运筹学习题集(第七章)

合集下载

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

运筹学与最优化方法习题集

运筹学与最优化方法习题集

一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。

运筹学第五、六、七、八章答案

运筹学第五、六、七、八章答案

运筹学第五、六、七、八章答案5.2 用元素差额法直接给出表5-53及表5-54下列两个运输问题的近似最优解.表5-53 B1 B2 B3 B4 B5 Ai A1 19 16 10 21 9 18 A2 14 13 5 24 7 30 A3 25 30 20 11 23 10 A4 7 8 6 10 4 42 Bj 15 25 35 20 5 表5-54 B1 B2 B3 B4 Ai A1 5 3 8 6 16 A2 10 7 12 15 24 A3 17 4 8 9 30 Bj 20 25 10 15 【解】表5-53。

Z=824 表5-54 Z=495 5.3 求表5-55及表5-56所示运输问题的最优方案.(1)用闭回路法求检验数(表5-55)表5-55 B1 B2 B3 B4 Ai A1 10 5 2 3 70 A2 4 3 1 2 80 A3 5 6 4 4 30 bj 60 60 40 20 (2)用位势法求检验数(表5-56)表5-56 B1 B2 B3 B4 Ai A1 9 15 4 8 10 A2 3 1 7 6 30 A3 2 10 13 4 20 A4 4 5 8 3 43 bj 20 15 50 15 【解】(1) (2) 5.4 求下列运输问题的最优解(1)C1目标函数求最小值;(2)C2目标函数求最大值 15 45 20 40 60 30 50 40 (3)目标函数最小值,B1的需求为30≤b1≤50, B2的需求为40,B3的需求为20≤b3≤60,A1不可达A4 ,B4的需求为30.【解】(1)(2)(3)先化为平衡表 B11 B12 B2 B31 B32 B4 ai A1 4 4 9 7 7 M 70 A2 6 6 5 3 3 2 20 A3 8 8 5 9 9 10 50 A4 M 0 M M 0 M 40 bj 30 20 40 20 40 30 180 最优解: 5.5(1)建立数学模型设xij(I=1,2,3;j=1,2)为甲、乙、丙三种型号的客车每天发往B1,B2两城市的台班数,则 (2)写平衡运价表将第一、二等式两边同除以40,加入松驰变量x13,x23和x33将不等式化为等式,则平衡表为: B1 B2 B3 ai 甲乙丙 80 60 50 65 50 40 0 0 0 5 10 15 bj 10 15 5 为了平衡表简单,故表中运价没有乘以40,最优解不变(3)最优调度方案:即甲第天发5辆车到B1城市,乙每天发5辆车到B1城市,5辆车到B2城市,丙每天发10辆车到B2城市,多余5辆,最大收入为 Z=40(5×80+5×60+5×50+10×40)=54000(元) 5.6(1)设xij为第i月生产的产品第j月交货的台数,则此生产计划问题的数学模型为(2)化为运输问题后运价表(即生产费用加上存储费用)如下,其中第5列是虚设销地费用为零,需求量为30。

《运筹学》 第七章决策分析习题及 答案

《运筹学》 第七章决策分析习题及 答案

《运筹学》第七章决策分析习题1. 思考题(1)简述决策的分类及决策的程序; (2)试述构成一个决策问题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区别。

不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,损失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区别;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。

指出它们之间的区别与联系; (6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分别表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态? 2. 判断下列说法是否正确(1)不管决策问题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钱的损失都不敏感; (3)3. 考虑下面的利润矩阵(表中数字矩阵为利润)准则(3)折衷准则(取λ=0.5)(4)后悔值准则。

4. 某种子商店希望订购一批种子。

据已往经验,种子的销售量可能为500,1000,1500或2000公斤。

假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。

要求:(1)建立损益矩阵;(2)分别用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。

5. 根据已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不知道。

如果一个面包当天卖不掉,则可在当天结束时每个0.5元处理掉。

新鲜面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求 (1)建立面包进货问题的损益矩阵;(2)分别用处理不确定型决策问题的各种方法确定进货量。

6.有一个食品店经销各种食品,其中有一种食品进货价为每个3元,出售价是每个4元,如果这种食品当天卖不掉,每个就要损失0.8元,根据已往销售情况,这种食品每天销售1000,2000,3000个的概率分别为0.3,0.5和0.2,用期望值准则给出商店每天进货的最优策略。

