【动力学中的“板块”和“传送带”模型】规律总结
专题讲座1 动力学观点分析传送带和“板块”模型

专题讲座1动力学观点分析传送带和“板块”模型考点一动力学中的传送带模型水平传送带【典例1】(多选)如图所示,水平传送带以速度v1匀速运动,通过定滑轮用不可伸长的轻绳将物体P,Q相连,t=0时P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时P离开传送带。
不计滑轮质量和摩擦,绳足够长。
物体P的速度随时间变化的图像可能是()答案:BC解析:若v2<v1,且m Q g<μm P g,则μm P g-m Q g=(m Q+m P)a1,当P加速运动至速度达到v1后,与皮带一起匀速运动,直到离开传送带(也可能在加速过程中离开传送带),故B正确;若v2<v1,且m Q g>μm P g,则P先匀减速到零,再反向加速到离开传送带(也可能在减速过程中离开传送带),加速度保持不变,图像斜率不变,若v2>v1,且m Q g<μm P g,则P先匀减速至v1,然后与传送带一起匀速运动,直到离开传送带(也可能在减速过程中离开传送带),若v2>v1,且m Q g>μm P g,满足m Q g+μm P g=(m Q+m P)a2,中途速度减至v1,以后满足m Q g-μm P g=(m Q+m P)a3,加速度减小,图像斜率绝对值变小,物体先减速到零再以相同的加速度返回直到离开传送带(也可能在减速过程中离开传送带),故C正确,A、D错误。
倾斜传送带【典例2】(易错题)如图所示,与水平面夹角θ=30°的传送带正以v= 2 m/s 的速度沿顺时针方向匀速运行,A、B两端相距l=10 m。
现每隔1 s把质量m=1 kg的工件(视为质点)轻放在传送带A端,在传送,g取10 m/s2,求:带的带动下,工件向上运动,工件与传送带间的动摩擦因数μ=√32(1)两个工件间的最小距离;(2)传送带满载时与空载时相比,电机对传送带增加的牵引力。
答案:(1)1.2 m(2)32.5 N解析:(1)对工件受力分析,根据牛顿第二定律得μmg cos θ-mg sin θ=ma工件放上传送带后的加速度大小a=μmgcosθ-mgsinθ=2.5 m/s2m=0.8 s设经过t1时间工件与传送带速度相等,则加速的时间为t1=vat1=0.8 m,再过t2=0.2 s,放下一个工件,此时该工件距前一个工件的距离最在此时间内运动的距离为x1=v2小,有x=x1+vt2代入数据解得x=1.2 m。
第3章 4 动力学问题中的“传送带”与“板—块”等问题

第4课时动力学问题中的“传送带”与“板—块”等问题读基础知识基础回顾:一、“传送带”模型1.水平传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①v 0>v 时,可能一直减速,也可能先减速再匀速②v 0<v 时,可能一直加速,也可能先加速再匀速情景3①传送带较短时,滑块一直减速达到左端②传送带较长时,滑块还要被传送带传回右端.其中v 0>v 返回时速度为v ,当v 0<v 返回时速度为v 02.倾斜传送带模型项目图示滑块可能的运动情况情景1μ≥tan θ时:①可能一直加速②可能先加速后匀速情景2μ<tan θ时先以a 1减速,共速后再以a 2减速情景3①可能一直加速②可能先加速后匀速(μ≥tan θ)③可能先以a 1加速后以a 2加速(μ<tan θ)二、“滑块—木板”模型1.模型特点滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.三、处理多过程问题时应注意的两个问题1.任何多过程的复杂物理问题都是由很多简单的小过程组成,上一过程的末是下一过程的初,对每一个过程分析后,列方程,联立求解.2.注意两个过程的连接处,加速度可能突变,但速度不会突变,速度是联系前后两个阶段的桥梁.研考纲考题要点1“传送带”模型相对位移的计算要分两种情况:①若二者同向,则Δx =|x 传-x 物|;②若二者反向,则Δx =|x 传|+|x 物|.物体沿倾斜传送带向下运动,μ<tan θ时,相对位移可能有重叠部分,要分段计算.【例1】如图所示,有一足够长的水平传送带以2m /s 的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10m 的距离所需时间为多少?(取g =10m/s 2)答案 5.2s解析物体在传送带上做匀加速直线运动过程中,加速度a =μg =5m/s 2.与传送带速度相同时,所需时间t 1=2m/s 5m/s 2=0.4s .运动的位移为x 1=12at 12=0.4m<10m ,则物体匀速运动的时间t 2=10m -0.4m 2m/s=4.8s ,故传送带将该物体传送10m 的距离所需时间为t =t 1+t 2=5.2s.