最新人教版九年级数学上册重教材基础训练题(含答案)

合集下载

九年级上册数学基础训练人教版

九年级上册数学基础训练人教版

九年级上册数学基础训练人教版一、一元二次方程。

1. 定义与一般形式。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中a是二次项系数,b是一次项系数,c 是常数项。

- 例如方程3x^2-5x + 1 = 0,这里a = 3,b=-5,c = 1。

2. 解法。

- 直接开平方法。

- 对于形如x^2=k(k≥0)的方程,解为x=±√(k)。

- 例如,方程x^2=9,解得x = 3或x=-3。

- 配方法。

- 步骤:先将方程化为ax^2+bx=-c的形式,然后在等式两边加上一次项系数一半的平方((b)/(2a))^2,将左边配成完全平方式(x +(b)/(2a))^2,再进行求解。

- 例如,解方程x^2+6x - 1 = 0。

- 首先将方程变形为x^2+6x=1。

- 然后在等式两边加上((6)/(2))^2=9,得到x^2+6x + 9=1 + 9,即(x +3)^2=10。

- 解得x=-3±√(10)。

- 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

- 例如,解方程2x^2-3x - 2 = 0,这里a = 2,b=-3,c=-2。

- 先计算b^2-4ac=(-3)^2-4×2×(-2)=9 + 16 = 25。

- 然后代入公式x=(3±√(25))/(2×2)=(3±5)/(4),解得x = 2或x=-(1)/(2)。

- 因式分解法。

- 将方程化为一边是两个一次因式乘积,另一边为0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px+q = 0。

- 例如,解方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

人教版 九年级数学上册 第二十六章基础检测题(含答案)

人教版 九年级数学上册 第二十六章基础检测题(含答案)

人教版 九年级数学上册 第二十六章基础检测题(含答案)26.1 反比例函数一、选择题1. 如图,在平面直角坐标系中,Rt △ABC 的顶点A ,C 的坐标分别是(0,3),(3,0),∠ACB=90°,AC=2BC ,函数y=(k>0,x>0)的图象经过点B ,则k 的值为( )A .B .9C .D .2. 在函数y =x +4x 中,自变量x 的取值范围是( )A. x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且x ≠-43. (2019•安徽)已知点A (1,–3)关于x 轴的对称点A'在反比例函数y =k x的图象上,则实数k 的值为 A .3 B .13C .–3D .–134. (2019·广东广州)若点A (﹣1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是 A .y 3<y 2<y 1 B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 35. 反比例函数y =-1x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A. y 1<y 2<0B. y 1<0<y 2C. y 1>y 2>0D. y 1>0>y 26. (2019•广西)若点(1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是 A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 17. (2019·海南)如果反比例函数y =2a x(a 是常数)的图象在第一、三象限,那么a 的取值范围是 A .a <0 B .a >0C .a <2D .a >28. 如图,一次函数y 1=ax +b 与反比例函数y 2=k x的图象如图所示,当y 1<y 2时,则x 的取值范围是( )A. x <2B. x >5C. 2<x <5D. 0<x <2或x >59. 如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x 在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A. 60B. 80C. 30D. 4010. (2019·湖北咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣1x(x<0),y=4x(x>0)的图象上,则sin∠ABO的值为A.13B.33C.54D.55二、填空题11. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.12. 如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.13. (2019·黑龙江齐齐哈尔)如图,矩形ABOC 的顶点B 、C 分别在x 轴,y 轴上,顶点A 在第二象限,点B 的坐标为(﹣2,0).将线段OC 绕点O 逆时针旋转60°至线段OD ,若反比例函数y =kx(k ≠0)的图象经过A 、D 两点,则k 值为__________.14. 如图,已知点A ,C 在反比例函数y =a x的图象上,点B ,D 在反比例函数y=b x 的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是________.15. 如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=k 1x (x >0)及y 2=k 2x(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2=__________.16. 如图,在平面直角坐标系中,过点M (-3,2)分别作x 轴、y 轴的垂线,与反比例函数y =4x的图象交于A 、B 两点,则四边形MAOB 的面积为________.三、解答题17. (2019•广东)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.18. (2019·湖南常德)如图,一次函数y =-x +3的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C . (1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.19. (2019·浙江舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数ykx的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,求a的值.20. (2019·山东泰安)已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=152.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.人教版九年级数学上册 26.1 反比例函数同步培优训练-答案一、选择题1. 【答案】D[解析]过B作BD⊥x轴,垂足为D.∵A,C的坐标分别为(0,3),(3,0),∴OA=OC=3,∠ACO=45°,∴AC=3.∵AC=2BC,∴BC=.∵∠ACB=90°,∴∠BCD=45°,∴BD=CD=,∴点B的坐标为.∵函数y=(k>0,x>0)的图象经过点B,∴k==,故选D.2. 【答案】C【解析】综合开平方时被开方数为非负数和分母不为0可得x 取值范围,则x+4≥0且x≠0,故x≥-4且x≠0.3. 【答案】A【解析】点A(1,-3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.4. 【答案】C【解析】∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,∴y 1=61=﹣6,y2=62=3,y3=63=2,又∵﹣6<2<3,∴y1<y3<y2.故选C.5. 【答案】D【解析】根据反比例函数的性质或者利用特殊值法即可作出选择.方法一:∵反比例函数y=-1x中k=-1<0,∴当x<0时,y>0;当x>0时,y<0.又∵x 1<0<x 2,∴y 1>0>y 2.故选D.方法二:令x 1=-1,则y 1=1,令x 2=1,则y 2=-1,∴y 1>0>y 2.6. 【答案】C 【解析】∵k <0,∴在每个象限内,y 随x 值的增大而增大,∴当x =–1时,y 1>0,∵2<3,∴y 2<y 3<y 1,故选C .7. 【答案】D 【解析】∵反比例函数y =2a x(a 是常数)的图象在第一、三象限,∴a ﹣2>0,∴a >2.故选D .8. 【答案】D 【解析】根据图象得:当y 1<y 2时,x 的取值范围是0<x <2或x >5.9. 【答案】D 【解析】如解图所示,过点A 作AG ⊥OB ,垂足为G ,设A 点纵坐标为4m ,∵sin ∠AOB =45,∴OA =5m ,根据勾股定理可得OG =3m ,又∵点A 在反比例函数y =48x上,∴3m ×4m =48,∴m 1=2,m 2=-2(不合题意,舍去),∴AG =8,OG =6,OA =OB =10,∵四边形OBCA 是菱形,∴BC ∥OA ,∴S △AOF =12S 菱形OBCA=12×AG ×OB =12×8×10=40.故选D .10. 【答案】D【解析】如图,过点A ,B 分别作AD ⊥x 轴,BE ⊥x 轴,垂足为D ,E ,∵点A 在反比例函数y =﹣1x (x <0)上,点B 在y =4x(x >0)上,∴S △AOD =1,S △BOE =4,又∵∠AOB =90°∴∠AOD =∠OBE ,∴△AOD ∽△OBE ,∴(AO OB)2=14AOD OBESS =,∴12AO OB =. 设OA =m ,则OB =2m ,AB=22(2)5m m m +=, 在Rt △AOB 中,sin ∠ABO =55OA AB m ==,故选D .二、填空题11. 【答案】8 [解析]由得或,∴A 的坐标为(2,2),C 的坐标为(-2,-2).∵AD ⊥x 轴于点D ,CB ⊥x 轴于点B ,∴B (-2,0),D (2,0),∴BD=4,AD=2, ∴四边形ABCD 的面积=AD ·BD ×2=8.12. 【答案】-6 【解析】如解图,连接AC 交y 轴于点D ,因为四边形ABCO 是菱形,且面积为12,则△OCD 的面积为3,利用反比例函数k 的几何意义可得k =-6.13. 【答案】163【解析】过点D 作DE ⊥x 轴于点E ,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k,由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°,∴DE =12OD =﹣14k ,OE =OD cos30°=3×(﹣2k )=﹣3k ,即D (﹣34k ,﹣14k ),∵反比例函数y =kx (k ≠0)的图象经过D 点,∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣163, 故答案为:﹣1633.14. 【答案】3 【解析】设点A 的纵坐标为y 1,点C 的纵坐标为y 2,∵AB ∥CD ∥x 轴,∴点B 的纵坐标为y 1,点D 的纵坐标为y 2,∵点A 在函数y =ax 的图象上,点B 在函数y =b x 的图象上,且AB =34,∴a y 1-b y 1=34,∴y 1=4(a -b )3,同理y 2=2(b -a )3,又∵AB 与CD 间的距离为6,∴y 1- y 2=4(a -b )3-2(b -a )3=6,解得a -b =3.15. 【答案】4 【解析】∵反比例函数y 1=k 1x (x >0)及y 2=k 2x (x >0)的图象均在第一象限内,∴k 1>0,k 2>0,∵AP ⊥x 轴,∴S △OAP =12k 1,S △OBP =12k 2,∴S △OAB =S △OAP -S △OBP =12(k 1-k 2)=2,解得k 1-k 2=4.16. 【答案】10 【解析】如解图,设AM 与x 轴交于点C ,MB 与y 轴交于点D ,∵点A 、B 分别在反比例函数y =4x 上,根据反比例函数k 的几何意义,可得S △ACO=S △OBD =12×4=2,∵M(-3,2),∴S矩形MCOD =3×2=6,∴S四边形MAOB=S △ACO +S △OBD+S 矩形MCOD =2+2+6=10.三、解答题 17. 【答案】(1)由图象可得:k 1x +b >2k x 的x 的取值范围是x <–1或0<x <4;(2)直线解析式y =–x +3,反比例函数的解析式为y =–4x ;(3)P (23,73).【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ),∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x;(3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32,∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152,∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52–32=1,∴12×3x P =1,∴x P =23,∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).18. 【答案】(1)把点A (1,a )代入y =-x +3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =kx ,∴k =1×2=2;∴反比例函数的表达式为y =2x;(2)∵一次函数y =-x +3的图象与x 轴交于点C ,∴C (3,0), 设P (x ,0),∴PC =|3-x |,∴S △APC =12|3-x |×2=5,∴x =-2或x =8,∴P 的坐标为(-2,0)或(8,0).19. 【答案】(1)反比例函数的解析式为y =;(2)a 的值为1或3.【解析】(1)如图1,过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC12=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=23.把点A(2,23)代入ykx=,解得k=43.∴反比例函数的解析式为y43 =;(2)分两种情况讨论:①当点D是A′B′的中点,如图2,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE3B′E=1.∴O′E=3,把y3=y43=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH3=,O′H=1.把y3=代入y43x=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.20. 【答案】(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD22AB AD-,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2,∴a=658,∴P(658,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(658,0).26.2实际问题与反比例函数一、选择题1.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)之间的函数关系用图象来表示是()2.点是反比例函数图像上一点,则的值为( ).A. 1B. 0C. -2D. -13.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:)与电阻(单位:)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过,那么用电器可变电阻应控制的范围是( )A.B.C. D.4.下列各问题中,两个变量之间的关系不是反比例函数的是 ( )A :小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m/s )之间的关系。

