紫外可见分光光度法的应用
紫外可见分光光度仪的作用

紫外分光光度计是一种常用的分析仪,可以根据物质的吸收光谱研究物质的成分、结构和物质间相互作用,具有性能稳定、使用灵活、维护简便等优点。
其基本工作原理是利用一定频率的紫外/可见光照射被分析的有机物质,引起分子中价电子的跃迁,它将有选择地被吸收。
一组吸收随波长而变化的光谱,反映了试样的特征。
那么紫外分光光度计的主要用途有哪些呢?下面给大家一一介绍:
1.测定溶液浓度(含量)
这种应用最为常见,也被称作“定量分析”。
通过与已知浓度溶液比较测定未知浓度样品浓度的方法。
2. 测定材料特性
例如,夏天您在山上和海滩,以及冬季在滑雪场时所配戴的太阳镜、所用的防晒化妆品以及所穿的衣物,在经过“透过率”的测量后,就能很清楚地知道它们能否挡住目标波长的光线。
每种样品都有自己的特征“光谱”。
要辨别一种未知的样品,可将其与一种已知样品的光谱相比较(定性)。
3. 测定分子结构
您知道样品是由分子组成,而每个分子则由一组原子构成的么?每个分子都有自己的特征光谱(位置、强度等)。
尽管比较难,但许多大学和公司的实验室都进行过通过光谱来判定分子结构的实验。
总体而言,根据吸收与已知浓度的标样的比较,进行定量分析;同时对于一个特定的波长,吸收的程度正比于试样中该成分的浓度,因此测量光谱可以进行定性分析,这是紫外分光光度计最常用的两种功能。
《中国药典》2020年版四部通则 0401 紫外-可见分光光度法

《中国药典》2020年版四部通则0401 紫外-可见分
光光度法
《中国药典》2020年版四部通则0401紫外-可见分光光度法主要包括以下内容:
1.定义:紫外-可见分光光度法是一种通过测定物质在紫外-可见光区的吸收光谱,
对物质进行定性和定量分析的方法。
2.适用范围:适用于具有紫外-可见光吸收特性的物质的定性和定量分析。
该方法
广泛应用于药品、食品、环境等领域。
3.原理:基于物质吸收紫外-可见光后,其吸收光谱的波长和强度与物质的浓度和
种类有关,通过测量物质的吸收光谱,可以对其进行定性和定量分析。
4.操作方法:包括直接比较法、标准曲线法、差示光谱法、差示光谱比率法等。
根据不同情况选择合适的方法进行操作。
5.注意事项:
•在操作过程中应注意避免光的散射和干扰因素的影响。
•应注意控制实验条件,如温度、湿度、气压等,以确保实验结果的准确性和可靠性。
•对于某些特定物质,可能需要采用其他方法进行测定,如络合滴定法、离子交换法等。
总之,《中国药典》2020年版四部通则0401紫外-可见分光光度法为药品、食品、环境等领域提供了重要的分析手段,有助于保证分析结果的准确性和可靠性。
紫外可见分光光度法在食品检测中的应用

工作中直线经常发生弯曲,这称为朗伯-比
尔定律旳偏离。
原因:
吸光物质浓度较高;非单色光引起;介质
不均匀引起;吸光物质不稳定引起。
摩尔吸收系数ε:
1mol/L浓度旳溶液,液层厚度为1cm时旳吸
收度。
强吸收:ε>104;
中档强度吸收:102 < ε < 104;
度。(吸收池厚度为10.0mm)。
c.
