技能二十八法——如何判断电机转向篇
技能二十八法——如何判断电机转向篇

2010年青工技能二十八法
--------判断电机转向篇
• 电机的正常运转在生产过程中有着非常重 要的地位,为此我们经常需要对备用设备 进行维护,保证其能在紧急切换状态下正 常运作。电机的转向是判断电机能否正常 运行的一个重要标志!
• 本篇我们以机泵电机和空气冷却机为例。
• 点动:开启电机开关后马上停掉关闭,通 过轴承的减速转动来判断电机转向。
➢电机反转时流量会变小。 (内操指示)。
➢电机反转时振动与正常 有明显差异。
• 如图,站在电机 侧观察入口管线 与泵体轴承不在 同一平面垂直时, 经过对轮连接, 可判断电机转向 为顺时针方向。
屏蔽泵的转动判断
• 在本部门装置中, 芳烃装置安装有
TRG指针
屏蔽泵。由于此
种机泵运行较为
敏感,所以对其 进行点动启动, 用来判断其轴承
机泵电机转向的判断
• 如图,站在电机侧 观察入口管线与机 泵轴承在同一平面 垂直时,经对轮连 接,可判断电机转 向为逆时针方向。 还可通过点动来判 断。
• 在电机或泵体的显 著位置标示转向。
可通过电机转动时的产生的振动、杂音、 压力表的读数、流பைடு நூலகம்计示数来判断电机的 转向是否正常。
➢电机反转时压力表读数 会比平时低。
在点动屏蔽泵时,如果TRG指针超出量程 ,则证 明泵轴和电机转动方向是与平时相反的。
转动方向。还可
通过流量判断
(内操指示)。
空气冷却机转动方向判断
• 站在空冷下方观察,多为逆 时针转向。
• 判断空冷机的转动方向,可 以通过观察其风叶转向、皮 带转向、感觉电机振动、同 其他空冷比较、听电机杂音 等多种方式来判断。
单相电机的转向判断及纠正

电子制作电子报/2004年/12月/05日/第012版/单相电机的转向判断及纠正河南万玉吉 单相异步电机转向的纠正要比三相异步电机转向的纠正麻烦得多。
对于三相异步电动机,只要将三根引线中任意两根位置对调即可纠正电动机的转向,使倒转变为正转;对于单相异步电动机则不同,如果发现转子反转,要想纠正其转向,经常需将电动机拆开,采取重新接线或其他措施才能纠正其转向,显得非常麻烦。
为了减少不必要的麻烦,在装配电动机转子之前,就可以先判断一下电动机的转向,从而直接加以纠正,少走一些弯路。
根据笔者的维修经验,下面简要说明单相异步电动机转向判定及纠正方法。
一、单相异步电动机转向的判定1.易拉罐判断法:单相异步电动机的定子绕好线后,先不装配转子,而将它竖直地放在桌凳上,找一只“易拉罐”当小转子,将它用针顶起,放在定子内圈正中,按图1连接电路,其中D为电机定子,R是分压元件。
当R是调压器时,转动调压器手柄,使电机得到50~70V电压;若R用灯泡时,也要选择适当功率的灯泡,使电机也得到50~70V的电压。
在图1通电实验中,将会看到“易拉罐”有转动或转动趋势,那么它的转动方向就是将来电机转子的转动方向。
如果“易拉罐”转动方向与所需方向一致,说明接线正确。
否则,就要重新接线。
2.硅钢片(或铁片)判断法:仍然按图1连接好电路,把定子铁心平放在凳子上。
另外制作一圆形硅钢片(或铁片),硅钢片(或铁片)中间钻一小孔,小孔中穿入钢丝,当然硅钢片(或铁片)能以钢丝为轴灵活转动。
如图2所示,把该圆形硅钢片(或铁片)当作转子,升到定子铁心正中位置,通电实验时,圆形硅钢片(或铁片)就可转动,它转动的方向就是将来转子转动的方向。
如果圆形硅钢片(或铁片)转动方向与将来转子转动方向一致,说明接线正确。
否则,需要重新接线。
3.钢球判断法:仍然按图1连接好电路,把定子铁心平放在大凳子上,把一钢球放在定子铁心内表面上,通电实验时,会看到钢球沿着定子铁心内表面旋转,其旋转方向就是将来转子的旋转方向。
技能二十八法——正确盘车篇