人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)

人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)

人教版九年级数学第22章基础测试题(含答案)22.1 二次函数的图象和性质一、选择题(本大题共8道小题)1. 已知直线y=bx-c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()2. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度3. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<14. 如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP 的面积为y,则下列能大致反映y与x函数关系的图象是()5. 二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的图象可能是()6. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()7. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止.设移动x s 后,矩形ABCD与△PMN重叠部分的面积为y cm2,则y关于x的大致图象是()8. 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …-2 -1 0 1 2 …y=ax2+bx+c …t m -2 -2 n …且当x =-12时,与其对应的函数值y>0,有下列结论:(1)abc>0;(2)-2和3是关于x 的方程ax 2+bx +c =t 的两个根;(3)0<m +n<203.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共8道小题)9. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.10. 函数y =-4x 2-3的图象开口向________,对称轴是________,顶点坐标是________;当x ________0时,y 随x 的增大而减小,当x ________时,y 有最________值,是________,这个函数的图象是由y =-4x 2的图象向________平移________个单位长度得到的.11. 二次函数y =-x 2+6x -5的图象开口________,对称轴是________,顶点坐标是________;与x 轴的两个交点坐标分别是________,与y 轴的交点坐标是________;在对称轴左侧,即x ________时,y 随x 的增大而________,在对称轴右侧,即x ________时,y 随x 的增大而________,当x =________时,y 有最________值为________;抛物线y =-x 2+6x -5是由抛物线y =-x 2向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.12. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.13. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)14. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)15. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.16. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.三、解答题(本大题共4道小题)17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,抛物线y=ax2+bx+c经过点A(-1,0),B(5,-6),C(6,0).(1)求抛物线的解析式.(2)在直线AB下方的抛物线上是否存在点P,使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.19. 已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式.(2)设点P在该抛物线上滑动,则满足条件S△PAB=1的点P有几个?求出所有点P的坐标.(3)设抛物线交y轴于点C,该抛物线的对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.20. (2019·山西)综合与探究如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】C【解析】在A 中,抛物线的对称轴在y 轴右边,∴-b2a >0,∵a>0,∴b <0;而从一次函数图象知b >0,∴选项A 错误;在B 中,抛物线对称轴-b2a >0,∵a <0,∴b >0;而从一次函数图象知b <0,∴选项B 错误;在C 中,抛物线的对称轴在y 轴左边,∴-b2a <0,∵a >0,∴b >0;抛物线与y 轴负半轴相交,∴c <0;而从一次函数图象知b >0,-c >0,∴c <0,∴选项C 正确;在D 中,抛物线与y 轴的正半轴相交,c >0,由一次函数图象知-c >0,即c <0,∴选项D 错误.2. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.3. 【答案】B【解析】由题意知二次函数y=x2+2x+c 有两个相异的不动点x1、x2, 所以x1、x2是方程x2+2x+c=x 的两个不相等的实数根, 整理,得:x2+x+c=0, 所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2, 所以函数y=x2+x+c=0在x=1时,函数值小于0, 即1+1+c<0,综上则140110c c ->⎧⎨++<⎩,解得c<-2, 故选B .4. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】D [解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.7. 【答案】A [解析] (1)当点D 位于PM 上时,x =2.当0≤x <2时,重叠部分是等腰直角三角形,y =12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D 位于PN 上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.8. 【答案】C [解析] (1)因为当x =-12时,与其对应的函数值y>0,由表格可知x =0时,y=-2,x =1时,y =-2,可以判断在对称轴左侧,y 随x 的增大而减小,图象开口向上,a>0;由表格可知x =0时,y =-2,x =1时,y =-2,可得对称轴为直线x =12,所以b<0;当x =0时,y =-2,所以c =-2<0,故abc>0,(1)正确.(2)由于对称轴是直线x =12,x =-2和x =3关于对称轴对称,当x =-2时,y =t ,所以当x =3时,y =t ,即-2和3是关于x 的方程ax 2+bx +c =t 的两个根,所以(2)正确.(3)依题意可得c =-2,a +b =0,当x =-12时,与其对应的函数值y>0可得a>83,当x =-1时,m =a -b -2=2a -2>103.因为x=-1和x =2关于对称轴对称,所以m =n ,所以m +n>203,故(3)错误.故选C.二、填空题(本大题共8道小题)9. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.10. 【答案】下y 轴 (0,-3) > =0 大 -3 下 311. 【答案】向下直线x =3 (3,4) (1,0),(5,0) (0,-5) <3 增大 >3 减小 3 大4 右 3 上 412. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.13. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.14. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b<a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.15. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)bb=3- 3.16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共4道小题)17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)设y =a(x +1)(x -6),把(5,-6)代入解析式,得a(5+1)(5-6)=-6, 解得a =1,∴y =(x +1)(x -6)=x2-5x -6. (2)存在.如图,分别过点P ,B 向x 轴作垂线,垂足为M ,N.设P(m ,m2-5m -6),其中-1<m <5,设四边形PACB 的面积为S ,则PM =-m2+5m +6,AM =m +1,MN =5-m ,CN =6-5=1,BN =6,∴S =S △AMP +S 梯形PMNB +S △BNC =12(-m2+5m +6)(m +1)+12(6-m2+5m +6)(5-m)+12×1×6=-3m2+12m +36=-3(m -2)2+48,当m =2时,S 有最大值为48,这时m2-5m -6=22-5×2-6=-12, ∴P(2,-12).19. 【答案】解:(1)将(1,0),(3,0)分别代入y =-x2+bx +c ,得⎩⎪⎨⎪⎧-1+b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =4,c =-3.∴该抛物线的解析式为y =-x2+4x -3. (2)设点P 的坐标为(x ,y).∵AB =2,S △PAB =12AB·|y|=1,∴y =±1.当y =1时,有1=-x2+4x -3, 即x2-4x +4=(x -2)2=0, 解得x1=x2=2;当y =-1时,有-1=-x2+4x -3,即x2-4x +2=0,解得x1=2-2,x2=2+ 2. ∴满足条件的点P 有3个,坐标分别为(2,1), (2+2,-1),(2-2,-1). (3)存在.作点C 关于抛物线的对称轴的对称点C′,连接AC′交抛物线的对称轴于点M ,连接MC ,任取抛物线对称轴上除点M 外的任意一点N ,连接NA ,NC ,NC′,如图所示.∵NA +NC =NA +NC′>AC′=MA +MC′=MA +MC , ∴当点A ,M ,C′共线时,△MAC 的周长最小. ∵抛物线的解析式为y =-x2+4x -3,∴点C 的坐标为(0,-3),抛物线的对称轴为直线x =-42×(-1)=2,∴C′(4,-3).设直线AC′的解析式为y =mx +n. ∵点A(1,0),C′(4,-3)在直线AC′上,∴⎩⎪⎨⎪⎧m +n =0,4m +n =-3,解得⎩⎪⎨⎪⎧m =-1,n =1,∴直线AC′的解析式为y =-x +1. 当x =2时,y =-x +1=-1,∴直线AC′与抛物线对称轴的交点的坐标为(2,-1),即M(2,-1). ∴存在点M(2,-1),使得△MAC 的周长最小.20. 