4 ,r =2F (0,1)为抛物线焦点,y =-1为抛物线准线, 则过点P 向y =-1作垂线垂足为D ,如图所示:则d =1+||PD ,根据抛物线定义可知||PD =||PF , ∴d =1+||PF ,∴d +|PM |=1+||PF +||PM ,若求d +|PM |的最小值,只需求||PF +||PM 的最小值即可, 连接FC 2与抛物线交于点P 1,与圆交于点M 1,如图所示,此时||PF +||PM 最小,为||FC 2 -r ,()d +||PMmin=1+||FC 2 -r ,∵F (0,1),C 2()5,-4 ,∴||FC 2 =52 ,∴()d +||PM min =1+||FC 2 -r =52 -1. 故选B. 4.答案:B答案解析:设抛物线y 2=4x 的焦点为F ,则F (1,0).根据题意可知,点M (2,0)为△ABC 的重心,若直线AB 的斜率不存在, 则不妨取A (1,2),B (1,-2),则结合重心可得C 为(4,0),不合题意; 故直线AB 的斜率存在,设直线AB 的方程为y =k (x -1),k ≠0,A (x 1,y 1),B (x 2,y 2),C (m ,n ),则有y 21 =4x 1,y 22 =4x 2,n 2=4m ,联立方程⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1), 得ky 2-4y -4k =0,Δ=16(1+k 2)>0, 则y 1+y 2=4k ,y 1y 2=-4,因为点M (2,0)为△ABC 的重心,所以n +y 1+y 23=0, 即n =-()y 1+y 2 ,所以m +x 1+x 23 =2,∴m +x 1+x 2=n 2+y 21 +y 22 4=2()y 1+y 22-2y 1y 24 =6,即32k2 +8=24,解得k 2=2,则||AB =x 1+x 2+p =()y 1+y 22-2y 1y 24+2=4k2 +4=6,故线段AB 的长为6,故选B.5.答案:16答案解析:易知焦点F 的坐标为(4,0),准线l 方程为x =-4,如图, 抛物线准线与x 轴交点为A ,作MB ⊥l 于B ,NC ⊥l 于C ,AF ∥MB ∥NC ,则||MN ||NF =||BM -||CN ||OF ,由3FM → =2MN →,得||MN ||NF =35,又||CN =4,||OF =4,所以||BM -44 =35 ,||BM =325 ,||MF =||BM =325 ,||MF ||NF =25,所以||FN =16.6.答案:[22 ,4)答案解析:如图,连接CP ,CQ ,CM ,依题意,CP ⊥MP ,CQ ⊥MQ ,而|CP |=|CQ |=2,而|MP |=|MQ |,则CM 垂直平分线段PQ ,于是得四边形MPCQ 的面积为Rt△CPM 面积的2倍,从而得12 |PQ |·|CM |=2·12 |CP |·|MP |,即|PQ |=2|CP |·|MP ||CM | =4|CM |2-|CP |2|CM | =41-4|CM |2 ,设点M (t ,s ),而C (3,0),s 2=4t (t ≥0),则|CM |2=(t -3)2+s 2=t 2-2t +9=(t -1)2+8≥8,当且仅当t =1时取“=”,∀t ≥0,|CM |2∈[8,+∞),因此得0<4|CM |2 ≤12 ,即12 ≤1-4|CM |2 <1,得22 ≤|PQ |<4, 所以|PQ |的取值范围为[22 ,4).三 高考小题重现篇1.答案:B答案解析:由题意得,F (1,0),则||AF =||BF =2,即点A 到准线x =-1的距离为2,所以点A 的横坐标为-1+2=1, 不妨设点A 在x 轴上方,代入得,A (1,2), 所以||AB =(3-1)2+()0-22=22 .故选B.2.答案:C答案解析:设焦点为F ,点A 的坐标为(x 0,y 0),由抛物线定义得|AF |=x 0+p2,∵点A 到y 轴距离为9,∴x 0=9, ∴9+p2 =12,∴p =6. 3.答案:B答案解析:由抛物线的对称性不妨设D 在x 轴上方、E 在x 轴下方.由⎩⎪⎨⎪⎧x =2,y 2=2px得D (2,2p ),E (2,-2p ),∵OD ⊥OE ,∴OD → ·OE → =4-4p =0,∴p =1,∴C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0 . 4.答案:B 答案解析:不妨设抛物线的方程为y 2=2px (p >0),P (x 0,y 0)(x 0>0),则Q ⎝ ⎛⎭⎪⎫-p2,y 0 ,F ⎝ ⎛⎭⎪⎫p 2,0 ,直线FQ 的斜率为-y 0p ,从而线段FQ 的垂直平分线的斜率为p y 0 ,又线段FQ 的中点为⎝ ⎛⎭⎪⎫0,y 02 ,所以线段FQ 的垂直平分线的方程为y -y 02 =py 0 (x -0),即2px -2y 0y +y 2=0,将点P 的横坐标代入,得2px 0-2y 0y +y 20 =0,又2px 0=y 20 ,所以y =y 0,所以点P 在线段FQ 的垂直平分线上.5.答案:5答案解析:设点M 的坐标为(x 0,y 0),则有|FM |=x 0+1=6,解得x 0=5.6.答案:x =-32答案解析:不妨设P ⎝ ⎛⎭⎪⎫p 2,p ,∴Q ⎝ ⎛⎭⎪⎫6+p2,0 , PQ →=(6,-p ),因为PQ ⊥OP ,所以p2×6-p 2=0,∵p >0,∴p =3,∴C 的准线方程为x =-32.四 经典大题强化篇1.答案解析:(1)设直线的方程为x =my +1,A (x 1,y 1),B (x 2,y 2)()y 1>0,y 2<0 . 记∠AMF =α,∠BMF =β,则tan α=y 1x 1+2=y 1my 1+3, tan β=-y 2x 2+2 =-y 2my 2+3, 则tan ∠AMB =tan ()α+β =tan α+tan β1-tan αtan β=3()y 1-y 2()m 2+1y 1y 2+3m ()y 1+y 2+9. 由题设得抛物线方程为y 2=4x ,联立⎩⎪⎨⎪⎧y 2=4x x =my +1 消去x 得y 2-4my -4=0,∴⎩⎪⎨⎪⎧Δ>0y 1+y 2=4m y 1y 2=-4,y 1-y 2=4m 2+1 ,∴tan ∠AMB =12m 2+18m 2+5,令t =m 2+1 ,则t ≥1,∴tan ∠AMB =12t 8t 2-3 =128t -3t. 由单调性得当t =1时,tan ∠AMB 最大为125,此时m =0,直线AB 的倾斜角为90°. (2)设T ()x 0,y 0 ,TM → =λTA → ()λ≠1 则由AB ∥MN 得TN → =λTB →, ∴⎩⎨⎧y M -y 0=λ()y A -y 0y N -y 0=λ()y B -y 0 ,∴y M +y N -2y 0=λ()y A +y B -2y 0 . 又∵k AB =12,∴y A -y B x A -x B =4y A +y B =12 ⇒y A +y B =8,同理y M +y N =8,∴8-2y 0=λ()8-2y 0 ,又∵λ≠1,∴8-2y 0=0,∴y 0=4, ∴点T 在定直线y =4上.2.答案解析:(1)将P 点坐标代入抛物线方程y 2=2px 得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x ;(2)设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0=16m 2+16t >0⇒m 2+t >0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k PA =y 1-2x 1-1 =y 1-2y 21 4-1 =4y 1+2,同理:k PB =4y 2+2 , 由题意:4y 1+2 +4y 2+2=2,4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,有-4t =4,即t =-1, 故直线AB :x =my -1恒过定点(-1,0).。