(完整版)《运筹学》习题集

(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

(完整版)运筹学习题集

(完整版)运筹学习题集
表3-3
销地
产地
1
2
3
产量
1
5
1
8
12
2
2
4
1
14
3
3
6
7
4
销量
9
10
11
表3-4
销地
产地
1
2
3
4
5
产量
1
10
2
3
15
9
25
2
5
20
15
2
4
30
3
15
5
14
7
15
20
4
20
15
13
M
8
30
销量
20
20
30
10
25
解:
(1)在表3-3中分别计算出各行和各列的次最小运费和最小运费的差额,填入该表的最右列和最下列。得到:
+ = + +
+ =
建立数学模型:
Max z=(1.25-0.25)*( + )+(2-0.35)*( + )+(2.8-0.5) -(5 +10 )300/6000-(7 +9 +12 )321/10000-(6 +8 )250/4000-(4 +11 )783/7000-7 *200/4000
s.t
2.确定 的范围,使最优解不变;取 ,求最优解;
3.确定 的范围,使最优基不变,取 求最优解;
4.引入 求最优解;
解1.由单纯形方法得
即,原问题的最优解为
例求下面运输问题的最小值解:
1

运筹学习题答案第七章共29页PPT资料

运筹学习题答案第七章共29页PPT资料
运筹学教程(第二版) 习题解答
安徽大学管理学院
电话:5108157(H),5107443(O) E-mail: Hongwen9509_cnsina
洪文
运筹学教程
第七章习题解答
7.1 现有天然气站A,需铺设管道到用气单位E,
可中以间选加择压的站设 ,计各路线线路如的下费图用所已示标,在线Bl,段…旁,(单D位2各:点万是 元),试设计费用低的路线。
-
-
1
64
2
0 64 68 -
-
2
68
3
0 64 68 78 -
3
78
4
0 64 68 78 76 3
78
page 9 5/5/2020
School of Management
运筹学教程
第七章习题解答
状态(可能的 投资数)
0 1 2 3 4
工厂2 决策(分配资金)
01234
0
-
-
-
-
64 42 -
7.5 为保证某设备正常运转,需对串联工作的三
种不同零件Al,A2,A3,分别确定备件数量。若增加 备用零件的数量,可提高设备正常运转的可靠性,但
费用要增加,而总投资额为8千元。已知备用零件数与
它的可靠性和费用关系如表7-2l所示,求Al,A2,A3的 备用零件数量各为多少时,可使设备运转的可靠性最
运行模型后,1月生产5,2月生产6,最小费用为67。
page 7 5/5/2020
School of Management
运筹学教程
第七章习题解答
7.4 某公司有资金4万元,可向A,B,C三个项目 投资,已知各项目不同投资额的相应效益值如表7-20 所示,问如何分配资金可使总效益最大。

《管理运筹学》习题7解答

《管理运筹学》习题7解答

《管理运筹学》习题7解答1.某修理店只有一个修理工人,来修理的顾客到达次数服从泊松(普阿松)分布,平均每小时4人,修理时间服从负指数分布,平均需6min。

求:(1)请画出各状态间概率强度的转移图,并写出状态概率的稳定方程。

(2)修理店至少有一个顾客的概率。

(3)店内有3个顾客的概率。

(4)在店内顾客的平均数和平均逗留时间。

若工人在修理店每逗留1小时平均丧失工作收入100元,修理服务费用正比于其服务率为每小时4元。

假定顾客到达率不变,为使得店铺和顾客的总损耗费用最低,求该店的最优服务率和平均最低费用。

(5)平均等待修理(服务)时间。

(6)必须在店内消耗15min以上的概率。

(7)假设若店内已有3个顾客,那么后来的顾客即不再排队。

这时排队系统的模型类型是什么?并求店内空闲的概率、在店内平均的顾客数、在店内平均逗留时间。

(8)若顾客平均到达率增加到每小时12人,仍为泊松流,平均修理时间不变。

是否需要增加工人?求修理工为2人时店内有两个或更多顾客的概率。

注:以上各问是无关联的。

解:λ=4人/小时,μ=60/6=10人/小时,ρ=λ/μ=0.4。

(1)此系统为M/M/1排队模型。

各状态间概率强度的转移图如下:状态概率的稳定方程,如下:-4P0+10P1=04P n-1+10P n+1-14P n=0(n≥1)(2)修理店至少有一个顾客的概率等于1-P0;∵P0=1-ρ=1-0.4=0.6 ∴1-P0=1-0.6=0.4(3)P3=ρ3(1-ρ)=0.43(1-0.4)=0.0384(4)店内顾客的平均数L s=λ/(μ-λ)=4/(10-4)=2/3(人);一个顾客的平均逗留时间:W s=L s/λ=2/3÷4=1/6(小时)=10(分钟);系统单位时间总耗费T(μ)=100L sw+4μ=100·4/(μ-4)+4μ令dT(μ)/dμ=-400/(μ-4)2+4=0解得μ*=14(人/小时);此时,系统每小时平均总耗费最低,为T*(μ)=100·4/(14-4)+4×4=56(元/小时)(5)平均等待修理(服务)时间W q=W s-1/μ=1/6-1/10=1/15(小时)=4(分钟)(6)15分钟即1/4小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断题
判断正误,如果错误请更正
第七章网络计划
1.网络计划中的总工期等于各工序时间之和。