【答案】(1)抛物线2y ax bx c =++经过点A(–2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC=1126622OA OC ⋅⋅=⨯⨯=,∵S△BCD=34S△AOC,∴S△BCD=39642⨯=,设直线BC的函数表达式为y kx n=+,由B,C两点的坐标得406k nn+=⎧⎨=⎩,解得326kn⎧=-⎪⎨⎪=⎩,∴直线BC的函数表达式为362y x=-+,∴点G的坐标为3(,6)2m m-+,∴2233336(6)34224DG m m m m m=-++--+=-+,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=1111()2222DG CF DG BE DG CF BE DG BO⋅⋅+⋅⋅=⋅+=⋅⋅,∴S△BCD=22133346242m m m m-+⨯=-+(),∴239622m m-+=,解得11m=(舍),23m=,∴m的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为15(3,)4,∴点N点纵坐标为±154,当点N的纵坐标为154时,如点N2,此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N3,N4, 此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N1点与N2点重合, ∵115(1,)4N -,D(3,154),∴N1D=4, ∴BM1=N1D=4, ∴OM1=OB+BM1=8, ∴M1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【22.2二次函数与一元二次方程】一.选择题1.若抛物线y=x2﹣6x+m与x轴只有一个交点,则m的值为()A.﹣6B.6C.3D.92.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5B.8C.10D.113.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2 4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200B.x1=0,x2=400C.x1=100,x2=300D.x1=100,x2=5005.已知二次函数y=ax2+bx+c(a≠0)的图象过点(0,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点(,y)是函数图象上一点,则y>0;②若点(﹣),()是函数图象上一点,则y2>y1;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 7.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 9.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣3 10.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x 轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或二.填空题11.抛物线y=ax2﹣2x﹣1与x轴有两个交点,则a的取值范围为.12.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为13.已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.14.已知抛物线y=a(x﹣h)2+k经过点A(﹣2,0),B(3,0)两点.若关于x的一元二次方程a(x﹣h+m)2+k=0的一个根是1,则m的值为.15.抛物线y=ax2﹣3x+2与x轴正半轴交于A、B两点,且AB=2,则a=.三.解答题16.已知关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,求k的取值范围.17.抛物线y=﹣x2+bx+c交x轴于A(3,0)、B两点,与y轴交于点C(0,3),点D为顶点,对称轴l交x轴于点E,点P是抛物线上一点,AP交对称轴于点M,BP交对称轴于点N.求点D坐标及对称轴l.18.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.19.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.20.如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=1,请你解答下列问题:(Ⅰ)求m的值;(Ⅱ)求出抛物线与x轴的交点;(Ⅲ)当y随x的增大而减小时x的取值范围是.(Ⅳ)当y<0时,x的取值范围是.参考答案一.选择题1.解:根据题意得△=(﹣6)2﹣4m=0,解得m=9.故选:D.2.解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.3.解:由图象可知,当y>0时,x的取值范围是x<﹣1或x>2,故选:D.4.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.解:∵抛物线经过点(0,m)(2,m)(m>0),(x1,0)(﹣1<x1<0),∴抛物线开口向下,对称轴为直线x=﹣=1,即b=﹣2a,∴当x=时,y>0,则①正确;∵点()到直线x=1和点()到直线x=1的距离相等,∴y1=y2,所以②错误;∵x=1,y>0;x=﹣1,y<0,即a+b+c>0,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2,则③正确.故选:C.6.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.7.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.8.解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.9.解:抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3.所以b=﹣4,c=3.故选:B.10.解:∵y=ax2+2ax﹣3a=a(x+3)(x﹣1)=a(x+1)2﹣4a,∴点A的坐标为(﹣3,0),点B(1,0),点D(﹣1,﹣4a),∴D′(3,4a),C(5,0),∵△CDD′是直角三角形,∴当∠DD′C=90°时,4a=×(5﹣1)=2,得a=,当∠D′CD=90°时,CB=DD′,∴5﹣1=,解得,a1=,a2=﹣(舍去),由上可得,a的值是或,故选:A.二.填空题21.解:∵抛物线y=ax2﹣2x﹣1与x轴有两个交点,∴,解得,a>﹣1且a≠0,故答案为:a>﹣1且a≠0.22.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.23.解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n <0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.24.解:由已知可得:对称轴为x=,∴h=,∴y=a(x﹣)2+k,将点A(﹣2,0)代入y=a(x﹣)2+k,∴k=﹣a,∵a(x﹣h+m)2+k=0,∴a(x﹣+m)2﹣a=0,∵a≠0,∴(x﹣+m)2=,∵方程的一个根为1,∴(1﹣+m)2=,故答案为m=2或m=﹣3.25.解:当y=0时,ax2﹣3x+2=0,∵a>0,∴(x﹣1)(x﹣2)=0,解得x1=,x2=,∴A、B两点的坐标为(,0),(,0),∵AB=2,∴﹣=2,解得a=.故答案为.三.解答题31.解:∵关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,∴或,解得,k≤2且k≠1或k=1,由上可得,k的取值范围是k≤2.32.解:把A(﹣3,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3,因为y=﹣(x﹣1)2+4,所以D点坐标为(1,4),抛物线的对称轴l为直线x=1.33.解:(1)令y=0,得:﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点A(﹣3,0),点B(1,0);令x=0,得:y=3,∴点C(0,3);设直线AC的解析式为:y=kx+b,点A(﹣3,0),点C(0,3)在直线AC上,,解得:,∴直线AC的解析式为:y=x+3.(2)如图所示,设点P的坐标为(a,﹣a2﹣2a+3),由PM∥x轴,可知点M的纵坐标为﹣a2﹣2a+3,∴x=﹣a2﹣2a,∴PM=﹣a2﹣2a﹣a=﹣a2﹣3a(﹣3<a<0),=.当a=时,PM最大34.解:(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.35.解:(Ⅰ)抛物线的对称轴为直线x=﹣=1,∴m=3;(Ⅱ)∵m=3,∴抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴抛物线与x轴的交点为(﹣1,0),(3,0);(Ⅲ)∵a=﹣1<0,对称轴为直线x=1,∴当x>1时,y的值随x的增大而减小,故答案为x>1;(Ⅳ)当x<﹣1或x>3时,y<0,故答案为x<﹣1或x>3.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C .600平方米D .2400平方米5. 如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm ,点P 从点A出发,沿AB 方向以2 cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 26. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 27. 如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE =CF =x cm ,要使包装盒的侧面积最大,则x 应取( )A.30 B.25 C.20 D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20. 如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图②,当饲养室的长x为多少时,占地面积y最大?(2)如图③,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.21. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版 九年级数学 22.3 实际问题与二次函数同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm2.2. 【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米, 则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,。

