(完整版)高中数学选修4-4单元测试题-极坐标与参数方程.docx
高二年数学选修4-4坐标系与参数方程测试(附答案)

高二年数学选修4-4坐标系与参数方程测试班级:__________________ 座号:______ 姓名:___________________成绩:___________ 一、选择题(共12题,每题5分)1、点M的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 2、极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是 ( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ) 3.已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程是 ( )A .ρ=1B .ρ=cosθC .ρ=-θcos 1D .ρ=θcos 14.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 ( )A .ρ=2cos(θ-4π) B .ρ=2sin(θ-4π) C .ρ=2cos(θ-1) D .ρ=2sin(θ-1) 5.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 6.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 7.在极坐标系中,以(2,2πa )为圆心,2a为半径的圆的方程为( )A .θρcos a =B .θρsin a =C .a =θρcosD .a =θρsin8.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A .线段 B .双曲线的一支 C.圆 D.射线 9、在同一坐标系中,将曲线y=2sin3x 变为曲线y=sinx 的伸缩变换是( )A .⎪⎩⎪⎨⎧==//213y y x xB .⎪⎩⎪⎨⎧==y y xx 213//C .⎩⎨⎧==//23y y x xD .⎩⎨⎧==y y x x 23// 10.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .11、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心12、设P(x ,y)是曲线C :⎩⎨⎧θ=θ+-=sin y ,cos 2x (θ为参数,0≤θ<2π)上任意一点,则yx的取值范围是 ( )A .[-3,3]B .(-∞,3)∪[3,+∞]C .[-33,33]D .(-∞,33)∪[33,+∞]二、填空题(共8题,各5分)1、点A 的直角坐标为(1,1,1),则它的球坐标为 ,柱坐标为2、曲线的1cos 3sin --=θθρ直角坐标方程为____________________3、直线3()14x att y t=+⎧⎨=-+⎩为参数过定点_____________4、设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。
高中数学选修44极坐标与参数方程试题

高中数学选修44极坐标与参数方程试题————————————————————————————————作者:————————————————————————————————日期:高中数学选修4-4综合试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则||PF 等于( ). A .2 B .3 C .4 D .53.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点M 的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5π B 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫ ⎝⎛3,2πB 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2π D 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( ) A.-6 B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.点(1,2)在圆18cos 8sin x y θθ=-+⎧⎨=⎩的( ).A .内部B .外部C .圆上D .与θ的值有关12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
(完整版)选修4-4坐标系与参数方程-高考题及答案

x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。
(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

一、选择题1.(理)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0()R θρ=∈ 和cos 2ρθ= B .()2R πθρ=∈和cos 2ρθ=C .()2R πθρ=∈和cos 1ρθ= D .0()R θρ=∈和cos 1ρθ=2.已知曲线C 的极坐标方程为222123cos 4sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( )A .直线B .椭圆C .圆D .双曲线3.已知圆C 与直线l 的极坐标方程分别为6cos ρθ=,sin 4πρθ⎛⎫+= ⎪⎝⎭C 到直线l 的距离是( ) A .1B .2CD.24.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称5.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .136.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1BC .2D.7.