【训练1】如图所示,物块M 在静止的足够长的传送带上以速度v 0匀速下滑时,传送带突然启动,方向如图中箭头所示,在此传送带的速度由零逐渐增加到2v 0后匀速运动的过程中,则以下分析正确的是()A .M 下滑的速度不变B .M 立即开始在传送带上加速,速度变为2v 0后向下匀速运动C .M 先向下匀速运动,后向下加速运动,最后沿传送带向下匀速运动D .M 受的摩擦力方向始终沿传送带向上答案C解析传送带静止时,物块匀速下滑,故mg sin θ=F f ,当传送带转动时,根据受力分析可知,物块先向下做加速运动,当速度与传送带速度相同时,物块和传送带以相同的速度匀速下滑,故C正确.要点2“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动.2.位移关系:如图3,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx =x 1-x 2=L (板长);滑块和木板反向运动时,位移之和Δx =x 2+x 1=L.3.基本思路运动状态板、块速度不相等板、块速度相等瞬间板、块共速运动处理方法隔离法假设法整体法具体步骤对滑块和木板进行隔离分析,弄清每个物体的受力情况与运动过程假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体“所需要”的摩擦力F f ;比较F f 与最大静摩擦力F fm 的关系,若F f >F fm ,则发生相对滑动将滑块和木板看成一个整体,对整体进行受力分析和运动过程分析临界条件①两者速度达到相等的瞬间,摩擦力可能发生突变②当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件原理运动学公式、牛顿运动定律、动能定理、功能关系等例2一木箱放在平板车的中部,距平板车的后端、驾驶室后端均为L =1.5m ,如图4所示处于静止状态,木箱与平板车之间的动摩擦因数为μ=0.5,现使平板车以a 1的加速度匀加速启动,速度达到v =6m /s 后接着做匀速直线运动,运动一段时间后匀减速刹车(设最大静摩擦力等于滑动摩擦力,取g =10m/s 2),求:(1)若木箱与平板车相对静止,加速度a 1大小满足什么条件?(2)若a 1=6m /s 2,当木箱与平板车的速度都达到v =6m/s 时,木箱在平板车上的位置(离驾驶室后端距离);(3)在第(2)问情况下,若在木箱速度刚达到6m/s 时平板车立即刹车到停止,则要使木箱不会撞到驾驶室,平板车刹车时的加速度大小满足什么条件?答案(1)a 1≤5m /s 2(2)2.1m (3)a ≤12m/s 2解析(1)木箱与平板车相对静止,加速度相同,当木箱受到的静摩擦力达到最大值时加速度最大,由牛顿第二定律有:F fmax =ma m =μmg得a m =5m/s 2解得a 1≤5m/s 2(2)因为a 1=6m /s 2>5m/s 2,故木箱与平板车发生相对滑动,当木箱速度达到6m/s 时,t 1=v a m =65s =1.2s 位移为x 1=v 2t 1=62×1.2m =3.6m ,平板车速度达到6m/s 所需时间为:t 2=v a 1=1s ,位移为x 2=v 2t 2+v (t 1-t 2),解得x 2=4.2m当木箱与平板车的速度都达到v =6m/s 时,木箱在平板车上离驾驶室后端距离为:s =x 2-x 1+L =4.2m -3.6m +1.5m =2.1m (3)木箱减速停止时的位移为:x 3=v 22a m =622×5m =3.6m 平板车减速到停止时的位移为:x 4=v 22a木箱不与车相碰需满足:x 3-x 4≤s解得:a ≤12m/s 2.【训练2】如图所示,一质量M =3.0kg 的足够长的木板B 放在光滑的水平面上,其上表面放置质量m =1.0kg 的小木块A ,A 、B 均处于静止状态,A 与B 间的动摩擦因数μ=0.30,且最大静摩擦力与滑动摩擦力大小相等.现给木块A 施加一随时间t 变化的水平力F =kt (k =2N /s),取g =10m/s 2.(1)若木板B 固定,则经过多少时间木块A 开始滑动?(2)若木板B 固定,求t 2=2.0s 时木块A 的加速度大小.(3)若木板B 不固定,求t 3=1.0s 时木块A 受到的摩擦力大小.