优品课件之人教版九年级数学上册全册教案及作业题(带答案)

优品课件之人教版九年级数学上册全册教案及作业题(带答案)

人教版九年级数学上册全册教案及作业题(带答案)《人教版九年级上册全书教案》第二十一章二次根式教材内容 1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标 1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a (a≥0), =a(a≥0).(3)掌握• =(a≥0,b≥0),= • ; = (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点 1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算.教学难点 1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及 =a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB= 问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“ ”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、- 、、(x≥0,y ≥0).分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥ 当x≥ 时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时,+ 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1 当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2) (2)若 + =0,求a2004+b2004的值.(答案: ) 五、归纳小结(学生活动,老师点评)本节课要掌握: 1.形如(a≥0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x 2.下列式子中,不是二次根式的是()A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是() A.5 B. C. D.以上皆不对二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_______. 4.使式子有意义的未知数x有()个. A.0 B.1 C.2 D.无数 5.已知a、b 为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B 二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-421.1 二次根式(2) 第二课时教学内容 1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新|课|标|第|一|网 1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用. 2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式? 2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2= ,()2= ,()2=0,所以()2=a(a≥0)例1 计算 1.()2 2.(3 )2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2 = ,(3 )2 =32•()2=32•5=45,()2= ,()2= .三、巩固练习计算下列各式的值:X|k |b| 1 . c|o |m ()2 ()2 ()2 ()2 (4 )2 四、应用拓展例2 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0 ()2=x+1 (2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴()2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结本节课应掌握: 1.(a≥0)是一个非负数; 2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:《同步训练》第二课时作业设计一、选择题 1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题 1.(- )2=________. 2.已知有意义,那么是一个_______数.三、综合提高题 1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6= (4)(-3 )2=9× =6 (5)-6 2.(1)5=()2 (2)3.4=()2 (3) =()2 (4)x=()2(x≥0) 3. xy=34=81 4.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- ) (3)略优品课件,意犹未尽,知识共享,共创未来!!!。

全新人教版九年级数学上册课时同步测试题(全册 共217页 附答案)

全新人教版九年级数学上册课时同步测试题(全册 共217页 附答案)

全新人教版九年级数学上册课时同步测试题(全册共217页附答案)目录21.1 一元二次方程21.2 解一元二次方程21.3 实际问题与一元二次方程22.1 二次函数的图象和性质22.2 二次函数与一元二次方程22.3 实际问题与二次函数23.1图形的旋转23.2中心对称23.3 课题学习图案设计24.1 圆的有关性质24.2 点和圆、直线和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率21.1 一元二次方程一.选择题1.(2018•宁夏)若2﹣是方程x2﹣4x+c=0的一个根,则c的值是()A.1 B.C.D.2.(2018•盐城)已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.43.(2017•本溪)关于x的一元二次方程x2﹣3x﹣a=0有一个实数根为﹣1,则a的值()A.2 B.﹣2 C.4 D.﹣44.(2017•威海)若1﹣是方程x2﹣2x+c=0的一个根,则c的值为()A.﹣2 B.4﹣2 C.3﹣D.1+5.(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 6.(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定7.(2016•包头)若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣ B.C.﹣或 D.18.(2016•攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4二.填空题9.(2018•扬州)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.10.(2018•苏州)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .11.(2018•荆门)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.12.(2018•资阳)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .13.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.14.(2017•常州)已知x=1是关于x的方程ax2﹣2x+3=0的一个根,则a= .15.(2017•巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.16.(2017•菏泽)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.17.(2016•泰州)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.18.(2016•河池)已知关于x的方程x2﹣3x+m=0的一个根是1,则m= .19.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.20.(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= .参考答案一.选择题1.A.2.B.3.C.4.A.5.D.6.B.7.C.8.C.二.填空题9.201810.﹣2.11.﹣3.12.2.13..14.﹣1.15.1.16.017.﹣3.18.2.19.12.20.6.21.2 解一元二次方程一.选择题1.(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<02.(2018•娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定3.(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.34.(2018•宜宾)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(2018•临沂)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.7.(2018•铜仁市)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 8.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根10.(2018•桂林)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.11.(2017•广州)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥412.(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或013.(2017•宜宾)一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断14.(2017•通辽)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.15.(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣516.(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=217.(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定18.(2016•威海)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣119.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.20.(2016•天津)方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3二.填空题(2018•怀化)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.21.22.(2018•淮安)一元二次方程x2﹣x=0的根是.23.(2018•南京)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1= ,x2= .24.(2018•吉林)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.25.(2018•德州)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2= .(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.26.27.(2017•抚顺)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是.(2017•南京)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p= ,q= .28.29.(2016•青岛)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.30.(2016•达州)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= .31.(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22= .三.解答题32.(2018•成都)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.33.(2018•齐齐哈尔)解方程:2(x﹣3)=3x(x﹣3).34.(2018•梧州)解方程:2x2﹣4x﹣30=0.35.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.36.(2018•随州)已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.37.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.38.(2017•黄冈)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.参考答案一.选择题1.A.2.A.3.B.4.D.5.B.6.C.7.C.8.D.9.D.10.A.11.A.12.B.13.B.14.A.15.D.16.C.17.B.18.A.19.B.20.D.二.填空题(共11小题)21.1.22.x1=0,x2=1.23.﹣2;3.24.﹣1.25.﹣326.1.27.m≥﹣1.28.4;3.29..30.2016.31..三.解答题(共7小题)32.解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.33.解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.34.解:∵2x2﹣4x﹣30=0,∴x2﹣2x﹣15=0,∴(x﹣5)(x+3)=0,∴x1=5,x2=﹣3.35.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=336.解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.37.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.38.解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.21.3 实际问题与一元二次方程一.选择题(共20小题)1.(2018•宜宾)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%2.(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=323.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人4.(2018•宁夏)某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5075.(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.76.(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 7.(2018•乌鲁木齐)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=10890 8.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%9.(2018•赤峰)2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总厂数为380场,若设参赛队伍有x支,则可列方程为()A. x(x﹣1)=380 B.x(x﹣1)=380C. x(x+1)=380 D.x(x+1)=38010.(2017•来宾)某文具店二月销售签字笔40支,三月、四月销售量连续增长,四月销售量为90支,求月平均增长率.设月平均增长率为x,则由已知条件列出的方程是()A.40(1+x2)=90 B.40(1+2x)=90 C.40(1+x)2=90 D.90(1﹣x)2=40 11.(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.812.(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%13.(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57014.(2017•朝阳)某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+4015.(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台.设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300016.(2016•通辽)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8 B.6.3(1+x)=8C.6.3(1+x)2=8 D.6.3+6.3(1+x)+6.3(1+x)2=817.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4 18.(2016•大连)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)19.(2016•恩施州)某商品的售价为100元,连续两次降价x%后售价降低了36元,则x 为()A.8 B.20 C.36 D.1820.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8二.填空题(共5小题)21.(2018•通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.22.(2017•宜宾)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.。