抛物线提高训练题(含详细答案)

A 抛物线1.抛物线y 2=-8x 的焦点坐标是( ) A .(2,0) B .(-2,0) C .(4,0) D .(-4,0)2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A .若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x3.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115 D.37164.点A ,B 在抛物线x 2=2py (p >0)上,若A ,B 的中点是(x 0,y 0),当直线AB 的斜率存在时,其斜率为( )A.2p y 0B.p y 0C.p x 0D.x 0p 5.[2010·福建卷] 以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0 D .x 2+y 2-2x =0 6.[2010·山东卷] 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2 7.[2010·陕西卷] 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12B .1C .2D .4 8.[2010·辽宁卷] 设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .8 3D .16 9.[2011·东北三校模拟] 已知抛物线y =ax 2的准线方程为y =1,则a 的值为________.10.[2010·浙江卷] 设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.11.给定抛物线C :y 2=4x ,过点A (-1,0),斜率为k 的直线与C 相交于M ,N 两点,若线段MN 的中点在直线x =3上,则k =________.12.(13分)[2011·西城一模] 已知抛物线y 2=4x 的焦点为F ,直线l 过点M (4,0). (1)若点F 到直线l 的距离为3,求直线l 的斜率;(2)设A ,B 为抛物线上两点,且直线AB 不与x 轴垂直,若线段AB 的垂直平分线恰好过点M ,求证:线段AB 中点的横坐标为定值.13.(12分)[2011·西城一模] 已知抛物线y 2=2px (p >0)的焦点为F ,过F 的直线交y 轴正半轴于点P ,交抛物线于A ,B 两点,其中点A 在第一象限.(1)求证:以线段F A 为直径的圆与y 轴相切;(2)若F A →=λ1AP →,BF →=λ2F A →,λ1λ2∈⎣⎡⎦⎤14,12,求λ2的取值范围.B 抛物线1.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y2.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12 D .-323.已知抛物线y 2=4x ,若过焦点F 且垂直于对称轴的直线与抛物线交于A ,B 两点,O 是坐标原点,则△OAB 的面积是( )A .1B .2C .4D .6 4.对于抛物线y 2=4x 上任意一点Q ,点P (a,0)都满足|PQ |≥|a |,则a 的取值范围是( ) A .(-∞,0) B .(-∞,2] C .[0,2] D .(0,2)5.已知A ,B 是抛物线y 2=2px (p >0)上的两点,O 是原点,若|OA |=|OB |,且△AOB 的垂心恰好是抛物线的焦点,则直线AB 的方程是( )A .x =pB .x =3pC .x =32pD .x =52p6.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)均在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3| 7.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )A.172B .3C. 5D.928.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .329.已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为________.10.[2010·全国卷Ⅱ] 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =________.11.[2010·重庆卷] 已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点P 到准线的距离为________.12.(13分)[2012·珠海模拟] 在平面直角坐标系xOy 中,设点F ⎝⎛⎭⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l . (1)求动点Q 的轨迹方程C ;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |13.(12分)[2010·湖北卷] 已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有F A →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.A1.B [解析] 由y 2=-8x ,易知焦点坐标是(-2,0).2.B [解析] 抛物线y 2=ax (a ≠0)的焦点F 坐标为⎝⎛⎭⎫a 4,0,则直线l 的方程为y =2⎝⎛⎭⎫x -a 4,它与y 轴的交点为A ⎝⎛⎭⎫0,-a 2,所以△OAF 的面积为12⎪⎪⎪⎪a 4·⎪⎪⎪⎪a 2=4,解得a =±8.所以抛物线方程为y 2=±8x .3.A [解析] 设动点p 到直线l 2的距离之和为d ,直线l 2:x =-1为抛物线y 2=4x 的准线,由抛物线的定义知,P 到l 2的距离等于P 到抛物线的焦点F (1,0)的距离,故本题转化为在抛物线y 2=4x 上找一个点P 使得P 到点F (1,0)和直线l 2的距离之和最小,最小值为F (1,0)到直线l 1:4x -3y +6=0的距离,即d min =|4-0+6|5=2.4.D [解析] 设A (x 1,y 1),B (x 2211x 22=2py 2,两式相减得(x 1+x 2)(x 1-x 2)=2p (y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 22p =x 0p .5.D [解析] 因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心.