2.在网络计划中,总时差为0的工序称为关键工序。

3.在网络图中,只能有一个始点和终点。

4.在网络图中,允许工序有相同的开始和结束事件。

5.在网络图中,从始点开始一定存在到终点的有向路。

6.在网络图中,关键路线一定存在。

7.PERT是针对随机工序时间的一种网络计划编制方法,注重计划的评价和
审查。

8.事件i的最迟时间等于以i为开工事件工序的最迟必须开工时间的最小
值。

9.紧前工序是前道工序。

10.后续工序是紧后工序。

11.箭示网络图是用节点表示工序。

12.事件j的最早时间等于以j为结束事件工序的最早可能结束时间的最大
值。

13.虚工序是虚设的,不需要时间、耗费和资源,并不表示任何关系的工序。

14.若将网络中的工序时间看作距离,则关键路线就是网络起点到终点的最长
路线。

15.(i,j)是关键工序,则有TES(i,j)=TLS(i,j)。

16.网络计划中有TEF(i,j)=TE(i)+t(i,j)。

17.工序的总时差R(i,j) =tLF(i,j)+tLS(i,j)-t(i,j)。

18.工序(i,j)的最迟必须结束时间TLF(i,j)= TL(i)+t(i,j)。

19.工序时间是随机的,期望值等于3种时间的算术平均值。

选择题
在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第七章网络计划
1.事件j的最早时间T E(j)是指 A 以事件j为开工事件的工序最早可能开工时间
B 以事件j为完工事件的工序最早可能结束时间
C 以事件j为开工事件的工序最迟必须开工时间
D 以事件j为完工事件的工序最迟必须结束时间
2.时间i的最迟时间T L(i)是指 A以事件i为开工事件的工序最早可能开工时间以事件i为完工事件的工序最早可能结束时间C 以事件i为开工事件的工序最迟必须开工时间 D 以事件i为完工事件的工序最迟必须结束时间
3.工序(i,j)的最迟必须结束时间T LF(i,j)等于 A T E(i)+t(i,j) B T L (j)C T L(j)-t ij D min{T L(j)-t ij}
4.工序(i,j )的最早开工时间T ES(i,j)等于 A T E(i) B maxT E(k)+t ki
C T L(i)
D min{T L(j)-t ij}
E T EF(i,j)-t ij
5.工序(i,j)的总时差R(i,j)等于 A T EF(i,j)- T ES(i,j) B T LF(i,j)- T EF(i,j) C T LS(i,j)- T ES(i,j) D T L(j)- T E(i)- t ij E T L
(j)- T E(i)+ t ij
计算题
(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的
紧前工序。

(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序
表7-16
工序A B C D E F G
紧前工序---A C A
F、D、B、
E
紧后工序
D
,E
G E G G G

表7-17
工序A B C D E F G H I J K L M
紧前工序---B B
A
,B
B
D
,G
C,
E,F,H
D
,G
C
,E
I
J
,K,L
紧后工序F
E,
D,F,G
I
,K
H
,J
I
,K
I H
,J
I
L
M M M-
【解】(1)箭线图:
节点图:
(2)箭线图:
根据项目工序明细表7-18:
(1)画出网络图。

(2)计算工序的最早开始、最迟开始时间和总时差。

(3)找出关键路线和关键工序。

表7-18
工序A B C D E F G
紧前工序-A A
B
,C
C
D,
E
D
,E
工序时间(周)96
1
2
1
9
678
【解】(1)网络图
(2)网络参数
工序A B C D E F G
最早开始099
2
1
2
1
40
4
最迟开始0
1
5
9
2
1
3
4
41
4
总时差0600
1
3
10
(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。

表7-19给出了项目的工序明细表。

表7-19
工序A B C D E F G H I J K L M N
紧前工序---
A
,B
B
B
,C
E
D
,G
E E H
F
,J
I
,K,L
F
,J,L
工序时间(天) 857
1
2
8
1
7
1
6
8
1
4
5
1
2
3
1
5
1
2
(2)在网络图上求工序的最早开始、最迟开始时间。

(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。

(4)找出所有关键路线及对应的关键工序。

(5)求项目的完工期。

【解】(1)网络图
(2)工序最早开始、最迟开始时间
工序t T ES T EF T LS T LF总时
差S
自由时
差F
A80
891
7
9
B5050500 C7077700
D128
20172
9
9
9
(4)关键路线及对应的关键工序
关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M
(5)项目的完工期为62天。

相关文档
最新文档