自起泵禁盘车
• 机泵盘车不适用于所有备用泵,如自启泵 就不适用。因为自启泵是由工艺设备联锁 控制的,随时都有启动的可能性。 • 为避免受到伤害,自启泵禁止进行盘车!
盘车前准备工作
• 对备用机泵进 行盘车,打开 机泵的对轮罩 (连接电机轴 和泵轴的称为 对轮或联轴 器),检查是 否有螺栓、螺 帽脱落等现象。
2010年青工技能二十八法——Βιβλιοθήκη 何正确盘车篇机泵盘车的目的
• 1、机泵在开车前盘车的目的: • (不论是新安装还是刚检修过的)机泵通过盘车,看看是 否灵活有无卡涩,内部有无异响,防止启动时机泵损坏或 电流过大烧毁电机。 • 有的大型机组同时也是为了暖机和开车前润滑,防止开车 后,转子与机体产生局部过热,导致热变形。 • 2、机泵在停运时盘车目的: • 刚停下来的机组(如果是正常停车),是为了防止热变形。 一般是要冷却一小段时间再盘。 • 长期停运的机组要定期盘车防止轴弯曲变形或因设备输送 粘度较大的介质致使机泵转子卡涩,一般每次盘车540度。
大型机泵的盘车
• 由于大型机泵的 对轮沉重,一般 难以转动,需借 助其他工具辅助 作业。使用合适 F枪卡住对轮处 连接螺栓,均匀 用力,慢慢转动 对轮。 • 切记用力不能过 猛,防止F枪打 滑,伤人伤机!
• 如果对轮罩不能掀开,用合适工具卡住对轮螺栓, 慢慢转动对轮,进行盘车作业。 • 切记用力不能过猛,防止F枪打滑,伤人伤机!
检查泄露
• 检查转轴的前 后端面密封是 否良好,是否 有泄露现象, 盖好对轮罩, 插上销子后方 可离开。
对轮罩不能打开的机泵盘车
• 有的机泵对轮罩 不能开启,所以 只能从对轮底部 动作进行盘车作 业,与机泵正常 转动方向一致转 动对轮,均匀用 力,保证轴承无 卡涩现象。盘车 过程中一边转动 对轮一边观察端 面。
电动机旋转方向判断方法

如果电源端A/B/C三相分别接入电机出厂设定的A/B/C三相,电机启动后,可能是顺时针转,也可能是逆时针转。
电机的正转可以是顺时针,也可以是逆时针,国家标准没有硬性规定。
从电动机的轴向看,顺时针旋转的就是顺时针,逆时针旋转的就是逆时针。
如果是双轴的,以主轴为准(输出轴或大轴);双轴一样的,以负载要求判断,即主要负载在哪个方向,则从那个方向看。
单相异步电动机的旋转方向与其主、辅绕组的相互位置有关。
也即与主、辅绕组出线端的相互连接有关。
但某些电动机,其主、辅绕组在电动机内部已接在一起,这时要在外部改变电动机旋转方向已不可能(有双向旋转出线端的除外)。
因此,在空载试验时如发现这类电动机的旋转方向不对时,应将电动机内部的绕组接线予以改接,使之符合正确的转向。
图解无刷电机工作及控制原理,什么是左手定则、右手定则?