答案(1)1.5s (2)1m/s 2(3)1.5N解析(1)当木板B 固定时,木块A 开始滑动瞬间,水平力F 与最大静摩擦力大小相等,则:F 1=F fm =μmg 设经过t 1时间木块A 开始滑动,则:F 1=kt 1则t 1=μmg k =0.3×1×102s =1.5s (2)t 2=2.0s 时,有F 2=kt 2=2×2N =4N由牛顿第二定律得:F 2-μmg =ma 解得a =F 2-μmg m =4-0.3×1×101m /s 2=1m/s 2(3)在t 3=1.0s 时水平外力为:F 3=kt 3=2×1N =2N因为此时外力小于最大静摩擦力,两者一定不发生相对滑动,故一起做匀加速运动,以整体为研究对象,由牛顿第二定律可得:F 3=(m +M )a ′a ′=F 3M +m =21+3m /s 2=0.5m/s 2对木块A 受力分析有:F 3-F f =ma ′则F f =F 3-ma ′=(2-1×0.5)N =1.5N.要点3数形结合分析动力学问题以图象的方式考查牛顿第二定律是一类很重要的题目,此类问题要求考生具备理解图象所给予的信息和破译图象信息的能力,图象的形式以v -t 、a -t 、F -t 图象居多,考查最多的是v -t 图象,题型既有选择题也有计算题,难度中等.(1)题型特点物理公式与物理图象的结合是中学物理的重要题型,也是近年高考的热点,特别是v -t 图象,在考题中出现率极高.对于已知图象求解相关物理量的问题,往往是从结合物理过程分析图象的横、纵轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)问题实质图象类问题的实质是力与运动的关系问题,以牛顿第二定律F =ma 为纽带,理解图象的种类,图象的轴、点、线、截距、斜率、面积所表示的意义.运用图象解决问题一般包括两个角度:①用给定图象解答问题;②根据题意作图,用图象解答问题.在实际的应用中要建立物理情景与函数、图象的相互转换关系.(3)解题关键解决这类问题的核心是分析图象,我们应特别关注v -t 图象中的斜率(加速度)和力的图线与运动的对应关系.例3(多选)如图1(a),一物块在t =0时刻滑上一固定斜面,其运动的v -t 图线如图(b)所示.若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出()A .斜面的倾角B .物块的质量C .物块与斜面间的动摩擦因数D .物块沿斜面向上滑行的最大高度解析由v -t 图象可知物块沿斜面向上滑行时的加速度大小为a =v 0t 1,根据牛顿第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1.同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知,向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为x =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高度为x sin θ=v 02t 1·v 0+v 12gt 1=v 0(v 0+v 1)4g,选项D 正确;仅根据v -t 图象无法求出物块的质量,选项B 错误.答案ACD【训练3】如图甲所示,粗糙水平面上有一个长L =1m 、质量M =3kg 的长木板,木板上表面左半部分粗糙,右半部分光滑,木板与地面间的动摩擦因数μ1=0.25.质量m =1kg 的物块(可视为质点)放置在木板的右端,物块与木板左半部分的动摩擦因数μ2=0.5.在木板右端施加如图乙所示的水平拉力F ,g 取10m/s 2.求:(1)木板刚开始运动时的加速度大小;(2)物块运动多长时间后与木板速度相同;(3)经过t =2.5s 物块运动的位移大小.答案(1)1m/s 2(2)0.5s (3)4.875m解析(1)对木板受力分析,根据牛顿第二定律可知:F 1-μ1(M +m )g =Ma解得:a =1m/s 2(2)木板在F 1作用下,经历时间1s 前进的位移为:x 1=12at 12=12×1×12m =0.5m ,恰好运动到有摩擦力位置,此时木板的速度为:v =at 1=1m/s 此后物块的加速度为:a ′=μ2mg m =5m/s 2,木板的加速度为:a ″=F 2-μ1(M +m )g -μ2mg M=3m/s 2假设经历时间t 2两者速度相同,则有:v 共=a ′t 2=v +a ″t 2解得:t 2=0.5s ,v 共=2.5m/s t 2时间内物块的位移为:12a ′t 22=0.625m t 2时间内木板的位移为:v t 2+12a ″t 22=0.875m 木板与物块的位移差为:0.875m -0.625m <L 2,物块未从木板上滑下,假设成立.(3)在0.5s 内物块前进的位移为:x 2=12a ′t 22=0.625m 达到共同速度后,假设两者以相同的加速度运动,物块运动的加速度为:a 1=F 2-μ1(M +m )g M +m=3.5m /s 2<5m/s 2故此后两者一起做匀加速运动,时间t ′=t -t 1-t 2=1s ,故有:x 3=v 共t ′+12a 1t ′2=2.5×1m +12×3.5×12m =4.25m 故物块前进的位移为:x =x 2+x 3=4.875m.要点4连接体中力的“分配协议”如图所示,一起做加速运动的物体系统,若外力F 作用于m 1上,则m 1和m 2的相互作用力F 12=m 2·F m 1+m 2,若作用于m 2上,则F 12=m 1·F m 1+m 2。