4、紫外-可见分光光度计旳构成、类型和使用
(1)构成:光源、单色器、吸收池、检测器、
信号处理器、显示屏
可见光源:碘钨灯、钨灯:320-2500nm
紫外光源:氢灯、氘灯、汞灯:150-400nm
玻璃吸收池:仅用于可见光区
石英池:可用于紫外光区和可见光区
选择原则:
能完全溶解样品;
在所用旳波长范围内有很好旳透光性;
纯度为“光谱纯”或经检验其空白符合要求。
处理措施:
蒸馏水煮沸清除气泡;
乙醇清除醛类、苯等杂质;
环己烷、正己烷清除苯;
氯仿预防光和空气破坏;
乙醚清除过氧化物;
烃类吸附除杂
(3)参比溶液旳选择
1). 溶剂参比:试样构成简朴、共存组份少(基体
注意事项:
粗酶液制备时根据目旳酶旳性质选择缓冲液、温度、
时间等条件;
酶和底物旳反应条件也要恰当;
一般以检测产物变化量居多。
二、紫外-可见分光光度法
在食品检测中旳应用
(一)、食品酶分析
1、-半乳糖苷酶(乳糖酶)
以ONPG(邻硝基苯β-D-半乳吡喃糖苷)为
底物测定-半乳糖苷酶活力。
紫外可见分光光度法在食品包装材料检测中的应用

紫外可见分光光度法在食品包装材料检测中的应用紫外可见分光光度法在食品包装材料检测中的应用1. 紫外分光光度法简介紫外可见分光光度(UV-vis)是一种物质吸收到紫外及可见光的能量的光谱分析技术,是一种非破坏性检测方法,是进行食品中污染物、报警物质和有机物含量等快速检测的常用技术。
2. 紫外分光光度法在食品包装材料检测中的应用(1)检测含有机物的含量:紫外分光光度法可以有效检测食品包装材料中石油类、香精、活性剂等有机物的含量,可有效控制污染物和有害物质的增加,维护食品安全。
(2)检测染料的残留:紫外分光光度法可以有效检测食品包装材料中的各种染料和可以能有毒的残留物,这样可以有效控制这些有害物质影响食品的安全性。
3. 紫外分光光度法的优势(1)精度高:紫外可见分光光度分析仪操作简单,自动化程度高,可获得高精度、高灵敏度的试验结果。
(2)操作快速:紫外分光光度法操作简单速度快,检测时间短,可以快速获得检测数据,大大减少了研究时间和成本。
(3)检测范围广泛:紫外分光光度法可以用于检测各种类的物质,具有检测范围广泛的优势。
4. 紫外分光光度法的局限(1)分析精度受材料影响大:不同的包装材料会影响分析仪的检测准确性,所以检测的精度不可避免的会受影响。
(2)结果不易定量:由于紫外分光光度技术提供的检测结果更多是定性的,而不是定量的,所以不容易用定量来说明检测结果。
(3)测量结果受抗干扰性影响:受外部干扰比较大,结果可能不稳定,容易造成出现偏差。
5. 结论紫外可见技术是一种快速、高效、准确、准确、无需特殊处理的物质分析技术,在食品包装材料检测中具有重要的作用。
尽管存在抗干扰性等操作难度的问题,但只要正确操作,紫外可见分光光度法仍然可以提供准确可靠的检测结果,为食品包装材料检测提供了一种新的可能。
紫外―可见分光光度计在药品检测中的应用[权威资料]
![紫外―可见分光光度计在药品检测中的应用[权威资料]](https://img.taocdn.com/s3/m/7b87624a814d2b160b4e767f5acfa1c7aa008294.png)
紫外―可见分光光度计在药品检测中的应用药品分析是保证药品安全有效的重要手段,在药品的研究、生产、流通、使用和监督管理等环节中均有举足轻重的作用,其主要内容包括性状分析、鉴别、检查和含量测定等方面。
高效液相色谱仪、气相色谱仪、紫外分光光度计等是制药生产中常用的检测仪器。
其中,紫外分光光度计由于准确度高、测定限度低、设备简便、仪器成本低、易于操作等优点,已成为制药生产中必备的检测设备之一,用于药物鉴别、检查和含量测定等。
紫外-可见分光光度法是通过测定物质在紫外-可见光区(200-760nm)产生紫外-可见吸收光谱,根据吸收光谱的特性,对该物质进行定性和定量分析的方法。
其理论基础为朗伯-比耳定律,溶液的吸光度和吸光物质含量、液层厚度乘积成正比。
对于一般的紫外分光光度法,其测量的相对误差在1%~3%。
随着大量心得显色剂的合成及应用,尤其是有关多元络合物和各种表面活性剂的应用研究,推进了元素测定的灵敏度的大幅提高。