人教版九年级上册数学 25.1基础检测题及答案

人教版九年级上册数学 25.1基础检测题及答案

人教版九年级数学上册同步练习:25.1--25.3基础检测含答案25.1随机事件与概率一.选择题1.下列事件中,必然事件是()A.打开电视,正在播放综艺节目《声临其境》B.早晨的太阳从东方升起C.在红绿灯路口遇到黑灯D.任意掷一枚均匀的硬币,正面朝上2.下列事件中是不可能事件的是()A.抛掷一枚硬币50次,出现正面的次数为40次B.从一个装有30只黑球的不透明袋子中摸出一个球为黑球C.抛掷一枚质地均匀的普通正方体骰子,出现点数之和等于13D.从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K3.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“画一个三角形,其内角和一定等于180°”是必然事件4.一个布袋里装有2个白球和3个黑球,它们除颜色外其余都相同,从袋子里任意摸出1个球,摸到黑球的概率是()A.B.C.D.15.关于随机事件A发生的频率与概率,下列说法正确的是()A.事件A发生的频率就是它发生的概率B.在n次试验中,事件A发生了m次,则比值称为事件A发生的频率C.事件A发生的频率与它发生的概率无关D.随着试验次数大量增加,事件A发生的频率会在P(A)附近摆动6.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是()A.B.1 C.D.7.下列事件中,必然事件是()A.打开电视机,正在播“新冠肺炎”相关新闻B.明天会下雨C.小明今天至少走了 100 米D.太阳从东方升起8.如图,小亮有一个卡片藏在9块瓷砖中的某一块下面(每块瓷砖除图案外其它均相同),那么卡片藏在瓷砖下的概率为()A.B.C.D.9.在一副52张扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是()A.B.C.D.10.一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定二.填空题(共5小题)11.一只不透明的布袋中有三种小球(除颜色以外其余都相同),分别是2个红球,3个白球和5个黑球,搅匀之后,摸出一只小球是红球的概率是.12.“若a2=b2,则a=b”这一事件是.(填“必然事件”“不可能事件”或“随机事件”)13.不透明袋子中装有12个球,其中有5个红球、4个绿球和3个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.14.“正方形既是矩形又是菱形”是事件.(填“必然”、“随机”、“不可能”)15.在一个不透明的袋子中装有2个红球和若干个黑球,这些球除颜色外其余均相同,将袋子中的球搅匀,从中任意摸出一个球,是黑球的概率为,则袋中原有黑球的个数是.三.解答题(共2小题)16.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?17.一个不透明的袋子里有红、黄、白三种颜色的球共50个,它们除了颜色不同外都相同,其中黄球的个数比白球的个数少5个,已知从袋子里随机摸出一个球是红球的概率是.(1)求袋子里红球的个数;(2)求从袋子里随机摸出一球是白球的概率,说明理由.参考答案1.解:A、打开电视,正在播放综艺节目《声临其境》,是随机事件,不合题意;B、早晨的太阳从东方升起,是必然事件,符合题意;C、在红绿灯路口遇到黑灯,是不可能事件,不合题意;D、任意掷一枚均匀的硬币,正面朝上,是随机事件,不合题意.故选:B.2.解:“抛掷一枚硬币50次,出现正面的次数为40次为”随机事件;“从一个装有30只黑球的不透明袋子中摸出一个球为黑球”为必然事件;“抛掷一枚质地均匀的普通正方体骰子,出现点数之和等于13”为不可能事件;“从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K“为随机事件.故选:C.3.解:A、可能性很大的事情不一定是必然发生的,本选项说法错误;B、可能性很小的事情是可能发生的,本选项说法错误;C、“掷一次骰子,向上一面的点数是6”是随机事件,本选项说法错误;D、“画一个三角形,其内角和一定等于180°”是必然事件,本选项说法正确;故选:D.4.解:∵布袋里装有2个白球和3个黑球,共5个小球,其中黑球有3个,∴从袋子里任意摸出1个球,摸到黑球的概率是,故选:C.5.解:在n次试验中,事件A发生了m次,则比值称为事件A发生的频率,因此选项B不符合题意;概率则是经过无数次试验,随着试验次数的增加,事件A发生的频率越稳定在某个常数附近摆动,这个常数称为事件A发生的概率,因此选项A不符合题意;概率和频率是有一定关系的,一般地,事件A发生的概率越大,其试验的频率也越大,因此选项C不符合题意;根据概率和频率的关系可得选项D符合题意;故选:D.6.解:∵不透明的盒子中装有2个红球,1个白球和1个黄球,共有4个球,∴摸到红球的可能性是=;故选:C.7.解:A.打开电视机,正在播“新冠肺炎”相关新闻,是随机事件;B.明天会下雨,是随机事件;C.小明今天至少走了 100 米,是随机事件;D.太阳从东方升起,是必然事件.故选:D.8.解:卡片藏在瓷砖下的概率==.故选:C.9.解:一副52张没有大小王的扑克牌中方块有13张,任意抽取一张牌,那么抽到方块的概率是:=.故选:D.10.解:观察这个图可知:阴影区域(6块)的面积占总面积(15块)的=,则它最终停留在阴影部分的概率是,故选:A.11.解:∵不透明的布袋中有三种小球(除颜色以外其余都相同),分别是2个红球,3个白球和5个黑球,∴摸出一只小球是红球的概率是=;故答案为:.12.解:若a2=b2,则a=±b,故若a2=b2,则a=b,这一事件是随机事件.故答案为:随机事件.13.解:不透明袋子中装有12个球,其中有5个红球、4个绿球和3个蓝球,∴从袋子中随机取出1个球,则它是红球的概率是;故答案为:.14.解:“正方形既是矩形又是菱形”是必然事件.故答案为必然.15.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故答案为:4.16.解:(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.17.解:(1)袋子里红球的个数为:50×=15(个);(2)设白球的个数为x个,根据题意得:x+x﹣5+15=50,解得x=20,所以摸出白球的概率==.25.2用列举法求概率一.选择题1.两个不透明的袋子中分别装有标号1,3,5和标号2,4的五个小球,五个小球除标号外其余均相同,随机从两个袋子中各抽取一个小球,则其标号数字组成的两位数能被4整除的概率是()A.B.C.D.2.在如图所示的电路中,随机闭合开关S1、S1、S3中的两个,能让灯泡L1发光的概率是()A.B.C.D.3.有5名自愿献血者,其中3人血型为O型,2人血型为A型,现从他们当中随机挑选2人参与献血,抽到的两人均为O型血的概率为()A.B.C.D.4.下列说法中不正确的是()A.抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B.随机选择一户二孩家庭,头胎、二胎都是男孩的概率为C.任意画一个三角形内角和为360°是随机事件D.连续投两次骰子,前后点数之和为偶数的概率是5.如图,△ABC中,AB=BC=AC,点D,E,F分别是AB,BC,AC边的中点.依次以A,B,C为圆心,AD长为半径画弧,得到,,.若在△ABC区域随机任取一点,则该点取自阴影部分的概率是()A.B.C.D.6.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是()A.B.C.D.7.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为0的概率是()A.B.C.D.8.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为()A.B.C.D.9.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.10.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格的形状大小质地完全相同,当蚂蚁停下来时,停在地板中阴影部分的概率是()A.B.C.D.二.填空题11.一个不透明的口袋中装有4个除颜色外,其他都一样的小球,其中有2个黄球,2个蓝球,现从中随机摸出2个球,则这2个球为同色的概率是.12.