图解无刷电机工作及控制原理,什么是左手定则、右手定则?首先给大家复习几个基础定则:左手定则、右手定则、右手螺旋定则。
别懵逼,我下面会给大家解释。
左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。
右手定则,这是产生感生电动势的基础,跟左手定则的相反,磁场中的导体因受到力的牵引切割磁感线产生电动势。
让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。
为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。
不信可以试试。
三相线分开,电机可以轻松转动三相线合并,电机转动阻力非常大右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。
这个定则是通电线圈判断极性的基础,红色箭头方向即为电流方向。
看完了三大定则,我们接下来先看看电机转动的基本原理。
第一部分:直流电机模型我们找到一个中学物理学过的直流电机的模型,通过磁回路分析法来进行一个简单的分析。
状态1当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。
当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。
注意这里说的是“力矩”最大,而不是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
补充一句,力矩是力与力臂的乘积。
电机旋转方向如何快速确定?

电机旋转⽅向如何快速确定?在电机测试或者初期设计阶段,需要考虑电机旋转⽅向,⽽如何设计绕组的三相关系着电机的旋转⽅向。
如果说到电机的旋转⽅向很多⼈会认为很简答,对于分布卷电机或者集中卷q=0.5的电机旋转⽅向很好确定。
下⾯分别介绍q=0.5的6极9槽电机旋转⽅向的确定,q=3/10的10极9槽电机的旋向确定⽅法。
6极9槽对于6极9槽电机,槽电⾓度为3*360/9=120度,因此相邻槽就是相邻相。
对于图中的1,2,3齿分别引出导线,最终定义为ABC相。
上⾯我们已经计算好了1,2-2,3-3,1之间的电⾓度是120度,但是我们不知道是超前还是滞后关系。
如果电机顺时针旋转,可以观测反电势的峰值,1齿最先达到峰值,然后是2齿,然后是3齿。
那么我们接线就可以1A 2B 3C,这样接线电机就是顺时针旋转的。
该种⽅法的思路就是电机的反电势相位关系是与给该相绕组通电的电源对应的。
如果电机逆时针旋转,则3齿最先达到峰值,然后是2齿,然后是1齿。
所以接线就可以3A 2B1C,这样接线电机就是逆时针旋转的。
其实电机旋转⽅向是由相序决定的,相序即相与相的顺序,⽽不是固定的位置,所以对应123齿这种相序:ABC,CAB,BCA的接线⽅式在上述例⼦中电机的旋转⽅向都是顺时针的。
对应123齿:CBA,ACB,BAC的接线⽅式电机是逆时针旋转的。
20极18槽这个电机是20极18槽,单元电机对应的是10极9槽。
槽电⾓度为360/18*10=200°,根据绕组排布,1-2-3绕组相差3个槽,对应相差600°电⾓度,600°电⾓度与240°电⾓度相同,因此该电机1-2-3绕组间夹⾓是240°的。
在机械上或者说在物理上(或在上图中)1-2-3的排列顺序是顺时针,但是在电⾓度上1-2-3是如下图逆时针排列的,因为电⾓度差240°。
因此,此时如果你通电顺序是1-2-3(磁势最⼤值先扫过1,在扫过2,在扫过3),磁场旋转⽅向是逆时针的,则电机是逆时针旋转的。
电机找正方法总结