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .68.将2216x y +=的横坐标压缩为原来的12,纵坐标伸长为原来的2倍,则曲线的方程变为( )A .22134x y +=B .22213x y +=C .222112x y +=D .222134x y +=9.已知曲线C 与曲线5ρ=3cos?5sin?θθ-关于极轴对称,则曲线C 的方程为( )A .10cos ρ=-π-6θ⎛⎫ ⎪⎝⎭ B .10cos ρ=π-6θ⎛⎫ ⎪⎝⎭ C .10cos ρ=-π6θ⎛⎫+⎪⎝⎭D .10cos ρ=π6θ⎛⎫+⎪⎝⎭10.在直角坐标系xOy 中,曲线C 的方程为22162x y+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .1311.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( ) A . B . C . D .12.在同一平面直角坐标系中,将曲线1cos 23y x =按伸缩变换23x x y y ''=⎧⎨=⎩后为( )A .cos y x ''=B .13cos 2y x ''= C .12cos3y x ''= D .1cos32y x ''=二、填空题13.在极坐标系中,曲线C 的方程为28cos 10sin 320ρρθρθ--+=,直线l 的方程为0()R θθρ=∈,0tan 2θ=,若l 与C 交于A ,B 两点,O 为极点,则||||OA OB +=________.14.在极坐标系中,直线sin 24πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为______.15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.16.已知在平面直角坐标系xOy 中,圆C 的参数方程为:2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以Ox 为极轴建立极坐标系,直线l 30cos sin θθ-=,则圆C截直线l 所得弦长为___________. 17.两条直线sin 20164πρθ⎛⎫+= ⎪⎝⎭,sin 20174πρθ⎛⎫-= ⎪⎝⎭的位置关系是_______ 18.点C 的极坐标是(2,)4π,则点C 的直角坐标为______________ 19.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。
选修4-4极坐标与参数方程试题精选(8套)

极坐标与参数方程单元练习 1一、选择题(每小题 5 分,共25 分)1、已知点M 的极坐标为5,,下列所给出的四个坐标中能表示点M 的坐标是()。
34 2A. 5,B. 5,C. 5,D.3 3 3 5,532、直线:3x-4y-9=0 与圆:xy2cos2sin,( θ为参数) 的位置关系是( )3、在参数方程xyabttcossin(t 为参数)所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t 2 ,则线段BC的中点M对应的参数值是()4、曲线的参数方程为xy 3tt222(t 是参数) ,则曲线是()1A、线段 B 、双曲线的一支C、圆D、射线2 2=6x,则x2 25、实数x、y 满足3x +2y + y的最大值为()A、72B、4 C 、92D 、5二、填空题(每小题 5 分,共30 分)1、点2,2 的极坐标为。
2、若 A 3,,B3 4,,则|AB|=___________,S AOB ___________。
(其中O 是极点)63、极点到直线cos sin 3 的距离是________ _____。
4、极坐标方程 2sin 2 cos 0表示的曲线是_______ _____。
x 2 tan5、圆锥曲线为参数y 3 sec的准线方程是。
6、直线l过点M01,5,倾斜角是3,且与直线x y230交于M,则MM0的长为。
三、解答题(第 1 题14 分,第 2 题16 分,第 3 题15 分;共45 分)1、求圆心为 C 3,,半径为 3 的圆的极坐标方程。
62、已知直线l经过点P(1,1),倾斜角,6(1)写出直线l的参数方程。
(2)设l与圆x2y24相交与两点A、B,求点P到A、B两点的距离之积。
2y 2x3、求椭圆 19 4 上一点P10。
与定点(,)之间距离的最小值极坐标与参数方程单元练习 1 参考答案【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B二、填空题:1、 2 2,或写成472 ,。
高中数学选修4《极坐标与参数方程》

选修4--4 极坐标与参数方程一.伸缩变换.设P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0的作用下,点P (x ,y )对应点P ′(x ′,y ′),称为平面直角坐标系中的__________________,简称伸缩变换.1.点(2,3)经过伸缩变换⎩⎨⎧2x ′=x ,y ′=3y后得到点的坐标为________.2.将椭圆x 225+y 29=1按φ:⎩⎪⎨⎪⎧x ′=15x ,y ′=13y 变换后的曲线围成图形的面积为________. 3.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+y ′2=0,则曲线C 的方程为________. 二.极坐标系.1.直角坐标与极坐标的互化.以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度,平面内的任一点P 的直角坐标和极坐标分别为(x ,y )和(ρ,θ),则⎩⎨⎧x = ,y = 或⎩⎨⎧ρ2= ,tan θ= (x ≠0). (1) 已知点M 的极坐标为⎝⎛⎭⎪⎫5,π3,则它化成直角坐标为________.(2)在极坐标系中,已知A ⎝ ⎛⎭⎪⎫2,π6,B ⎝ ⎛⎭⎪⎫4,π3,则△AOB 的面积S =________.(3)已知圆C :(x +1)2+(y -3)2=1,则圆心C 的极坐标为__________(ρ>0,0≤θ<2π).