又知该圆过原点,所以圆的半径为r =1,故所求圆的方程为(x -1)2+y 2=1,即x 2-2x +y 2=0.6.B [解析] 抛物线的焦点F ⎝⎛⎭⎫p 2,0,所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px ,得y 2-2py -p 2=0,所以y 1+y 22=p =2,所以抛物线方程为y 2=4x ,准线方程为x =-1.7.C [解析] 方法1:∵抛物线的准线方程为x =-p2,圆的标准方程为(x -3)2+y 2=16.∴3-⎝⎛⎭⎫-p2=4,∴p =2. 方法2:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切于点(-1,0),所以-p2=-1,解得p =2.8.B [解析] 设准线l 与x 轴交于点B ,连接AF 、PF ,则|BF |=p =4,∵直线AF 的斜率为-3,∴∠AFB =60°.在Rt △ABF 中,|AF |=4cos60°=8.又根据抛物线的定义,得|P A |=|PF |,P A ∥BF ,∴∠P AF =60°,∴△P AF 为等边三角形,故|PF |=|AF |=8.9.-14 [解析] 抛物线方程为x 2=1a y ,故其准线方程是y =-14a =1,解得a =-14.10.324[解析] 设抛物线的焦点F ⎝⎛⎭⎫p 2,0,由B 为线段F A 的中点,所以B ⎝⎛⎭⎫p 4,1,代入抛物线方程得p =2,则B 到该抛物线准线的距离为p 4+p 2=3p 4=324.11.±22[解析] 过点A (-1,0),斜率为k 的直线为y =k (x +1),与抛物线方程联立后消掉y 得k 2x 2+(2k 2-4)x +k 2=0,设M (x 1,y 1),N (x 2,y 2),有x 1+x 1=4-2k 2k 2,x 1x 2=1.因为线段MN 的中点在直线x =3上,所以x 1+x 2=6,即4-2k 2k 2=6,解得k =±22.而此时k 2x 2+(2k 2-4)x +k 2=0的判别式大于零,所以k =±22.12.[解答] (1)由已知,x =4不合题意.设直线l 的方程为y =k (x -4).由已知,抛物线C 的焦点坐标为(1,0),因为点F 到直线l 的距离为3,所以|3k |1+k 2=3,解得k =±22,所以直线l 的斜率为±22.(2)证明:设线段AB 中点的坐标为N (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则直线MN 的斜率为y 0x 0-4,因为AB 不垂直于x 轴,所以直线AB 的斜率为4-x 0y 0,直线AB 的方程为y -y 0=4-x 0y 0(x -x 0),联立方程⎩⎪⎨⎪⎧y -y 0=4-x 0y 0(x -x 0),y 2=4x ,消去x ,得⎝⎛⎭⎫1-x 04y 2-y 0y +y 20+x 0(x 0-4)=0, 所以y 1+y 2=4y 04-x 0,因为N 为AB 中点,所以y 1+y 22=y 0,即2y 04-x 0=y 0,所以x 0=2,即线段AB 中点的横坐标为定值2.13.[解答] (1)证明:由已知F ⎝⎛⎭⎫p 2,0,设A (x 1,y 1), 则y 21=2px 1,圆心坐标为⎝⎛⎭⎫2x 1+p 4,y 12,圆心到y 轴的距离为2x 1+p 4,圆的半径为|F A |2=12×⎪⎪⎪⎪x 1-⎝⎛⎭⎫-p 2=2x 1+p 4, 所以,以线段F A 为直径的圆与y 轴相切.(2)解法一:设P (0,y 0),A (x 1,y 1),B (x 2,y 2), 由F A →=λ1AP →,BF →=λ2F A →,得 ⎝⎛⎭⎫x 1-p 2,y 1=λ1(-x 1,y 0-y 1),⎝⎛⎭⎫p 2-x 2,-y 2=λ2⎝⎛⎭⎫x 1-p 2,y 1,所以x 1-p2=-λ1x 1,y 1=λ1(y 0-y 1),p2-x 2=λ2⎝⎛⎭⎫x 1-p 2,y 2=-λ2y 1, 由y 2=-λ2y 1,得y 22=λ22y 21.又y 21=2px 1,y 22=2px 2, 所以x 2=λ22x 1.代入p 2-x 2=λ2⎝⎛⎭⎫x 1-p 2,得p 2-λ22x 1=λ2⎝⎛⎭⎫x 1-p 2,p 2(1+λ2)=x 1λ2(1+λ2), 整理得x 1=p2λ2,代入x 1-p 2=-λ1x 1,得p 2λ2-p 2=-λ1p2λ2,所以1λ2=1-λ1λ2,因为λ1λ2∈⎣⎡⎦⎤14,12,所以λ2的取值范围是⎣⎡⎦⎤43,2. 解法二:设A (x 1,y 1),B (x 2,y 2),AB :x =my +p2,将x =my +p2代入y 2=2px ,得y 2-2pmy -p 2=0,所以y 1y 2=-p 2(*). 由F A →=λ1AP →,BF →=λ2F A →,得 ⎝⎛⎭⎫x 1-p 2,y 1=λ1(-x 1,y 0-y 1),⎝⎛⎭⎫p 2-x 2,-y 2=λ2⎝⎛⎭⎫x 1-p 2,y 1,所以x 1-p2=-λ1x 1,y 1=λ1(y 0-y 1),p2-x 2=λ2⎝⎛⎭⎫x 1-p 2,y 2=-λ2y 1, 将y 2=-λ2y 1代入(*)式,得y 21=p 2λ2,所以2px 1=p 2λ2,x 1=p2λ2.代入x 1-p 2=-λ1x 1,得1λ2=1-λ1λ2,因为λ1λ2∈⎣⎡⎦⎤14,12,所以λ2的取值范围是⎣⎡⎦⎤43,2.B1.C [解析] 点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)的距离与到直线y +2=0即y =-2的距离相等,轨迹为抛物线,其中p =4,故所求的抛物线方程为x 2=8y .2.D [解析] 根据分析把抛物线方程化为x 2=-2⎝⎛⎭⎫12-a y ,则焦参数p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a2=1,解得a =-32.3.B [解析] 焦点坐标是(1,0),A (1,2),B (1,-2),|AB |=4,故△OAB 的面积S =12|AB ||OF |=12×4×1=2. 4.B [解析] 设点Q 的坐标为⎝⎛⎭⎫y 204,y 0,由|PQ |≥|a |,得y 20+⎝⎛⎭⎫y 204-a 2≥a 2,整理,得y 20(y 20+16-8a )≥0,∵y 20≥0,∴y 20+16-8a ≥0,即a ≤2+y 208恒成立.而2+y 208的最小值为2,所以a ≤2.5.D [解析] A (x 0,y 0),则B (x 0,-y 0),由于焦点F p2,0是抛物线的垂心,所以OA ⊥BF .由此得y 0x 0×-y 0x 0-p 2=-1,把y 20=2px 0代入得x 0=5p 2,故直线AB 的方程是x =52p .6.C [解析] 由抛物线定义,2⎝⎛⎭⎫x 2+p 2=⎝⎛⎭⎫x 1+p 2+⎝⎛⎭⎫x 3+p2,即2|FP 2|=|FP 1|+|FP 3|. 7.A [解析] 依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F ⎝⎛⎭⎫12,0.