高考物理总复习 专题强化三 动力学中的“传送带”和“滑块—滑板”模型

【关键能力·分层突破】 模型一 “传送带”模型 1.模型特点 传送带在运动过程中,会涉及很多的力,是传送带模型难点的原因, 例如物体与传送带之间是否存在摩擦力,是滑动摩擦力还是静摩擦力 等;该模型还涉及物体相对地面的运动以及相对传送带的运动等;该 模型还涉及物体在传送带上运动时的能量转化等. 2.“传送带”问题解题思路
【跟进训练】 3.光滑水平面上停放着质量M=2 kg的平板小车,一个质量为m=1 kg的小滑块(视为质点)以v0=3 m/s的初速度从A端滑上小车,如图所 示.小车长l=1 m,小滑块与小车间的动摩擦因数为μ=0.4,取g=10 m/s2,从小滑块滑上小车开始计时,1 s末小滑块与小车B端的距离为 ()
香皂盒的质量为m=20 g,香皂及香皂盒的总质量为M=100 g,香皂盒与 传送带之间的动摩擦因数为μ=0.4,风洞区域的宽度为L=0.6 m,风可以 对香皂盒产生水平方向上与传送带速度垂直的恒定作用力F=0.24 N,假设 最大静摩擦力等于滑动摩擦力,香皂盒可看作质点,取重力加速度g=10 m/s2 ,试求:
A.滑块A与木板B之间的动摩擦因数为0.1 B.当F=10 N时木板B的加速度为4 m/s2 C.木板B的质量为3 kg D.滑2·山西临汾联考]某生产车间对香皂包 装进行检验,为检验香皂盒里是否有香皂,让
香皂盒在传送带上随传送带传输时(可视为匀 速),经过一段风洞区域,使空皂盒被吹离传 送带,装有香皂的盒子继续随传送带一起运动
,如图所示.已知传送带的宽度d=0.96 m,香 皂盒到达风洞区域前都位于传送带的中央.空
答案:BCD
命题分析
试题情境
属于综合性题目,以板块模型为素材创设学习探索问 题情境
牛顿第二定律的应用——板块、皮带模型

假设法
整体法
假设两物体间无相对滑动,先用
对滑块和木板进
将滑块和木板看
整体法算出一起运动的加速度,
行隔离分析,弄
成一个整体,对
再用隔离法算出其中一个物体“
具体步骤 清每个物体的受
整体进行受力分
所需要”的摩擦力Ff;比较Ff与最
体情况与运动
析和运动过程
大静摩擦力Ffm的关系,若Ff>Ffm,
过程
分析
则发生相对滑动
D.行李在传送带上的时间一定大于 L
v
D
)
类型(二)
情境
倾斜传送带问题
滑块可能的运动情况
情境1:上传
>
即 >
(1)可能一直加速 还未共速,传送带较短
(2)可能先加速后匀速
mg
情境2:下传(v0=0)
FN
mgsin + =
FN
(1)可能一直加速
类型(一) 水平传送带问题
情境
情境1:轻放
Ff =μmg=ma
a=μg
滑块可能的运动情况
(1)可能一直加速 = >
(2)可能先加速后匀速 = <
情境2:同向
Ff
Ff
(1)v0>v时,可能一直减速,也可能先减速再匀速
(2)v0<v时,可能一直加速,也可能先加速再匀速
当f=fm=μmAg时相对滑动
f
aBm=
μg
a
=
Am
f
F
第四讲 牛顿第二定律的应用--板块模型、皮带模型
一、板块模型
1.水平面光滑:
F甲=(mA+mB)am = ( + )
牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型一.“滑块—滑板”模型1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。
2. 两种位移关系①物体的位移:各个物体对地的位移,即物体的实际位移。
②相对位移:一物体相对另一的物体的位移。
两种情况。
(1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=∆相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=∆相 这是计算摩擦热的主要依据,.相滑x f Q ∆=3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。
(2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。
二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。