三 圆的参数方程及参数方程与普通方程的互化1.圆x 2+y 2=16的参数方程为:____________. 2.圆(x -6)2+y 2=4的参数方程为:______________., 3圆(x -1)2+y 2=4上的点可以表示为( )A .(-1+cos θ,sin θ)B .(1+sin θ,cos θ)C .(-1+2cos θ,2sin θ)D .(1+2cos θ,2sin θ) 2.3 直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为__________________,这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.1.经过点M 0(1,5),倾斜角是π3的直线l 的参数方程为:____________________________.2.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 23.曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________. 三、解答题1.曲线C 1的参数方程为x cos ,y sin =θ⎧⎨=θ⎩ (θ为参数),将曲线C 1上所有点的横坐标伸长为原来的2倍,,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.(1)求曲线C2和直线l的普通方程.(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.2. 已知在直角坐标系xOy中,曲线C的参数方程为x14cos,y24sin=+θ⎧⎨=+θ⎩(θ为参数),直线l经过定点P(3,5),倾斜角为3π.(1)写出直线l的参数方程和曲线C的标准方程.(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.3.在直角坐标系xOy中,直线l经过点P(-1,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的单位长度,建立极坐标系,设曲线C的极坐标方程为ρ2-6ρcosθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围.(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.4.已知圆C的极坐标方程为2cosρθ=,直线l的参数方程为1221122x ty t⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数),点A的极坐标为(,)24π,设直线与圆C 交于点P ,Q . (Ⅰ)写出圆C 的直角坐标方程; (Ⅱ)求||||⋅AP AQ 的值.5. 已知圆()()221:228C x y -+-=和直线:0l x y =. (Ⅰ)求1C 的参数方程以及圆1C 上距离直线l 最远的点P 坐标; (Ⅱ)以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,将圆1C 上除点O 以外所有点绕着O 逆时针旋转3π得到曲线2C ,求曲线2C 的极坐标方程.6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标方程为sin a ρθ=,直线l 的参数方程为32545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). (Ⅰ)若2a =,M 是直线l 与x 轴的交点,N 是圆C 上一动点,求||MN 的最大值;(Ⅱ)若直线l 被圆C 截得的弦长等于圆C倍,求a 的值.。
(完整版)高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系中,直线的参数方程为为参数),以原点xOy l 12,(2x t t y t =+⎧⎨=-⎩为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。
曲线O x 的极坐标方程为 .C 22cos 4sin 40ρρθρθ+++=(1)求的普通方程和的直角坐标方程;l C (2)已知点是曲线上任一点,求点到直线距离的最大值.M C M l 2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长O x 度单位相同。
直线的极坐标方程为:,点,参数l ρ=102sin (θ‒π4)P (2cosα,2sinα+2).α∈[0,2π](I )求点轨迹的直角坐标方程;P (Ⅱ)求点到直线距离的最大值.P l1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-=因为,222,cos ,sin x y x y ρρθρθ=+==所以,即222440x y x y ++++=22(1)(2)1x y +++=(2)因为圆心到直线,(1,2)--10x y +-==所以点到直线距离的最大值为M l 1.r +=+2、解:(Ⅰ)设,则,且参数,P (x ,y ){x =2cosαy =2sinα+2 α∈[0,2π]消参得:x 2+(y ‒2)2=4所以点的轨迹方程为P x 2+(y ‒2)2=4(Ⅱ)因为ρ=102sin (θ‒π4)所以ρ2sin (θ‒π4)=10所以,ρsinθ‒ρcosθ=10所以直线的直角坐标方程为l x ‒y +10=0法一:由(Ⅰ)点的轨迹方程为P x 2+(y ‒2)2=4圆心为(0,2),半径为2.,d =|1×0‒1×2+10|12+12=42点到直线距离的最大值等于圆心到直线距离与圆的半径之和,P l l 所以点到直线距离的最大值.P l 42+2法二:d =|2cosα‒2sinα‒2+10|12+12=2|cosα‒sinα+4|=2|2cos (α+π4)+4|当时,,即点到直线距离的最大值为.a =74πd max =42+2P l 42+26.