依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF |,则点P 到点A (0,2)的距离与P到该抛物线准线的距离之和d =|PF |+|P A |≥|AF |=⎝⎛⎭⎫122+22=172. 8.B [解析] ∵抛物线C :y 2=8x 的焦点为F (2,0),准线方程为x =-2,∴K (-2,0), 设A (x 0,y 0),过A 点向准线作垂线AB ,则B (-2,y 0),∵|AK |=2|AF |,又AF =AB =x 0-(-2)=x 0+2,∴由BK 2=AK 2-AB 2得y 20=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,∴A (2,±4),∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8.9.y 2=4x [解析] 设抛物线方程为y 2=kx ,与y =x 联立方程组,消去y ,得:x 2-kx =0,x 1+x 2=k =2×2=4,故y 2=4x .10.2 [解析] 过B 作BE 垂直于准线l 于E ,∵AM →=MB →,∴M 为AB 中点,∴|BM |=12|AB |.又斜率为3,∠BAE =30°,∴|BE |=12|AB |,∴|BM |=|BE |, ∴M 为抛物线的焦点,∴p =2. 11.83[解析] 设A (x A ,y A ),B (x B ,y B ),则|AF |=x A +1,|BF |=x B +1,∴x A +1=3(x B +1).①由几何关系,x A -1=3(1-x B ).②联立①②,得x A =3,x B =13,∴所求距离d =x A +x B +1=83.12.[解答] (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线. ∵|PQ |是点Q 到直线l 的距离.点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |.故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线, 其方程为:y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0, 圆的半径r =|MA |=(x 0-1)2+y 20, 则|TS |=2r 2-d 2=2y 20-2x 0+1,因为点M 在曲线C 上,所以x 0=y 202,所以|TS |=2y 20-y 20+1=2,是定值.13.[解答] (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足(x -1)2+y 2-x =1(x >0).化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m ,y 2=4x ,得y 2-4ty -4m =0,Δ=16(t 2+m )>0,于是⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4m .①又F A →=(x 1-1,y 1),FB →=(x 2-1,y 2), F A →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-⎝⎛⎭⎫y 214+y 224+1<0, ⇔(y 1y 2)216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0.③由①式,不等式③等价于m 2-6m +1<4t 2.④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0,即3-22<m <3+2 2.由此可知,存在正数m ,对于过点M (m,0),且与曲线C 有两个交点A ,B 的任一直线,都有F A →·FB →<0,且m 的取值范围是(3-22,3+22).。
高考抛物线专题做题技巧与方法总结

高考抛物线专题做题技巧与方法总结知识点梳理:1.抛物线的标准方程、类型及其几何性质 (0>p):GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF2.抛物线的焦半径、焦点弦 ①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线pxy22=的焦点弦,则=B A x x42p ,=B A y y 2p -,||AB =p x x B A ++3. pxy22=的参数方程为⎩⎨⎧==pty pt x 222(t 为参数),pyx22=的参数方程为⎩⎨⎧==222pty ptx (t 为参数).重难点突破GAGGAGAGGAFFFFAFAF重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质 难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A. 1617 B. 1615 C.87 D.点拨:抛物线的标准方程为y x 412=,准线方程为161-=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是16152.求标准方程要注意焦点位置和开口方向GAGGAGAGGAFFFFAFAF问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为AB BB AA 21)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切3、典型例题讲解:考点1 抛物线的定义题型利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换[例1 ]已知点P在抛物线y2 = 4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和的最小值为GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF解题思路:将点P 到焦点的距离转化为点P 到准线的距离 [解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3总结:灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 练习:1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P成等差数列, 则有 ( )A .321x x x =+B . 