(3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。
相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。
(4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。
例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ∆相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f<f max . 解析:(1)B 和木板共速前,AB 加速度分别为a A 、a B ,木板加速度为a 1.经t 1木板和B 共速. 对A 向左减速,加速度大小:../5,211向右解得s m a a m g m A A A ==μ 对B 向右减速,加速度大小:.m /s 5,21==B B B B a a m g m 解得μ对木板,由于g m m m g m g B A A B )(m 211++>-μμμ,则合外力向右,向右加速运动../5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμB 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2v v x 1Bo B =+= A 的速度大小v A =v B =1m/s.(2)设B 和木板共速后相对静止,对B 和木板:./m 35,)m 22212s a a m m g m g m m B A B A =+=+++解得)((μμ向右减速运动. 对B 有,木板和A相对静止.假设正确,设再经t g,m μN 320a m f 2B 12B B <== A 全程加速度不变.对B 和木板:,222t a v v B -=对A 有:,222t a v v A +-=解得t 2=0.3s.v 2=0.5m/s.0.225m,m 409t 2v v x 22B /B ==+=0.875m.)t (t a 21)t (t v x 221A 210A =+-+= 故 1.9m.x x x L /B B A =++= 练习1. (水平面光滑的“滑块—滑板”模)如图所示,质量M =8 kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8 N .当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m =2 kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t =1.5 s 的时间,物体相对地面的位移为(g 取10 m/s 2)( )A .1 mB .2.1 mC .2.25 mD .3.1 m解析:(1)刚放上物体时,对物体:.2m/s解得a ,ma μmg 211== 对小车:,/5.0,222s m a Ma mg F ==-解得μv 0=1.5m/s.设经t 1二者等速v 1.则2m/s.1s,v 解得t ,t a v t a v 11120111==+==此时物体运动:1m.t v 21x 111==故A 错.(2)共速后,设二者相对静止,整体:.0.8m/s,解得a m)a (M F 233=+= 对物体:μmg,<1.6N =ma =f 3假设正确.再经0.5s 物体运动:.1.2,1.12121223212m x x x m t a t v x =+==+=故故B 对CD 错.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )解析:(1)物体刚放上木板,对木板:.a ,mg g )1121向左,减速运动(Ma M m =++μμ (2)共速后若二者相对静止:错,,则(BC a a Ma g M 2121,)m >=+μ 由于地面有摩擦,共速后木板做减速运动,故D 错。
传送带和板块模型

传送带模型1.水平传送带模型2.3.1.物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,再把物块放到P 点自由滑下,则:( )A. 物块将仍落在Q 点B. 物块将会落在Q 点的左边C. 物块将会落在Q 点的右边D. 物块有可能落不到地面上2、 如图示,物体从Q 点开始自由下滑,通过粗糙的静止水平传送带后,落在地面P 点,若传送带按顺时针方向转动。