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲C 1{x =cosθy =3sinθθ线的参数方程为(,t 为参数).C 2{x =4‒22ty =4+22tt ∈R(1)求曲线的普通方程和曲线的极坐标方程;C 1C 2(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.C 1C 24.在直角坐标系中曲线的参数方程为(为参数,以坐标原xOy 1C cos x y αα=⎧⎪⎨=⎪⎩α点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为x 2C .sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出的普通方程和的直角坐标方程;1C 2C (2)设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C ||PQ P3、【详解】(1)对曲线:,,C 1cos 2θ=x 2sin 2θ=y 23∴曲线的普通方程为.C 1x 2+y 23=1对曲线消去参数可得且C 2t t =(4‒x )×2,t =(y ‒4)×2,∴曲线的直角坐标方程为. C 2x +y ‒8=0又,∵x =ρcosθ,y =ρsinθ∴ρcosθ+ρsinθ‒8=2ρsin (θ+π4)‒8=0从而曲线的极坐标方程为。
极坐标及参数方程

坐标系与参数方程1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标 系中取一样的长度单位.如图,设M 是平面内的任意一点,它的直 角坐标、极坐标分别为(x ,y )和(ρ,θ),那么⎩⎨⎧ x =ρcos θy =ρsin θ,⎩⎨⎧ρ2=x 2+y 2tan θ=yxx ≠0.2.直线的极坐标方程假设直线过点M (ρ0,θ0),且极轴到此直线的角为α,那么它的方程为ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=α;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ; (3)直线过点M (b ,π2)且平行于极轴:ρsin θ=b .3.圆的极坐标方程假设圆心为M (ρ0,θ0),半径为r 的圆的方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程 (1)圆心位于极点,半径为r :ρ=r ; (2)圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)圆心位于M (r ,π2),半径为r :ρ=2r sin θ.4.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数).(2)抛物线y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt .真题感悟1.(2021·)曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,那么曲线C 的参数方程为________. 2.(2021·)设曲线C 的参数方程为⎩⎨⎧x =t y =t2(t 为参数),假设以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,那么曲线C 的极坐标方程为________.3.(2021·)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎨⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取一样的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin (θ+π4)=22m (m 为非零常数)与ρ=b .假设直线l 经过椭圆C 的焦点,且与圆O 相切,那么椭圆C 的离心率为________.4.(2021·)在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,那么AB 的最小值为________.5.(2021·)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎨⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,那么a =________.6.[2021·XX 卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,那么曲线C 1与C 2交点的直角坐标为________.7.[2021·XX 卷] 在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.8. [2021·XX 卷]C.(坐标系与参数方程选做题)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.题型与方法题型一 极坐标与直角坐标、参数方程与普通方程的互化例1 直线l 的参数方程:⎩⎨⎧x =t ,y =1+2t(t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4 (θ为参数).(1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.变式训练1 直线l 的参数方程是⎩⎨⎧x =2t ,y =4t +a(t 为参数),圆C 的极坐标方程为ρ=4 2cos ⎝ ⎛⎭⎪⎫θ+π4. (1)将圆C 的极坐标方程化为直角坐标方程;(2)假设圆上有且仅有三个点到直线l 的距离为2,XX 数a 的值.题型二 曲线的极坐标方程例2 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程.变式训练2 (2021·)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程.题型三 曲线的参数方程及应用例3 (2021·)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数). (1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.