采用预富集和示差法,适用质量分数从常量(1%~50%)到痕量(10-10~10-8)。
紫外-可见分光光度法由紫外分光光度法和可见分光光度法两种方法构成,这两种方法在测定的原理、仪器、操作等方面皆相同。
因此,统称为紫外-可见分光光度法,测定仪器一般采用紫外-可见分光光度仪。
在各国药典中,药品的理化常数、鉴别、检查和含量测定等很多项目中,都能见到紫外分光光度法的应用实例。
在制药生产中,紫外分光光度法应用最多的是药物含量的测定、药物杂质检测、药物稳定性考察、释放度、药物负载行为测定及物质结构鉴定等方面。
目前利用紫外分光光度计分析的药物品种有维生素、抗生素、解热药、去痛药、降血压药、安定药、镇咳药、滴眼药、磺胺类药、利尿药、某些妇科药、痢疾药、腹泻药、抗肿瘤药、抗结核药等。
1 紫外分光光度法应用于药物含量测定紫外-可见分光光度法由于灵敏度较高,不仅可用于常量组分的含量测定,也可用于测定微量组分、超微量组分以及多组分混合物同时测定等,在药物分析中主要用于原料药含量测定、制剂含量测定、含量均匀度和溶出度的检查等。
紫外-可见分光光度法测定

紫外-可见分光光度法测定1. 引言1.1 引言紫外-可见分光光度法是一种常用的分析化学方法,通常用于测定物质的浓度或测定物质的吸光度。
该方法利用紫外-可见光谱仪测量样品对紫外和可见光的吸收情况,从而推断样品中所含物质的浓度或结构。
在化学分析实验中,紫外-可见分光光度法具有灵敏度高、准确性高和简便易行的优点,因此被广泛应用于药物分析、环境监测、食品检测等领域。
本实验旨在通过该方法测定样品中目标物质的浓度,并探讨影响测定结果的因素。
通过对仪器原理、操作步骤、实验结果、数据分析和影响因素的详细讨论,我们将深入了解紫外-可见分光光度法的原理和应用,并为今后在相关领域的研究提供参考和借鉴。
希望本实验能够为我们提供更多关于分光光度法的实际操作经验,提升我们的实验技能和分析能力。
1.2 背景介绍紫外-可见分光光度法是一种广泛应用于化学分析领域的分析方法,通过测定物质在紫外-可见光区域的吸收特性,从而确定物质的浓度或者进行定性分析。
紫外-可见分光光度法具有操作简单、灵敏度高、选择性强的特点,被广泛应用于环境监测、食品安全检测、药品质量控制等领域。
随着科学技术的不断发展,紫外-可见分光光度法在实验室分析中扮演着越来越重要的角色。
通过测定物质在特定波长范围内的光吸收情况,我们可以获得关于物质性质的重要信息,如浓度、溶解度、稳定性等。
掌握紫外-可见分光光度法的原理和操作方法,对于提高实验准确性和效率具有重要意义。
在本文中,我们将介绍紫外-可见分光光度法的仪器原理、操作步骤、实验结果、数据分析和影响因素,希望能够为读者提供一份系统全面的紫外-可见分光光度法测定指南。
通过总结和展望,我们也希望能够进一步探讨该方法在化学分析领域的应用前景。
1.3 研究目的紫外-可见分光光度法是一种常用的分析化学技术,可以用于测定物质的吸光度,从而推断物质的浓度。
本实验的研究目的主要分为以下几点:1. 研究紫外-可见分光光度法在测定物质浓度方面的应用。
紫外可见分光光度法的应用现状及发展

紫外可见分光光度法的应用现状及发展紫外可见分光光度法是一种常用的分析技术,广泛应用于化学、生物、环境等领域。
本文将深入探讨紫外可见分光光度法的应用现状以及未来的发展趋势。
一、紫外可见分光光度法的基本原理紫外可见分光光度法基于物质对可见光和紫外光的吸收特性进行分析。
它利用紫外可见分光光度计,将样品溶液或气体暴露于特定波长的光源下,测量经过样品后的光强变化,从而得出样品的吸光度值。
吸光度值与样品中被测试化合物的浓度成正比,可以通过比较吸光度值与标准曲线来确定样品中的化合物浓度。
二、紫外可见分光光度法在化学分析中的应用1. 无机化学分析:紫外可见分光光度法广泛应用于金属离子的测定、配位化合物稳定常数的测定等方面。
通过测量在一定波长下溶液中金属离子的吸光度,可以确定金属离子的含量。
2. 有机化学分析:紫外可见分光光度法在有机化合物的分析中也有重要应用。
可以用来测定有机色素的含量、有机酸的浓度等。
紫外可见分光光度法还可以用于有机物质的结构表征和质量控制分析。