物体仍从Q 点开始自由下滑,则物体通过传送带后:( )A.一定仍落在P 点B.可能落在P 点左方C.一定落在P 点右方D.可能落在P 点也可能落在P 点右方3、如图,传送带与水平方向夹37°角,AB 长为L =16m 的传送带 以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,(sin37°=0.6,cos37°=0.8,取g =10 m /s2)求:(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少? (2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?4、某快递公司分拣邮件的水平传输装置示意如图,皮带在电动机的带动下保持v=1m/s 的恒定速度向右运动,现将一质量为m=2kg 的邮件轻放在皮带上,邮件和皮带间的动摩擦因数μ=0.5。
设皮带足够长,取g=10m/s2,在邮件与皮带发生相对滑动的过程中,求:(1)邮件滑动的时间t;(2)邮件对地的位移大小x;(3)邮件与皮带间的摩擦力对皮带做的功W 。
板块模型整体分析:板块模型是高中物理中一个很经典的物理模型,该模型是动量守恒定律应用的典范,板和块借助于相互之间的摩擦力而发生作用,引起速度、位移、加速度、能量等一系列物理量的变化,因此也成为一类很重要的综合问题。
解决此类问题的关键,就是要明确板和块之间的位移关系,抓住系统动量守恒的特征,配合能量守恒、功能关系、摩擦力与最大静摩擦力的知识。
板块模型、传送带

传送带问题的分析技巧.模型特征(1)水平传送带模型摩擦因数μ=0.1。
工件滑上A 端瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B ,则( )A .若传送带不动,则vB =3 m/sB .若传送带以速度v =4 m /s 逆时针匀速转动,v B =3m/sC.若传送带以速度v=2 m/s顺时针匀速转动,v B=3 m/sD.若传送带以速度v=2 m/s顺时针匀速转动,v B=2 m/s2、如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2.由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕.则小煤块从A运动到B的过程中( )A.小煤块从A运动到B的时间是 2 sB.小煤块从A运动到B的时间是2.25 sC.划痕长度是4 mD.划痕长度是0.5 m3、如图所示,有一水平放置的足够长的皮带输送机以v=5 m/s的速率沿顺时针方向运行。
有一物块以v0=10 m/s的初速度从皮带输送机的右端沿皮带水平向左滑动。
若物块与皮带间的动摩擦因数μ=0.5,并取g=10 m/s2,求物块从滑上皮带到离开皮带所用的时间。
传送带以恒定的速率v=10 m/s运动,已知它与水平面成α=37°,如图所示,PQ=16 m,将一个小物体无初速度地放在P点,小物体与传送带间的动摩擦因数为μ=0.5,问当传送带逆时针转动时,小物体运动到Q点的时间为多少?.(2017·武汉月考)如图所示,AB、CD为两个光滑的平台,一倾角为37°,长为5 m的传送带与两平台平滑连接。
现有一小物体以10 m/s的速度沿平台AB向右运动,当传送带静止时,小物体恰好能滑到平台CD上,问:(1)小物体跟传送带间的动摩擦因数为多大?(2)当小物体在平台AB上的运动速度低于某一数值时,无论传送带顺时针运动的速度多大,小物体都不能到达平台CD,求这个临界速度。
传送带模型和板块模型

传送带模型1.水平传送带模型(1)(2)(1)(2)(1)(2)返回时速度为2.(1)(2)(1)(2)(3)解传送带问题的思维模板1.无初速度的滑块在水平传送带上的运动情况分析3.无初速度的滑块在倾斜传送带上的运动情况分析4.有初速度的滑块在倾斜传送带上的运动情况分析1.传送带模型(1)模型分类:水平传送带问题和倾斜传送带问题。
(2)传送带的转动方向:可以与物体运动方向相同或与物体运动方向相反。
(3)物体相对于传送带可以是静止、匀速运动、加速运动或减速运动。
2.处理方法求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
[多维展示]多维角度1 水平同向加速[例1] (2017·安徽师大附中模拟)(多选)如图所示,质量m =1 kg 的物体从高为h =0.2 m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和传送带之间的动摩擦因数为μ=0.2,传送带AB 之间的距离为L =5 m ,传送带一直以v =4 m/s 的速度匀速运动,则( )A .物体从A 运动到B 的时间是1.5 sB .物体从A 运动到B 的过程中,摩擦力对物体做功为2 JC .物体从A 运动到B 的过程中,产生的热量为2 JD .