有4张正面分别标有数字﹣2,﹣3,0,5的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,数记为a,不放回,再从剩余卡片中随机抽取一张,数记为b,则使a+b能被5整除的概率为.13.为了防止输入性“新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成.则甲一定会被抽调到防控小组的概率是.14.在平面直角坐标系xOy中,点P的坐标为(x,y).现将背面完全相同,正面分别标有1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,该数的倒数作为点P的纵坐标,则点P 落在直线y=﹣x+3 上方的概率为.15.如图,点O为正方形的中心,点E、F分别在正方形的边上,且∠EOF=90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是.三.解答题16.在一个不透明的盒子中装有4个小球,4个小球上分别标有数字1,2,3,4,这些小球除数字外都相同,将小球搅匀.(1)从盒子中任意摸出一个小球,恰好摸出奇数号小球的概率是;(2)先从盒子中随机摸出一个小球,再从余下的3个小球中随机摸出一个小球,请用列表法或树状图法求两次摸出的小球标注数字之和大于4的概率.17.现有三张形状和大小完全相同的不透明卡片,其中卡片的正面分别标有字母A、B、C,将这三张卡片背面朝上洗匀,从中随机抽取一张,记录字母后不放回,再从剩余卡片中随机抽取一张.请用画树状图(或列表)的方法,求恰好抽到字母A和B的概率.18.近些年来,“校园安全”受到全社会的广泛关注,为了了解学生对于安全知识的了解程度,学校采用随机抽样的调查方式,根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为.(2)请补全条形统计图;(3)若该中学共有学生1200人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.19.某数学小组为调查重庆实验外国语学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.参考答案与试题解析一.选择题1.【解答】解:画树状图如图:共有12个等可能的结果,标号数字组成的两位数能被4整除的结果有3个,∴标号数字组成的两位数能被4整除的概率==;故选:C.2.【解答】解:画树状图得:∵共有6种等可能的结果,能让灯泡L1发光的有2种情况,∴能让灯泡L1发光的概率为=.故选:B.3.【解答】解:画树状图如图:共有20个等可能的结果,抽到的两人均为O型血的结果有6个,∴抽到的两人均为O型血的概率为=;故选:B.4.【解答】解:A、抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关,故选项A不符合题意;B、画树状图如图:共有4个等可能的结果,头胎、二胎都是男孩的结果有1个,∴随机选择一户二孩家庭,头胎、二胎都是男孩的概率为,故选项B不符合题意;C、任意画一个三角形内角和为180°,不是360°,是确定性事件,不是随机事件,故选项C符合题意;D、画树状图如图:共有36个等可能的结果,前后点数之和为偶数的结果有18个,∴连续投两次骰子,前后点数之和为偶数的概率是=,故选项D不符合题意;故选:C.5.【解答】解:∵AB=BC=AC,∴∠A=∠B=∠C=60°,设△ABC的底为2,则△ABC的高为,∴△ABC的面积是=,∵,,,∴BE=EC=CF=AF=BD=AD,∴阴影部分的面积是:×3=,∴该点取自阴影部分的概率是=;故选:A.6.【解答】解:将黄色区域平分成三部分,画树状图得:∵共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,∴两次指针都落在黄色区域的概率为;故选:D.7.【解答】解:画树状图如下:由图知,共有12种等可能结果,其中抽取的两张卡片上数字之积为0的有6种结果,∴抽取的两张卡片上数字之积为0的概率为=,故选:A.8.【解答】解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,∴两个转盘的指针都指向3的概率为,故选:D.9.【解答】解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径;两次共6种等可能结果,其中获得食物的有2种结果,∴获得食物的概率是=,故选:C.10.【解答】解:设每个格点正方形的边长为1,则阴影部分的面积为:42﹣×(1×4+2×4+2×3)=7,所以当蚂蚁停下来时,停在地板中阴影部分的概率是,故选:B.二.填空题11.【解答】解:画树状图如图:从中随机摸出2个球,共有12个等可能的结果,这2个球为同色的结果有4个,∴从中随机摸出2个球,则这2个球为同色的概率是=;故答案为:.12.【解答】解:画树状图如图:共有12个等可能的结果,使a+b能被5整除的结果有4个,∴使a+b能被5整除的概率==;故答案为:.13.【解答】解:内科3位骨干医师分别即为甲、乙、丙,画树状图如图:共有6个等可能的结果,甲一定会被抽调到防控小组的结果有4个,∴甲一定会被抽调到防控小组的概率==;故答案为:.14.【解答】解:画树状图为:共有5种等可能的结果,其中点P落在直线y=﹣x+3 上方的结果数为2,所以点P落在直线y=﹣x+3 上方的概率=.故答案为.15.【解答】解:在正方形中,满足点E、F分别在正方形的边上(此处采用极限思想),且∠EOF=90°的图形如图所示:因此EOF的面积是正方形总面积的,因此米粒落在图中阴影部分的概率是.三.解答题16.【解答】解:(1)从盒子中任意摸出一个小球,恰好摸出奇数号小球的概率==;故答案为;(2)画树状图为:共有12种等可能的结果,其中两次摸出的小球标注数字之和大于4的结果数为8,所以两次摸出的小球标注数字之和大于4的概率==.17.【解答】解:根据题意画图如下:共有9种等可能的结果数,其中恰好抽到字母A和B的有2种情况,所以恰好抽到字母A和B的概率是.18.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:360°×=90°;故答案为:60,90°;(2)60﹣15﹣30﹣10=5;补全条形统计图:(3)根据题意得:1200×=400(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为400人;(4)画树状图得:由树状图可知,共有20种等可能的结果,恰好抽到1个男生和1个女生的结果有12种,∴恰好抽到1个男生和1个女生的概率为=.25.3 利用频率估计概率一.选择题1. 在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ).A.16个 B.15个C.13个 D.12个2. 在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各试验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近3. 小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )A.20 B.300C.500 D.8004. 在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中.通过大量重复摸球试验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( )A.16个B.20个C.25个D.30个二.填空题5.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.6.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒子中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.2,那么可以推算出n大约是.7.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.三.简答题8.一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球出了颜色外没有任何区别.(1)小王通过大量反复实验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在1/4左右,请你估计袋中黑球的个数.(2)若小王取出的第一个是白球,将它放在桌上,从袋中余下的球中在再任意取一个球,取出红球的概率是多少?9.小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。