3. 药物分析:药物分析常常依赖于紫外可见分光光度法,用于药物的含量测定、药物溶解度的研究、药代动力学的研究等。
紫外可见分光光度法具有快速、准确、灵敏度高等优点,对于药物分析具有重要意义。
4. 环境监测:紫外可见分光光度法在环境监测中也发挥了重要作用。
可以用来检测水质中各种有害物质的浓度,如重金属离子、有机污染物等。
紫外可见分光光度法还可以用于大气污染物的检测、土壤分析等。
三、紫外可见分光光度法的发展趋势1. 多重检测器的应用:为了提高紫外可见分光光度法的分析灵敏度和选择性,将多重检测器(如二极管阵列检测器)引入紫外可见分光光度法成为一种趋势。
多重检测器可以同时检测多个波长的吸光度信号,提高分析效率和准确性。
2. 微流控技术的应用:微流控技术结合紫外可见分光光度法可以实现样品预处理、反应和测量的集成,提高分析速度和样品处理容量。
3. 转向纳米材料的应用:纳米材料具有较大的比表面积和特殊的光学性质,可以用于增强样品的信号强度,提高分析的灵敏度。
紫外-可见分光光度法应用

对照品比较法 吸收系数法 比色法 标准曲线法
紫外-可见分光光度法应用
三、对溶剂的要求
含有杂原子的有机溶剂通常都有很强的末端吸收。因此,当 做溶剂用时,它们的使用范围不能小于截止使用波长。
如:甲醇、乙醇的截止使用波长为205nm 另外,当溶剂不纯时,会增加干扰吸收,因此,在测定供试 品前,先检查所用的溶剂在供试品所用的波长附近是否符合 要求。
紫外-可见分光光度法 应用
紫外-可见分光光度法应用
一、应用范围
有机化合物结构中如含有共轭体 系、芳香环可在紫外区(200~ 400nm)或可见光区(400~ 760nm)产生吸收
药物在可见光区若无吸收, 但在一定条件下加入显色试剂或 经过处理显色后,能对可见光产 生吸收。
紫外-可见分光光度法应用
谢 谢 / THANKS
制作人|
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c HIn
a
AHIn a
1.5
甲基橙离解常数测定图
y = 1.0058x - 3.454 R2 = 0.9967
pH 1.2
pKa
1,
c
[
In
],
A'' a
In a
c
AIn a
1
1
0.8 0.5
0.6 0
2
2.5
3
3.5
4
4.5
-0.5
0.4
lg
Aa
AHIn a
A A In
a
a
pH
pKa
-1
0.2
返回
微量硫酸根离子的测定
➢ 原理:以二甲基磺基偶氮Ⅲ(二甲基3,6-双[2-磺酸苯基 偶氮]变色剂)为试剂测定水中中低含量的硫酸根离子。水 样中的硫酸根与试剂R-Ba络合物中的试剂离子R发生置换 反应,光度法测定释出的R的吸光度,波长为644nm
➢ 因为有阳离子干扰,所以采用阳离子交换树脂在线吸附消 除干扰,相对标准偏差为1.5%,测定精度在5%以内。
❖ 反应时间:如右图,在一定的时间内,吸光度在一定的时间内吸光度略
有降低,当达到一定时间吸光度迅速降低A 。
吸光
度下
❖ 干扰分析,主要干扰离子I-和Br-, 2.0
降
加入一定量的硝酸银溶液
1.5
1.0
返回
0.5
t
4
8
12
16
天然水中痕量铋的测定
❖ 原理:溴化十六烷基三甲胺(CTMAB)能增敏Bi(Ⅲ)对H2O2氧化荔枝 红素(R)褪色反应的抑制作用。H2O2能使R褪色;Bi能抑制H2O2对R的褪 色反应;CTMAB+Bi对R褪色有更大的抑制作用
❖ 反应条件:最大吸收波长为492 线性范围0~50mg/50mL HCl-H3PO4的用量6mol/LHCl2mL,5mol/LH3PO4 5mL 显色时间,在10分钟后吸光度最大
返回
亚硫酸盐的测定
❖ 原理:利用亚硫酸盐的还原性质,用Fe(Ⅲ)-缓冲溶液-1,10 –二氮菲混合 液为显色剂,分光光度法直接测定亚硫酸盐的方法。
520 nm ,锌与显色剂形成有色络合物的最大吸收峰为595nm ,ε= 1 1 4 ×10 4 ;当
显色体系加入CTMAB 后,显色剂的最大吸收峰为550 nm ,而锌与显色剂DBON-PF
形成的络合物最大吸收峰仍为595 nm ,ε=6 1 87 ×10 4 ,吸光度明显增加,大大提