变式训练3直线l 的参数方程是⎩⎪⎨⎪⎧x =22ty =22t +42(t 是参数),圆C 的极坐标方程为ρ=2cos(θ+π4).(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.典例 (10分)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,点M 的极坐标为⎝ ⎛⎭⎪⎫42,π4,曲线C 的参数方程为⎩⎨⎧x =1+2cos α,y =2sin α(α为参数).(1)求直线OM 的直角坐标方程;(2)求点M 到曲线C 上的点的距离的最小值. 规X 解答1.圆C 的参数方程为⎩⎨⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,那么直线l 与圆C 的交点的直角坐标为________________.2.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos α,y =1+sin α(α为参数).在极坐标系(与直角坐标系xOy 取一样的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,那么C 1与C 2的交点个数为________.3.点P (x ,y )在曲线⎩⎨⎧x =-2+cos θy =sin θ(θ为参数,θ∈R )上,那么yx 的取值X 围是________.4.假设直线l 1:⎩⎨⎧x =1-2t ,y =2+kt(t 为参数)与直线l 2:⎩⎨⎧x =s ,y =1-2s(s 为参数)垂直,那么k =______.6.(2021·)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.专题限时规X 训练一、填空题1.曲线C :⎩⎨⎧x =-2+2cos αy =2sin α(α为参数),假设以点O (0,0)为极点,x 轴正半轴为极轴建立极坐标系,那么该曲线的极坐标方程是________.2.两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎨⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.3.曲线C 的参数方程是⎩⎨⎧x =a cos φy =3sin φ(φ为参数,a >0),直线l 的参数方程是⎩⎨⎧x =3+t y =-1-t(t 为参数),曲线C 与直线l 有一个公共点在x 轴上,那么曲线C 的普通方程为________.4.(2021·)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.假设极坐标方程为ρcos θ=4的直线与曲线⎩⎨⎧x =t 2,y =t3(t 为参数)相交于A ,B 两点,那么AB=________.二、解答题5.设直线l 1的参数方程为⎩⎨⎧x =1+t ,y =1+3t(t 为参数),直线l 2的方程为y =3x +4,求l 1与l 2间的距离.6.在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎨⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.7.(2021·)在极坐标系中,圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.8.直线的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,圆M 的参数方程⎩⎨⎧x =2cos θ,y =-2+2sin θ(其中θ为参数),极点在直角坐标原点,极轴与x 轴正半轴重合. (1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值.9.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C :ρsin 2θ=2a cosθ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t ,直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 和直线l 的普通方程;(2)假设PM ,MN ,PN 成等比数列,求a 的值.10.(2021·)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.2021、2021年全国高考理科数学试题分类汇编:坐标系与参数方程一、选择题1 .〔2021年普通高等学校招生统一考试XX 数学〔理〕试题〔纯WORD 版〕〕在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为〔 〕A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和二、填空题2 .〔2021年普通高等学校招生统一考试XX 数学〔理〕试题〔含答案〕〕圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 那么|CP | = ______.3 .〔2021年高考XX 卷〔理〕〕在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________4 .〔2021年高考卷〔理〕〕在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.5 .〔2021年普通高等学校招生统一考试XX 数学〔理〕试题〔含答案〕〕在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.假设极坐标方程为cos 4ρθ=的直线与曲线23x ty t ⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,那么______AB = 6 .