物体从A 运动到B 的过程中,带动传送带转动的电动机多做的功为10 J解析 设物体下滑到A 点的速度为v 0,对PA 过程,由机械能守恒定律有:12mv 20=mgh ,代入数据得:v 0=2gh=2 m/s<v =4 m/s ,则物体滑上传送带后,在滑动摩擦力的作用下做匀加速运动,加速度大小为a =μmgm=μg =2m/s 2;当物体的速度与传送带的速度相等时用时:t 1=v -v 0a =4-22 s =1 s ,匀加速运动的位移x 1=v 0+v 2t 1=2+42×1 m =3 m<L =5 m ,所以物体与传送带共速后向右做匀速运动,匀速运动的时间为t 2=L -x 1v =5-34s =0.5 s ,故物体从A 运动到B 的时间为:t =t 1+t 2=1.5 s ,A 正确;物体运动到B 的速度是v =4 m/s ,根据动能定理得:摩擦力对物体做功W f =12mv 2-12mv 20=⎝ ⎛⎭⎪⎫12×1×42-12×1×22 J =6 J ,B 错误;在t 1时间内,传送带做匀速运动的位移为x 带=vt 1=4 m ,故产生热量Q =μmg Δx =μmg (x 带-x 1),代入数据得:Q =2 J ,C 正确;电动机多做的功一部分转化成了物体的动能,另一部分转化为内能,则电动机多做的功W =⎝ ⎛⎭⎪⎫12mv 2-12mv 20+Q =⎣⎢⎡⎦⎥⎤12×1×(42-22)+2 J = 8J ,D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点二 传送带模型
多维探究
第 1 维度:水平传送带问题
1.情景特点分析
项目
图示
滑块可能的运动情况
情景 1
(1)可能ቤተ መጻሕፍቲ ባይዱ直加速 (2)可能先加速后匀速
情景 2
(1)v0>v 时,可能一直减速,也可能先减速再匀速 (2)v0<v 时,可能一直加速,也可能先加速再匀速
项目 情景 3
图示
滑块可能的运动情况 (1)传送带较短时,滑块一直减速达到左端 (2)传送带较长时,滑块还要被传送带传回右端.其中 v0 >v 返回时速度为 v,当 v0<v 返回时速度为 v0
2.思路方法 解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力 的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.
【总结提升】 解答传送带问题应注意的事项 (1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目 的是得到物块的加速度. (2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需 判断 μ 与 tan θ 的关系才能决定物块以后的运动. (3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.
(2) 速度关系 滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方 向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况. (3) 位移关系 滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移 和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到 了,自然也就容易列出所需要的方程了.
考点一 “滑块—滑板”模型
师生互动
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于
板长;反向运动时,位移之和等于板长.
3.解题思路 处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系. (1) 加速度关系 如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加 速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加 速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.
2.思路方法 水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速 度与传送带速度相等的时刻摩擦力发生突变.
第 2 维度:倾斜传送带问题
1.情景特点分析
项目
图示
情景 1
情景 2
滑块可能的运动情况 (1)可能一直加速 (2)可能先加速后匀速 (1)可能一直加速 (2)可能先加速后匀速 (3)可能先以 a1 加速后以 a2 加速