高了灵敏度。
1 DBON - PF(水参比) ;2 DBON 2-PF + CTMAB(相应试剂 空白参比) ;3 DBON 2-PF + Zn C (相应试剂空白参比) ;
4 DBON 2-PF + Zn C + CTMAB(相应试剂空白参比)。
返回
测定废水中的铬(Ⅵ)
❖ 原理:室温下铬(Ⅵ)与苯基荧光酮在HCl-H3PO4混合酸 介质中可被氧化显色,黄色的苯基荧光酮可被氧化成橙红 色产物。
以蒸馏水作参比,测定各混合液的 0.3
吸光度
0.2
A
0.1
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
cL/(cM+cL)X Axis Title
测定配合物的分裂能
❖ 实验原理
E p h hC / 107
❖ 当1mol电子跃迁时有:
Ti
H
2O
-1.5 pH
0
0
1
2
3
4
5
6
7
分光光度法在环境分析中的应用
❖
分光光度法
生成络合物
氧化还原反应
置换反应
待测物质作为催化剂
树脂交换富集法
氧化剂
还原剂
正催化
负催化
End
4 ,5 二溴邻硝基苯基荧光酮与锌Ⅱ的显色发应
❖ 原理:在CTMAB 存在下,研究了4 ,5 二溴邻硝基苯基5荧95光nm酮(DBON 2 PF)与锌Ⅱ 的显色反应。在p H 8 1 0 的氨性缓冲溶液中,锌Ⅱ与D-BON- PF 形成1∶2 的红色 络合物
紫外可见分光光度法的应用
04091018
盛凯旋
仪器 可见分光光度计
配合物组成的测定
磺基水杨酸合铜配合物组成的测定 0.7
实验原理:等莫尔连续变化法
0.6
配置一定体积比的溶液测定其吸光度,
吸光度最大处对应为配合物的组成 0.5
比。 0.4
吸光度的测量:在波长440nm条件下,
Y Axis Title
6
3
Cr
H
2O
6
3
Cr
EDTA
B
C
0.50
D
0.45
NAhC 107 (cm1gmol1)
0.40
A 0.35
0.30
Y Axis Title
0.25
0.20
0.15
0.10
0.05
0.00
-0.05 350 400 450 500 550 600 650 700 750 800
λ/nm X Axis Title
❖ 条件:该络合物的最大吸收波长为595 nm ,其表观摩尔吸光系数为6 1 87 ×10 4 , 有色络合物稳定24 h 以上;25 mL 溶液中,锌质量在0 ~10 μg 范围内符合比尔定律, 选用和加入不同量的阳离子表面活性剂CTMAB 增敏,提高了方法的灵敏度和有色 络合物稳定性
❖ 分析:当无阳离子表面活性剂CTMAB 存在时,显色剂DBON - PF 的最大吸收峰为
❖ 条件:有色络合物在波长510bnm处有最大吸收 ❖ 缓冲溶液pH=4.0 ❖ Fe(Ⅲ):缓冲溶液:1,10 :二氮菲混合液为显色剂=1:5:4 ❖ 显色剂用量2.0~12.0mL,过量光度值上升 ❖ 干扰分析:阳离子 Cu2 , Pb2 , Zn2 等对亚硫酸盐的测定产生负影响,加
入量越大其影响越大。
n cR/cM
测定酸碱指示剂(甲基橙)离解常数
步骤:吸光数据的测定,找出HIn和 In_的最大吸收波长
Aa
In a
In
HIn
a
HIn
甲基橙共轭酸碱吸收曲线的 制作
In a
c
Ka H Ka
HIn a
c
H
H Ka
离解常数的计算 酸碱分布曲线的制作
pH
pKa
1,
c
[
HIn],
A' a
➢ 线性响应范围为1~14mg/L
返回
废水中甲醛的测定
❖ 原理:在室温酸性条件下,甲醛对溴酸钾氧化乙基橙的反应具有显著的 催化作用,该催化反应具有一定的诱导期。甲醛浓度在0.10~1.5mg/L 范围内与1/t呈良好的线性关系。
❖ 条件:最大吸收波长508nm
❖ 硫酸用量的影响,2.0mol/L 1.0mL,A最大。
邻二氮菲吸光光度法测定Fe
➢ 原理:Fe2 3Phen [Fe(Phen)3 ]2 (桔红色)曲线
显色时间
绘制A-t曲线
最大吸收波长510nm
➢ 标准曲线的制作 A-C曲线
A
➢ 试样样测定
➢ 以制作的标准曲线确定测物质的浓度C
➢ 配合物组成的测定