〔2021年普通高等学校招生统一考试XX 省数学〔理〕卷〔纯WORD 版〕〕(坐标系与参数方程选讲选做题)曲线C的参数方程为x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,那么的极坐标方程为_____________.7 .〔2021年高考XX 卷〔理〕〕C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 那么圆220y x x +-=的参数方程为______ .x8 .〔2021年高考XX 卷〔理〕〕(坐标系与参数方程选做题)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(为参数),假设以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,那么曲线c的极坐标方程为__________9 .〔2021年高考XX 卷〔理〕〕在平面直角坐标系xoy 中,假设,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,那么常数a 的值为________.10.〔2021年高考XX 卷〔理〕〕在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取一样的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线与圆O 的极坐标方程分别为sin 4πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.假设直线经过椭圆C 的焦点,且与圆O 相切,那么椭圆C 的离心率为___________.三、解答题11.〔2021年普通高等学校招生统一考试新课标Ⅱ卷数学〔理〕〔纯WORD 版含答案〕〕选修4—4;坐标系与参数方程动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.12.〔2021年普通高等学校招生统一考试XX 数学〔理〕试题〔WORD 版〕〕选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.直线PQ 的参数方程为 ()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.13.〔2021年普通高等学校招生统一考试XX 数学〔理〕试题〔纯WORD 版〕〕坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.点A 的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上. (1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.14.〔2021年普通高等学校招生全国统一招生考试XX 卷〔数学〕〔已校对纯WORD 版含附加题〕〕C.[选修4-4:坐标系与参数方程]本小题总分值10分.在平面直角坐标系xoy 中,直线的参数方程为⎩⎨⎧=+=t y t x 21 (为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线与曲线C 的普通方程,并求出它们的公共点的坐标.〔2021年高考新课标1〔理〕〕选修4—4:坐标系与参数方程 曲线C 1的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).[2021·XX 卷] 选修44:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.[2021·新课标全国卷Ⅱ] 选修44:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.[2021·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修 4-4
单元测试题 -- 极坐标与参数方程
班级 :
姓名 :
座号 :
评分 :
一 . 选择题 :( 每小题 5 分,共 40 分 )
1. 已知点 M 的极坐标为 (5,
) ,下列所给出的四个坐标中能表示点 M 的坐标是
( )
3
4
2
5
A.
(5, 3 ) B. (5, )
C. (5,
) D.
(5, )
3
3
3
2. 直线: 3x-4y-9=0 与圆:
x
2 cos
,( θ 为参数 ) 的位置关系是 ( )
y 2 sin
A. 相切
B.
相离
C.
直线过圆心
D.
相交但直线不过圆心
3. 在极坐标系中,点
P( , ) 关于极轴对称的点的一个坐标是
( )
A.
( , )
B.
( , )
C.
( , )
D.
( , )
4. 极坐标方程 4 sin
2
5 表示的曲线是
(
)
2
A. 圆
B.
椭圆 C. 双曲线的一支圆 D. 抛物线
5. 实数 x 、y 满足 3x 2+2y 2=6x ,则 x 2+ y 2 的最大值为
( )
A.3.5
B.4
C.4.5
D.5
6. 直线 x 3 t sin 200 (t 为参数 ) 的倾斜角是
( )
y 1 t cos200
A.20 0
B.70
C.110
D.160
7. 曲线 x 5 cos (
为参数 ) 的焦距是
( )
y 4 sin
A.3
B.6
C.10
D.8
x
8t
8. 当 t
R 时,参数方程
t 2
( t 为参数),表示的图形是
( )
4
4 t 2
y
t 2
4
A. 双曲线
B.椭圆
C.抛物线
D.圆
二 . 填空题 :( 每小题 5分,共 30分 )
9. 点 (2,-2)的极坐标为 :_____________.
10.若A
(3,) ,B (4,) ,则|AB|=___________,S
AOB_____________. (其中 O是极点)34
11.极点到直线cos sin3的距离是 :____________ .
12.x12t(t为参数)与曲线 (y-2)22到弦 AB的距离
-x=1 相交于 A,B 两点 , 则点 M(-1,2)
y 3 4t
是:_____________ , 线段 AB 的中点坐标是 : _______ _____.