2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-面积问题(含答案)

2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-面积问题(含答案)

2020年人教版九年级数学上册课后练习本一元二次方程实际问题-面积问题一、选择题1.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( )A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=2002.在一幅长为80 cm.宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=03.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程(化为一般形式)是( )A. B.C. D.4.厦门市某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x米,则可列方程为( )A.x(x-10)=200B.2x-2(x-10)=200C.2x+2(x+10)=200D.x(x+10)=2005.某中学准备建一个面积为375 m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为x m,则可列方程( )A.x(x-10)=375B.x(x+10)=375C.2x(2x-10)=375D.2x(2x+10)=3756.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5-x)=6C.x(10-x)=6D.x(10-2x)=67.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=08.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm二、填空题9.如图,在宽为30m,长为40m的矩形地面上修建两条宽都是1m的道路,余下部分种植花草.那么,种植花草的面积为 .10.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 m(可利用的围墙长度超过6m).11.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为 .12.如图是我市将要开发的一块长方形的土地,长为xkm,宽为3km,建筑开发商将这块土地分为甲、乙、丙三部分,其中甲和乙均为正方形,现计划甲地建住宅区,乙地建商业区,丙地开辟成小区公园,若已知丙地的面积为2km2,则x的值为 .13.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为.14.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.15.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为 .16.《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年,全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为.三、解答题17.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?18.学校的课外生物小组的实验园地是一块长35米,宽26米的长方形,为了便于行走和管理,现要在中间修同样宽的到路,路宽均为a米,余下的作为种植面积,求种植面积是多少?19.如图,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?20.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的x与小亮设计方案中x的取值相同)参考答案1.C2.B3.B4.D5.A6.B7.C8.D9.答案为:113110.答案为:111.答案为:1米.12.答案为:4km或5km13.答案为:x2+40x﹣75=0.14.答案为:(9﹣2x)(5﹣2x)=12.15.答案为:(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).16.答案为:x(x﹣12)=864.17.解:⑴设所围矩形ABCD的长AB为x米,则宽AD为米.依题意,得 即, 解此方程,得∵墙的长度不超过45m,∴不合题意,应舍去. 当时,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.⑵不能.因为由得又∵=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2。

人教版九年级数学上册重教材基础训练题含答案

人教版九年级数学上册重教材基础训练题含答案

最新人教版九年级数学上册重教材基础训练题(含答案)第 21章一元二次方程(基础训练)一、选择题(每题 4分,共 20分)1、下列方程是一元二次方程的是( )A. 02=++c bx axB. 24) 32)(12(2+=+-x x xC. 128) 4(+=+x x xD. 04232=-+y x 2、一元二次方程 012222=+-x x 的根的情况是( )A. 有两个不等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定 3、用配方法将方程 0142=--x x 变形为 m x =-2) 2(的过程中,其中 m 的值正确的是( ) A. 4B. 5 C. 6 D. 74、下列一元二次方程中两根之和等于 6的是( )A. 01562=-+x xB. 01562=++x xC. 01562=+-x xD. 01562=--x x5、参加一次聚会的每两人都握了一次手,所有人共握手 10次,设有 x 人参加聚会,则根据题意所列方程正确的是( )A. 10) 1(21=-x xB. 10) 1(21=+x x C. 10) 1(=-x x D. 10) 1(=+x x二、填空题(每题 5分,共 20分)6、将方程 38) 1)(23(-=+-x x x 化成一元二次方程的一般形式后, 其二次项系数是 ______________, 一次项系数是 ____________,常数项是 ______________。

7、如果 2是方程 02=-c x 的一个根, 那么常数 c 的值是 _______, 该方程的另一个根是 _________。

8、一元二次方程 01322=--x x 的解是______________________。

9、一个矩形的长和宽相差 3cm ,面积是 4cm 2,则这个矩形的长是 ________,宽为 _______。

三、简答题10、选择合适的方法解下列方程:(每题 5分,共 30分)(1) 0182=+-x x (2) 0742=--x x (3) 02632=--x x(4) 016102=++x x (5) 01022=++x x (6) x x x 8216812-=+-11、 (10分)证明:无论 p 取何值,方程 0) 2)(3(2=---p x x 总有两个不等的实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21章 一元二次方程(基础训练)一、选择题(每题4分,共20分)1、下列方程是一元二次方程的是( )A. 02=++c bx axB. 24)32)(12(2+=+-x x xC. 128)4(+=+x x xD. 04232=-+y x 2、一元二次方程012222=+-x x 的根的情况是( )A. 有两个不等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定 3、用配方法将方程0142=--x x 变形为m x =-2)2(的过程中,其中m 的值正确的是( ) A. 4 B. 5 C. 6 D. 74、下列一元二次方程中两根之和等于6的是( )A. 01562=-+x xB. 01562=++x xC. 01562=+-x xD. 01562=--x x 5、参加一次聚会的每两人都握了一次手,所有人共握手10次,设有x 人参加聚会,则根据题意所列方程正确的是( )A. 10)1(21=-x xB. 10)1(21=+x x C. 10)1(=-x x D. 10)1(=+x x二、填空题(每题5分,共20分)6、将方程38)1)(23(-=+-x x x 化成一元二次方程的一般形式后,其二次项系数是______________,一次项系数是____________,常数项是______________。

7、如果2是方程02=-c x 的一个根,那么常数c 的值是_______,该方程的另一个根是_________。

8、一元二次方程01322=--x x 的解是______________________。

9、一个矩形的长和宽相差3cm ,面积是4cm 2,则这个矩形的长是________,宽为_______。

三、简答题10、选择合适的方法解下列方程:(每题5分,共30分)(1)0182=+-x x (2)0742=--x x (3)02632=--x x(4)016102=++x x (5)010522=++x x (6)x x x 8216812-=+-11、(10分)证明:无论p 取何值,方程0)2)(3(2=---p x x 总有两个不等的实数根。

12、(12分)分别用公式法和因式分解法解方程22)25(96x x x -=+-。

13、(12分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率? 14、(16分)如图,利用一面墙(墙的长度不限),用20m 长的篱笆,怎样围成一个面积为50m 2的矩形场地?参考答案: 一、选择题 1-5 CBBDA 二、填空题6、 3, -7, 17、 4, -28、 -11或129、 4cm 1cm 三、简答题10、(1)154,15421-=+=x x (2)112,11221-=+=x x (3)3151,315121-=+=x x (4)8,221-=-=x x (5)该方程无实数根 (6)41,4121-==x x 11、证明:原方程整理得,06522=-+-p x x 26,5,1p c b a -=-== 041422>+=-=∆∴p ac b∴无论p 取何值,方程总有两个不等的实数根。

12、解:①公式法:将原方程整理,得0161432=+-x x 16,14,3=-==c b a 442=-=∆∴ac b 6214324)14(±=⨯±--=∴x38,221==∴x x②因式分解法:将原方程化为0)25()3(22=--+x x [][]0)25()3()25()3(=--+-++x x x x 即0)83)(2(=-+-x x38,221==∴x x13、解:设人均收入的年平均增长率为x 。