321y y y =+GAGGAGAGGAFFFFAFAFC .2312x x x =+ D. 2312y y y =+[解析]C 由抛物线定义,2132()()(),222p p p x x x +=+++即:2312x x x =+.2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 ( )A. )0,0( B. )62,3( C. )4,2( D.)62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MKMA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF题型:求抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线240x y --=上 解题思路:以方程的观点看待问题,并注意开口方向的讨论. [解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =-(2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p=,GAGGAGAGGAFFFFAFAF∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p =∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.总结:对开口方向要特别小心,考虑问题要全面 练习:3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值 [解析]4132=⇒+=p p4. 对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;GAGGAGAGGAFFFFAFAF③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得GAGGAGAGGAFFFFAFAF2=p 或4,抛物线的方程y x 42=或y x 82=考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证[例3 ]设A 、B 为抛物线px y 22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.解题思路:由特殊入手,先探求定点位置[解析]设直线OA 方程为kx y =,由⎩⎨⎧==px y kxy 22解出A 点坐标为)2,2(2kp k p ⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p总结:(1)由于是填空题,可取两特殊直线AB, 求交点即可;GAGGAGAGGAFFFFAFAF(2)B 点坐标可由A 点坐标用k1-换k 而得。
高中抛物线知识点归纳总结与练习题(含答案)

则 AFK 的面积为
。
7、已知双曲线 x2 y2 1,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程 45
为
。
8、在平面直角坐标系 xoy 中,有一定点 A(2,1) ,若线段 OA 的垂直平分线过抛物线
y2 2 px( p 0) 焦点,则该抛物线的方程是
高中抛物线知识点归纳总结与练习题
y 2 2 px ( p 0)
抛
y l
物
线
OF x
y 2 2 px ( p 0)
y l
FO x
x 2 2 py ( p 0)
y
F
O
x
l
x 2 2 py ( p 0)
y l
O x
F
定义 范围
平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线,点 F 叫 做抛物线的焦点,直线 l 叫做抛物线的准线。
二. 关于直线与抛物线的位置关系问题常用处理方法
直线 l : y kx b 抛物线
1 联立方程法:
y kx b
y
2
2
px
k 2x22源自kbp)x
b2
0
, ( p 0)
设交点坐标为 A(x1, y1) , B(x2, y2 ) ,则有 0 ,以及 x1 x2, x1x2 ,还可进一步求出
距离之和的最小值为
。
3、直线 y x 3 与抛物线 y2 4x 交于 A, B 两点,过 A, B 两点向抛物线的准线作垂线,垂足分
别为 P,Q ,则梯形 APQB 的面积为
。
4、设 O 是坐标原点, F 是抛物线 y2 2 px( p 0) 的焦点, A 是抛物线上的一点, FA 与 x 轴正
高中抛物线知识点归纳总结与练习题与答案

直线与抛物线的位置关系直线■:、•二,抛物线「占八y =hr+J<,=2丹消y得.+2(肪-p)x+护二0(1) 当k=0时,直线I与抛物线的对称轴平行,有一个交点;(2) 当k M 0 时,△>0,直线I与抛物线相交,两个不同交点;△=0,直线I与抛物线相切,一个切点;△v0,直线I与抛物线相离,无公共点。
(3) 若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)-------- •- •关于直线与抛物线的位置关系问题常用处理方法直线1:kx b 抛物线- 丁芒八,(p ' 0)①联立方程法:y =kx +b 2 2 2:2二k2x2+2(kb — p)x+b2 =0y =2px设交点坐标为Ad-yJ, BX M),则有:'0 ,以及x「,还可进一步求出y 1 y 2 二 kx i b kx 2 b = k(x 1 x 2) 2b2 2y 1y 2 =(kx b)(kx 2 b) = k X j X 2 kb(x-i x 2) b在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长AB| = J i +冏为—x 2| = J l + k 2 J% +x 2)2 —4X J X 2 = J l + k 2-p I 9!1 2 - 2+■^2^ (y i + y 2)—4y i y 2 =H 1 + kb. 中点 M (X 0,yo ), X 0 二宁②点差法: 设交点坐标为A (X 1,yJ ,B (X 2,y 2),代入抛物线方程,得2 2 y 12px 1y 2 2px 2将两式相减,可得(% -丫2)(% y 2)=2卩(% -X 2)y 1 -y 2 _ 2p X 1 -X 2 y 1 y 2屮-七 _ 2p _ 2p _ p 捲 一X 2y 1 y 22 y y °同理,对于抛物线X 2 =2py (p=0),若直线l 与抛物线相交于A 、 是弦AB 的中点,则有k AB 二凶」二空0 =些2p 2p p(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点, 在,且不等于零)a.在涉及斜率问题时,k AB2p y 1 y 2b.在涉及中点轨迹问题时,设线段AB 的中点为 M (x o ,y o ),B 两点,点 M (X o , y o ) 2)直线的斜率存AB =、:i +^卜1 _y2 =抛物线练习及答案21已知点P 在抛物线y = 4x 上,那么点P 到点Q (2, - 1)的距离与点 P 到抛物线焦点距离之1和取得最小值时,点 P 的坐标为。
抛物线问题解决中的一些技巧

抛物线问题解决中的一些技巧抛物线是三大圆锥曲线之一,在高考中占有重要的地位。
求解抛物线问题我们应掌握一些解题的技巧,从而使得我们的解题更简洁、思路更清晰。
一、正确选用标准方程例1、求以原点为顶点,坐标轴为对称轴,并且经过点(24)P --,的抛物线的标准方程. 解:由题意,抛物线有两种情形:(1)设抛物线22(0)y px p =>,将(24)P --,代入得4p =.故标准方程为28y x =-; (2)设抛物线22(0)x py p =->,将(24)P --,代入得12p =,故标准方程为2x y =-. 所以满足条件的抛物线的标准方程为28y x =-或2x y =-.点评:求圆锥曲线的标准方程,关键是确定类型,设出方程,待定系数法是常用方法之一。