13.圆锥曲线x
4sec的准线方程是 :_______. y
为参数
3 tan
14.直线 l 过点M0(1,5) ,倾斜角是,且与直线 x y 2 3 0 交于M,则MM0的长为: __ _.
3
三 . 解答题 :
15.(12分)求圆心为C(3,) ,半径为3的圆的极坐标方程.
6
16.(14分)已知直线l 经过点 P(1,1),倾斜角,(1)写出直线l 的参数方程 .
6
(2) 设 l 与圆x2y 2 4 相交与两点A、 B, 求点 P 到 A、 B 两点的距离之积.
17.(13 分) 参数方程x2cos
,[0,2 ), 判断点 A(1, 3 )和B(2,1)是否在方程的曲线上 . y2sin
18.(14 (1)分 ) 将下列方程化为普通方程:
e t t
x cos sin
e
(为参数 ) (2)
x
(t 为参数 ) 222
1e t t
y sin )
e
(1y
22
19.(13分)设O是直径为 a 的圆上的一点 , 过 0 点任意作直线交圆于眯P, 在射线 OP上取一点 M,
使 MP a ,当点P在圆上移运一周时, 求相应的点M的轨迹方程 .
20.(14分 ) 椭圆x
2
y 21( a b 0) 与x轴正半轴交于点A, 若这个椭圆上存在点P, 使a2b2
OP AP (O为原点),求椭圆的离心率e的取值范围.
高中数学选修4-4 单元测试题 -- 极坐标与参数方程参考答案
1.D
2.D
3.B
4.D
5.B
6.C
7.B
8.B
9.2或写成2710.5, 611.36
,,d
4422
12. 4 5, (4,11
)13.y1614.10 6 3
3335
15. 如下图,设圆上任一点为P(,),则OP ,
POA
,
OA 2 3 6
6
Rt OAP 中, OP
OA cos POA
6cos
2 ) A (0, ) 符合
而点 O(0,
6
3
6
P
A
C
O
x
16. 解: (1) 直线的参数方程是
x
1
3
t,
2 (t 是参数)
1
t;
y
1
2
(2) 因为点 A,B 都在直线 l 上,所以可设它们对应的参数为 t 1 和 t 2, 则点 A,B 的坐标分别为
A(1
3
t 1 ,1
1
t 1 ), B(1
3
t 2 ,1
1
t 2 )
2 2
2 2
以直线 L 的参数方程代入圆的方程 x 2
y 2 4 整理得到 t 2
( 3 1)t 2 0
①
因为 t 1 和 t 2 是方程①的解,从而
t 1t 2=- 2 所以 |PA| · |PB|= |t 1t 2|
= | -2| = 2
17. 解:把 A 、 B 两点坐标分别代入方程得
1 2 cos 2 2cos
3 (1) ,
(2) ,在 [0,2)
2 sin
1 2sin
内,方程组 (1) 的解是
,而方程组 (2) 无解,故 A 点在方程的曲线上,而 B 点不在方
3
程的曲线上 .
18. 解 :(1)
做 x 2
2
+sin
2
+sin ) - (1+sin ) = 0
2 y
= (cos
2
2
x
2
2 y
= 0,但由于 x
2 sin(
) ,即 0≤ x ≤ 2 .
4
∴参数方程只表示抛物线的一部分,即
x 2
2y ( ≤ x ≤
2 )
(2) 解方程组得 x y e t ① ;
x y
e t ② ①×②得 x 2 y 2 = 1
从 x
e t
e t 知 x ≥ 1(提示应用均值定理)
所求的普通方程为 x 2 y 2 = 1 ( x ≥ 1)
2
19. 以 O 为极点 , 水平向右的直线为极轴建立极坐标系
, 则圆的方程为 a cos . 设点案
M ( , ), P( 1 , 1 ), 则
1 , 所以
OP MP
a cos a , 所以点 M 的轨迹方程
是 :
a a cos
20. ( 2
,1)
2。