解得 (舍去)1.2-,1.021==x x 答:人均收入的年平均增长率为10%。

14、解:设矩形场地的宽为x m ,则长为(20-2x )m 。

由题意,得:50)220(=-x x 整理得: 025102=+-x x 解得: 521==x x所以 20-2x = 10答:用20m 长的篱笆围成一个面积为50m 2的矩形场地,长应为10m ,宽应为5m 。

第22章 二次函数(基础训练)一、选择题(每题4分,共20分)1、下列函数是二次函数的是( )A. c bx ax y ++=2B. 242+=x yC. 242+=xy D. 4232-+=z x y 2、在抛物线442--=x x y 上的一个点是( )A. )(4,4B. )(1,3-C. )(8,2--D. )(47,21--3、二次函数12212--=x x y 的对称轴是( )A. 4=xB.4-=xC. 2=xD. 2-=x 4、二次函数962+-=x x y 与x 轴的交点个数是( )A. 只有一个交点B. 有两个交点C. 没有交点D. 无法确定 5、分别用长为10米的线段围成下列图形,面积最大的是( ) A. 三角形 B. 矩形 C. 正方形 D. 圆二、填空题(每题5分,共20分)6、二次函数)(02≠++=a c bx ax y 的顶点坐标是______________________。

7、已知函数422-+-=x x y ,当x _________时,y 随x 的增大而增大;当x __________时,y 随x 的增大而减小。

8、一个二次函数的图像经过(0,0),(-1,-1),(1,9)三点,则这个二次函数的解析式是_____________。

9、一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是35321212++-=x x y ,则铅球推出的距离是___________。

三、简答题10、直接写出下列抛物线的开口方向、对称轴和顶点坐标(每题5分,共30分)(1)322-+=x x y (2)261x x y -+= (3)12212++=x x y(4)4412-+-=x x y (5)7342+-=)(x y (6)2132---=)(x y11、(10分)抛物线c bx ax y ++=2与x 轴的公共点是(-1,0),(3,0),求这条抛物线的对称轴。

12、(12分)某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,问应如何定价才能使利润最大?13、(12分)在坐标系中画出二次函数216212+-=x x y 。

14、(16分)如图,用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18m ,这个矩形的长、宽各为多少时,菜园的面积最大?最大面积是多少?参考答案: 一、选择题 1-5 BDCAD 二、填空题6、⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,227、 41<41> 8、 x x y 542+=9、 10m三、简答题 10、(1)开口向上,对称轴x=-1,顶点坐标(-1,-4) (2)开口向下,对称轴x=3,顶点坐标(3,10) (3)开口向上,对称轴x=-2,顶点坐标(-2,-1) (4)开口向下,对称轴x=2,顶点坐标(2,-3)(5)开口向上,对称轴x=3,顶点坐标(3,7) (6)开口向下,对称轴x=1,顶点坐标(1,-2) 11、解:由抛物线的对称性可知:抛物线与x 轴的两个交点关于对称轴对称, ∴该条抛物线的对称轴是直线1231=+-=x 。

12、解:设所获总利润为y ,则由题意得 )100)(30(x x y --= 3001302-+-=x x 1225)65(2+--=x 01<-=a∴抛物线的开口向下∴当x = 65时,1225=最大值y即当商品的定价为65元时才能使利润最大。

13、解:配方得 3)6(212+-=x y 列表: x … 3 4 5 6 7 8 9 … y…2.553.533.557.5…14、解:设矩形菜园的长为x m ,面积为y m 2,则宽为m 2x-30。

由题意,得:230xx y -•= )(18015212≤<+-=x x x 021<-=a∴y 有最大值即当15115=--=x 时,面积最大,2max 2225m y =故当矩形的长、宽分别为15m ,7.5m 时,菜园的面积最大,最大面积为2225m 2。

第23章旋转(基础训练)一、选择题(每题4分,共20分)1、下列图案中,是中心对称图形的是()A B C D2、在点A(-5,0),B(0,2),C(2,-1),D(2,0),E(0,5),F(-2,1),G(-2,-1)中关于原点O对称的是()A. A和EB. B和DC. C和FD. C和G3、时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是()A. 30°B.45°C. 60°D. 90°4、正三角形至少要旋转()才能成为中心对称图形。

A. 30°B.60°C. 90°D. 180°5、下列图形中不是中心对称图形的是()A. 三角形B. 矩形C. 正方形D. 圆二、填空题(每题5分,共20分)6、中心对称的两个图形,对称点所在连线段都经过_____________,而且被其平分。

7、两个点关于原点对称时,它们的坐标符号__________,即点P(x,y)关于原点的对称点P´的坐标是__________。

8、已知点A(1,a)与点A´(b,5)关于原点对称,则a=__________,b=___________。

9、以原点为中心,把点A(4,5)逆时针旋转90°,得到点B的坐标是___________。

三、简答题10、在美术字中,有些汉字或字母是中心对称图形,下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心。

请在右边方框中再写4个呈中心对称图形的汉字或字母。

(24分)11、(14分)分别画出△ABC绕点O逆时针旋转90°和180°后的图形。

12、(14分)如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;(2)若BC = 3,AC = 4,点A旋转后的对应点为A´,求A´A的长。

13、(14分)如图,已知点A的坐标为(2,3-),菱形ABCD的对,1-2-),点B的坐标为(3角线交于坐标原点O,求C,D两点的坐标。

14、(14分)如图,△ABD,△AEC都是等边三角形,BE与DC有什么关系?请用旋转的性质说明上述关系成立的理由。

参考答案: 一、选择题 1-5 BCDBA 二、填空题 6、对称中心7、 相反 (y x --,)8、 -5 -1 9、 (-5,4) 三、简答题10、解:它们都是中心对称图形,其对称中心如图所示:11、解:如图所示12、解:(1)如图所示:(2)根据旋转的性质得: ∠ABA ´=90° ,AB=A ´BBC=3,AC=4,∠C=90° ∴AB=5∴A ´A=22B ′A AB +=25O I 王 丰13、解: 菱形是中心对称图形,对称中心为两条对角线的交点∴点A 与点C ,点B 与点D 均关于原点O 对称A (2,32-),B (3,1--) ∴C (2,32-),D (3,1)14、解:BE=DC ,理由如下:∠ABD 和∠AEC 都是等边三角形∴AE=AC ,AB=AD ,∠DAB = ∠CAE=60° ∴∠DAB+∠BAC = ∠CAE+∠BAC 即∠DAC = ∠BAE∴∠BAE 绕点A 顺时针旋转60°,使BA 与DA 重合,则∠BAE 与∠DAC 完全重合∴BE=DC第24章 圆(基础训练)一、选择题(每题5分,共25分)1、一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角是( ) A. 120° B.180° C. 240° D. 300°2、Rt∠ABC 中,∠C=90°,AC=3cm ,BC=4cm ,若以点C 为圆心,则当半径r=2.4cm 时,∠C 与AB 的位置关系是( )A. 相交B. 相切C. 相离D.无法确定 3、如图,PA ,PB 分别与⊙O 相切于A ,B 两点,∠P=70°,则∠C=( ) A. 55° B.70° C. 110° D. 140°第3题图 第4题图 第5题图4、如图,∠O 中,弦AB ,CD 相交于点P ,∠A=40°,∠APD=75°,则∠B=( ) A. 15° B.40° C. 75° D. 35°5、如图,∠O 的直径CD=10cm ,AB 是∠O 的弦,AB∠CD ,垂足为M ,OM :OC=3:5,则AB 的长为( ) A.91cm B. 8cm C. 6cm D. 4cm二、填空题(每题5分,共20分)6、如图,在⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,则⊙O 的半径为___________。

相关文档
最新文档