本题应结合图形,分析出两种情形,避免漏解。
练习1:已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点(,3)M m -到焦点距离为5,求m 的值。
解:设抛物线方程为22(0)x py p =->,准线方程:2p y =∵点M 到焦点距离与到准线距离相等,∴532p=-+,解得:4p =,∴抛物线方程为28x y =-。
把(,3)M m -代入得:m =±二、合理使用定义例2、已知点(32)P ,在抛物线24y x =的内部,F 是抛物线的焦点,在抛物线上求一点M ,使MP MF +最小,并求此最小值.解:过M 作准线l 的垂线MA ,垂足为A ,则由抛物线的定义有M F M A =.MP MF MP MA +=+∴,显然当P M A ,,三点共线时,MP MF +最小. 此时,M 点的坐标为(12),,最小值为4. 点评:抛物线的定义用法:一是根据定义求轨迹;二是两个相等距离(动点到焦点的距离与动点到准线的距离)的互化.在解题中,应正确合理地使用定义,同时应注意“看到准线想焦点,看到焦点想准线”。
练习2:已知动点M 的坐标满足方程,则动点M 的轨迹是( )A. 椭圆B. 双曲线C. 抛物线D. 以上都不对解:由题意得:,即动点到直线的距离等于它到原点(0,0)的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考抛物线专题做题技巧与方法总结知识点梳理:1.抛物线的标准方程、类型及其几何性质 (0>p ):2.抛物线的焦半径、焦点弦①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p,=B A y y 2p -,||AB =p x x B A ++ 3. px y 22=的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数),py x 22=的参数方程为⎩⎨⎧==222pt y ptx (t 为参数). 重难点突破重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617 B. 1615 C.87D. 0 点拨:抛物线的标准方程为y x 412=,准线方程为161-=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是16152.求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为AB BB AA 21)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切3、典型例题讲解: 考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 [例1 ]已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为解题思路:将点P 到焦点的距离转化为点P 到准线的距离 [解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3总结:灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 练习:1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+[解析]C 由抛物线定义,2132()()(),222p p px x x +=+++即:2312x x x =+.2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(- [解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程 题型:求抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上 解题思路:以方程的观点看待问题,并注意开口方向的讨论. [解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>,∵过点(-3,2) ∴229)3(24⋅=--=p p 或∴2934p p ==或∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =-(2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p=, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p= ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.总结:对开口方向要特别小心,考虑问题要全面 练习:3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值[解析]4132=⇒+=p p4. 对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件. 5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p-,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82=考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证[例3 ]设A 、B 为抛物线px y 22=上的点,且ο90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.解题思路:由特殊入手,先探求定点位置[解析]设直线OA 方程为kx y =,由⎩⎨⎧==pxy kx y 22解出A 点坐标为)2,2(2k pk p⎪⎩⎪⎨⎧=-=pxy x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p总结:(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