电机找正方法总结一般在安装机器时,首先把从动机安装好,使其轴处于水平,然后安装主动机,所以找正时只需调整主动机,即垂直方向偏差上,主动机的支脚下面用加减垫片的方法来进行调整,水平方向上的偏差用同样的方法计算,使用顶丝或千斤顶进行调整。
测量时百分表安装于从动轴上的专用支架上,表头在接触到电机轴靠背轮的外圆及端面。
具体步骤为:先测量偏差,找准电机靠背轮相对于从动机靠背轮的空间位置和偏差值,然后通过相似三角形计算电机的调整量。
一、测量偏差(1)、双表测量法(一点测量法)用两块百分表分别测量电机靠背轮外圆和端面同一方向上的偏差值,即在测量某方位上径向读数的同时测量该方位上轴向读数。
测量时,先测0°方位的径向读数A1 及轴向读数S1。
为分析计算方便,常把A1 和S1 的值调整为零,然后两半轴同时转动(可消除靠背轮不圆造成的误差),每转90°记录一次读数,将数据记录至表中。
当百分表转回到零位时,外圆记录径向读数A1、A2、A3、A4,端面记录读数S1、S2、S3、S4 必须与原零位读数一致,否则找出原因排除。
常见的原因是轴窜动或地脚螺栓松动,测量的读书符合下列条件才属正确,即:A1+A3=A2+A4;S1+S3=S2+S4端面不平行值(张口)的计算,不考虑轴向窜轴,计算公式为S=S1-S3,正值为下张口,负值为上张口。
左右张口为S=S2-S4,正值为S4 那边张口,负值为S2 那边张口。
上下径向偏差的计算公式为A=(A1-A3)/2,正值为电机靠背轮偏高,负值为电机靠背轮偏低。
左右径向偏差的计算公式为A =(A2 -A4)/2,正值为靠背轮偏右,负值为靠背轮偏左。
因为在轴向使用一只表不能消除轴向窜动的误差,故此方法适用于轴向窜动较小的中小型机器。
(2)、三表测量法(两点测量法)在轴中心等距处对称布置两块百分表,在测量一个方位上径向读数和轴向读数的同时,在相对的一个方位上测量轴向读数,即同时测量相对两方位上的轴向读数,可以消除在盘车时轴的窜动对轴向读数的影响。
电机转矩、位置、噪声的检测方法

一、转子位置的测量方法1.光栅尺检测光栅尺主要是对转子的位移进行检测,其工作原理:常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。
当使指示光栅上的线纹与标尺光栅上的线纹成一角度 来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。
在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。
相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。
这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。
莫尔条纹具有以下性质:(1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。
(2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。
这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。
这种放大作用是光栅的一个重要特点。
(3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。
(4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。
两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。
根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。
由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位上依次超前或滞后(取决于两光栅尺相对移动的方向)1/4周期(即π/2)的近似于余弦函数的光强度变化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机泵电机转向的判断
• 如图,站在电机侧 观察入口管线与机 泵轴承在同一平面 垂直时,经对轮连 接,可判断电机转 向为逆时针方向。 还可通过点动来判 断。 • 在电机或泵体的显 著位置标示转向。
可通过电机转动时的产生的振动、杂音、 压力表的读数、流量计示数来判断电机的 转向是否正常。
电机反转时压力表读数 会比平时低。
2010年青工技能二十八法
--------判断电机转向篇
• 电机的正常运转在生产过程中有着非常重 要的地位,为此我们经常需要对备用设备 进行维护,保证其能在紧急切换状态下正 常运作。电机的转向是判断电机能否正常 运行的一个重要标志! • 本篇我们以机泵电机和空气冷却机为例。 • 点动:开启电机开关后马上停掉关闭,通 过轴承的减速转动为逆 时针转向。 • 判断空冷机的转动方向,可 以通过观察其风叶转向、皮 带转向、感觉电机振动、同 其他空冷比较、听电机杂音 等多种方式来判断。 • 窍门:在空冷机下方如果感 觉有冷风从下方抽上,证明 转动与其它空冷相同;如果 感觉有热风自上扑来,则证 明转动与其他不同。
电机反转时流量会变小。 (内操指示)。 电机反转时振动与正常 有明显差异。
• 如图,站在电机 侧观察入口管线 与泵体轴承不在 同一平面垂直时, 经过对轮连接, 可判断电机转向 为顺时针方向。
屏蔽泵的转动判断
• 在本部门装置中, TRG指针 芳烃装置安装有 屏蔽泵。由于此 种机泵运行较为 敏感,所以对其 在点动屏蔽泵时,如果TRG指针超出量程 ,则证 进行点动启动, 明泵轴和电机转动方向是与平时相反的。 用来判断其轴承 转动方向。还可 通过流量判断 (内操指示)。