练习:6. 若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = [解析]-17.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( )A. ο45B. ο60C. ο90D. ο120 [解析]C基础巩固训练:1.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于)(422R a a a ∈++,则这样的直线( )A.有且仅有一条B.有且仅有两条C.1条或2条D.不存在 [解析]C 44)1(52||22≥++=++=++=a a a p x x AB B A ,而通径的长为4. 2.在平面直角坐标系xOy 中,若抛物线24x y =上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为 ( )A. 3B. 4C. 5D. 6[解析] B 利用抛物线的定义,点P 到准线1-=y 的距离为5,故点P 的纵坐标为4.3.两个正数a 、b 的等差中项是92,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( )A .1(0,)4-B .1(0,)4C .1(,0)2-D .1(,0)4-[解析] D. 1,4,5-=-==a b b a4. 如果1P ,2P ,…,8P 是抛物线24y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n Λ成等差数列且45921=+++x x x Λ,则||5F P =( ).A .5B .6C . 7D .9[解析]B 根据抛物线的定义,可知12ii i pPF x x =+=+(1i =,2,……,n ),)(,,,21*∈N n x x x n ΛΘ成等差数列且45921=+++x x x Λ,55=x ,||5F P =65、抛物线,42F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于( )A .33B .34C .36D .38[解析] C. 过A 作x 轴的垂线交x 轴于点H ,设),(n m A ,则1,1-=-=+==m OF OH FH m AB AF ,32,3)1(21==∴-=+∴n m m m四边形ABEF 的面积==⨯++32)]13(2[21366、设O 是坐标原点,F 是抛物线24y x =的焦点,A 是抛物线上的一点,FA uu u r与x轴正向的夹角为60o,则OA u u u r 为 .[解析]21.过A 作AD x ⊥轴于D ,令FD m =,则m FA 2=即m m 22=+,解得2=m .)32,3(A ∴21)32(322=+=∴OA综合提高训练7.在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标[解析]解法1:设抛物线上的点)4,(2x x P ,点P 到直线的距离17|544|2+-=x x d 1717417|4)21(4|2≥+-=x , 当且仅当21=x 时取等号,故所求的点为),(121解法2:当平行于直线45y x =-且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为b x y +=4,代入抛物线方程得0442=--b x x , 由01616=+=∆b 得21,1=-=x b ,故所求的点为),(1218. 已知抛物线2:ax y C =(a 为非零常数)的焦点为F ,点P 为抛物线c 上一个动点,过点P 且与抛物线c 相切的直线记为l . (1)求F 的坐标;(2)当点P 在何处时,点F 到直线l 的距离最小? 解:(1)抛物线方程为y ax 12=故焦点F 的坐标为)41,0(a(2)设20000 ),(ax y y x P =则2 ,2'0ax k P ax y =∴=)的切线的斜率点处抛物线(二次函数在Θ直线l 的方程是)(2 0020x x ax ax y -=- 0 2 200=-ax y x ax -即. 411441)1()2(410 20222020ax a aax ax ad ≥+=-+--=∴)0,0( 0 0的坐标是此时时上式取“=”当且仅当P x = .L F 0,0)(P 的距离最小到切线处时,焦点在当∴9. 设抛物线22y px =(0p >)的焦点为 F ,经过点 F 的直线交抛物线于A 、B 两点.点 C 在抛物线的准线上,且BC ∥X 轴.证明直线AC 经过原点O .证明:因为抛物线22y px =(0p >)的焦点为,02p F ⎛⎫⎪⎝⎭,所以经过点F 的直线AB的方程可设为 2px my =+,代人抛物线方程得 2220y pmy p --=.若记()11,A x y ,()22,B x y ,则21,y y 是该方程的两个根,所以212y y p =-.因为BC ∥X 轴,且点C 在准线2p x =-上,所以点C 的坐标为2,2p y ⎛⎫- ⎪⎝⎭, 故直线CO 的斜率为21112.2y y p k p y x ===- 即k 也是直线OA 的斜率,所以直线AC 经过原点O .10.椭圆12222=+by a x 上有一点M (-4,59)在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程;(2)若点N 在抛物线上,过N 作准线l 的垂线,垂足为Q 距离,求|MN|+|NQ|的最小值.解:(1)∵12222=+b y a x 上的点M 在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. ∴c=-4,p=8……①∵M (-4,59)在椭圆上∴125811622=+ba ……② ∵222cb a +=……③ ∴由①②③解得:a=5、b=3∴椭圆为192522=+y x 由p=8得抛物线为x y 162= 设椭圆焦点为F (4,0), 由椭圆定义得|NQ|=|NF|∴|MN|+|NQ|≥|MN|+|NF|=|MF|=541)059()44(22=-+--,即为所求的最小值.参考例题:1、已知抛物线C 的一个焦点为F (21,0),对应于这个焦点的准线方程为x =-21.(1)写出抛物线C 的方程;(2)过F 点的直线与曲线C 交于A 、B 两点,O 点为坐标原点,求△AOB 重心G 的轨迹方程;(3)点P 是抛物线C 上的动点,过点P 作圆(x -3)2+y 2=2的切线,切点分别是M ,N .当P 点在何处时,|MN |的值最小?求出|MN |的最小值.解:(1)抛物线方程为:y 2=2x . (4分)(2)①当直线不垂直于x 轴时,设方程为y =k (x -21),代入y 2=2x ,得:k 2x 2-(k 2+2)x +042=k .设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=222kk+,y 1+y 2=k (x 1+x 2-1)=k2.设△AOB 的重心为G (x ,y )则⎪⎪⎩⎪⎪⎨⎧=++=+=++=k y y y k k x x x 32303230212221,消去k 得y 2=9232-x 为所求,(6分)②当直线垂直于x 轴时,A (21,1),B (21,-1),(8分)△AOB 的重心G (31,0)也满足上述方程.综合①②得,所求的轨迹方程为y 2=9232-x ,(9分)(3)设已知圆的圆心为Q (3,0),半径r =2,根据圆的性质有:|MN |=22222||2122||||2||||||PQ PQ r PQ r PQ MQ MP -•=-=.(11分)当|PQ |2最小时,|MN |取最小值, 设P 点坐标为(x 0,y 0),则y 20=2x 0. |PQ |2=(x 0-3)2+ y 20= x 20-4x 0+9=(x 0-2)2+5, ∴当x 0=2,y 0=±2时,|PQ |2取最小值5, 故当P 点坐标为(2,±2)时,|MN |取最小值5302.抛物线专题练习一、选择题(本大题共10小题,每小题5分,共50分) 1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( A )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( D )A .x 2+ y 2-x -2 y -41=0B .x 2+ y 2+x -2 y +1=0C .x 2+ y 2-x -2 y +1=0D .x 2+ y 2-x -2 y +41=03.抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标是( A)A .(1,1)B .(41,21) C .)49,23( D .(2,4)4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( B ) A .6mB . 26mC .4.5mD .9m5.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是 ( C )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x6.抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是( B )A . y 2=-2xB . y 2=-4xC . y 2=2xD . y 2=-4x 或y 2=-36x7.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( A )A .8B .10C .6D .48.把与抛物线y 2=4x 关于原点对称的曲线按向量a )3,2(-=平移,所得的曲线的方程是(C )A .)2(4)3(2--=-x yB .)2(4)3(2+-=-x yC .)2(4)3(2--=+x yD . )2(4)3(2+-=+x y9.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( C)A .0条B .1条C .2条D .3条10.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( C )A .2aB . a21 C .4a D .a4二、填空题(本大题共4小题,每小题6分,共24分)11.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 2 .12.抛物线y =2x 2的一组斜率为k 的平行弦的中点的轨迹方程是 4kx = .13.P 是抛物线y 2=4x 上一动点,以P 为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q ,点Q 的坐标是 (1,0) .14.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 x y 542-=三、解答题(本大题共6小题,共76分)15.已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆圆心M 的轨迹方程.(12分)[解析]:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为y x 122-=.16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.(12分) [解析]:设抛物线方程为)0(22>-=p py x ,则焦点F (0,2p-),由题意可得 ⎪⎩⎪⎨⎧=-+=5)23(6222p m p m ,解之得⎩⎨⎧==462p m 或⎩⎨⎧=-=462p m , 故所求的抛物线方程为y x 82-=,62±的值为m17.动直线y =a ,与抛物线x y 212=相交于A 点,动点B 的坐标是)3,0(a ,求线段AB 中点M 的轨迹的方程.(12分)[解析]:设M 的坐标为(x ,y ),A (22a ,a ),又B )3,0(a 得 ⎩⎨⎧==ay a x 22消去a ,得轨迹方程为42y x =,即x y 42=18.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?(12分) [解析]:如图建立直角坐标系,设桥拱抛物线方程为)0(22>-=p py x ,由题意可知, B (4,-5)在抛物线上,所以6.1=p ,得y x 2.32-=,当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA’,则A (A y ,2),由A y 2.322-=得45-=A y ,又知船面露出水面上部分高为0.75米,所以75.0+=A y h =2米19.如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C 的方程.(14分)[解析]:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.由题意可知:曲线C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中B A x x ,分别为A 、B 的横坐标,MN p =. 所以,)0,2(),0,2(pN p M -. 由17=AM ,3=AN 得 172)2(2=++A A px px ①92)2(2=+-A A px px ②联立①②解得p x A 4=.将其代入①式并由p>0解得⎩⎨⎧==14A x p ,或⎩⎨⎧==22A x p . 因为△AMN 为锐角三角形,所以A x p>2,故舍去⎩⎨⎧==22A x p . ∴p=4,1=A x .由点B 在曲线段C 上,得42=-=pBN x B .综上得曲线段C 的方程为)0,41(82>≤≤=y x x y .20.已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤. (Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.(14分)[解析]:(Ⅰ)直线l 的方程为a x y -=,将px y a x y 22=-=代入,得 0)(222=++-a x p a x . 设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a 又a x y a x y -=-=2211,,∴221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=.∵0)2(8,2||0>+≤<a p p p AB , ∴p a p p 2)2(80≤+<. 解得42p a p -≤<-.(Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为),(33y x ,则由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形, ∴ p QM QN 2||||==, ∴||||21QN AB S NAB ⋅=∆||22AB p =p p 222⋅≤22p =即NAB ∆面积最大值为22p抛物线习题精选一、选择题 1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是 ,,则为( ).A .45°B .60°C .90°D .120° 2.过已知点且与抛物线只有一个公共点的直线有( ).A .1条B .2条C .3条D .4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。