北师大版七年级数学下册1.5 同底数幂的除法 教案
北师大版七年级下册数学《同底数幂的除法》整式的乘除培优说课教学复习课件

每个水分子的直径是4×10-10m,
用小数表示为
.
(2)拓展延伸:
如果一滴水的质量约为 0.05g,请根据(1) 中提供的数据回答:
①一滴水中大约有多少个水分子?
用科学记数法表示
.
②如果把一滴水中的水分子依次排成一列 (中间没有空隙),能排多少米?
用科学记数法表示
.
课堂小结
这节课你学到了哪些知识? 用科学记数法表示小于1的正数与表示大于10
只要m,n都是整数,就有am÷an=am-n成立!
我们前面学过 的运算法则是否
也成立呢?
反馈练习:
下面的计算是否正确?如有错误请改正
(1) b6÷b2 =b3 ;
(2) a10÷a-1 =a9 ;
(3) (-bc)4÷(-bc)2 = -b2c2 ; (4) xn+1÷x2n+1 =x-n .
反馈练习: 计算
假设一种可入肺颗粒物的直径约为 2.5μm,相当于多少米?
多少个这样的颗粒物首尾连接起来能 达到1m?与同伴交流
2. 估计1张纸的厚度大约是多少厘 米.你是怎样做的?与同伴交流
课堂练习
基础练习: (1)用科学记数法表示下列各数,并在计算
器上表示出来: 0.000 000 72; 0.000 861; 0.000 000 000 342 5
一般地,一个小于1的正数可以用 科学记数法表示为:
a× 10n (其中1≤a<10,n是负整数)
怎样确 定a和n?
巩固落实
1.用科学记数法表示下列各数: 0.000 000 000 1= 0.000 000 000 002 9= 0.000 000 001 295=
2.下面的数据都是用科学记数法表示的, 请你用小数把它们表示出来:
北师大版七年级数学下册1.3同底数幂的除法第1课时优秀教学案例

3.作业总结:学生在完成作业的过程中,总结自己的学习收获和不足,提高自主学习能力。
五、案例亮点
1.生活情境引入:通过设置与学生生活密切相关的情境,引发学生的兴趣和思考,如讨论手机信号强度的表示方法,引入幂的概念。这种教学方式能够激发学生的学习兴趣,提高学生对知识的理解和记忆。
2.同伴评价:学生之间进行互相评价,给予他人建设性的意见和建议,培养良好的评价习惯。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习积极性。
四、教学内容与过程
(一)导入新课
1.生活情境引入:教师通过展示手机信号强度的图片,引导学生思考如何表示信号的强度,从而引入幂的概念。
(四)总结归纳
1.教师引导:教师引导学生总结本节课所学知识,明确同底数幂的除法法则及其应用。
2.学生总结:学生根据自己的学习体验,总结同底数幂的除法运算方法和技巧。
3.课堂小结:教师对课堂学习内容进行梳理和总结,巩固学生对同底数幂的除法法则的理解。
(五)作业小结
1.作业布置:教师布置具有针对性的作业,让学生巩固所学知识,提高学生的数学应用能力。
3.例题讲解:教师选取具有代表性的例题进行讲解,引导学生掌握同底数幂的除法运算方法。
(三)学生小组讨论
1.小组划分:教师根据学生的学习特点和能力,合理划分学习小组,鼓励学生互相帮助、共决问题的方法,培养团队协作能力。
3.问题解决:学生通过小组合作,共同解决问题,体会数学的乐趣。
(三)小组合作
1.小组划分:根据学生的学习特点和能力,合理划分学习小组,鼓励学生互相帮助、共同进步。
数学同底数幂的除法教案

数学同底数幂的除法教案1、掌握同底数幂的除法法则2、掌握应用运算法则进行计算.重点:同底数幂的法则的推导过程和法则本身的理解.难点:灵活应用同底数幂相除法则来解决问题.认真阅读教材p123~124页,弄清楚以下知识:1、同底数幂相除的法则:(注意指数的取值范围)2、同底数幂相除的一般步骤:1、完成课内练习部分(写在预习本上)2. 计算(1)a9a3(2) 21227(3)(-x)4(-x)(4)(-3)11(-3)8(5)10m10n (mn)(6)(-3)m(-3)n (mn)你还有哪些地方不是很懂?请写出来。
___________________________________________________________ ___________________________________________________________ ___________________________________________________________ _____________________预习检测:1. 一种液体每升含有1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1 滴杀菌剂可以杀死109 个此种细菌。
要将1升液体中的有害细菌全部杀死需要这种杀菌剂多少滴?2.计算下列各式:(1)108 105 (2)10m10(3)(3)m(3)n (4)(-ab)7(ab)4计算:(1) a7(2) (-x)6(-x)3;(3) (xy)4(-xy) ;(4) b2m+2b2 .注意①幂的指数、底数都应是最简的;②底数中系数不能为负;③幂的底数是积的形式时,要再用一次(ab)n=an an.2 、练一练:(1)下列计算对吗?为什么?错的请改正.①a6a2=a3 ②S2S=S3③(-C)4(-C)2=-C2④(-x)9(-x)9=-1(1) x4n+1x 2n-1x2n+1= ?(2)已知ax=2 ay=3 则ax-y= ?(3)已知ax=2 ay=3 则 a2x-y= ?(4)已知am=4 an=5 求a3m-2n的值。
七下数学课堂学习经历案--同底数幂的除法2

4.用科学记数法表示下列数:
(1)0.00001(2)0.00002
(3)0.000000567(4)0.000000301.
四、作业布置
一.选择题
1.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为堂”
学习经历案
一、目标引领
1.课题名称:北师大版 七年级 下册 数学 第一章 1.3同底数幂的除法(第2课时)
2.达成目标:
(1)会用科学记数法表示小于1的正数
(2)体验一些小于1的正数,建立对小于1的正数的感受
3.课前准备建议:
(1)复习初一上册学过科学记数法
(a:,n:)
例4一粒花粉的直径大约是0.00005m,大约多少粒花粉首尾连结起来能达到1米?请将问题中的数据表示成科学记数法。
知识链接:常见的长度单位
千米(km)1km=10³m
分米(dm)1dm=
厘米(cm)1cm=
毫米(mm)1mm=
微米( )1 =
纳米(nm)1nm=
三、当堂检测
1.人体血液中的血小板直径约为0.000002m,数字0.000002用科学记数法表示为.
(1)0.003009;
(2)﹣0.00001096;
(3)0.000329.
7.有一句谚语说:“捡了芝麻,丢了西瓜.”据测算,5万粒芝麻才200g,你能换算出1粒芝麻有多少克吗?(结果用科学记数法表示)
五、总结反思(学生填写)
六、错题纠正(学生填写)
a:n:
例1用科学记数法表示下列各数:
同底数幂的除法课件(北师大版七年级下)

有n个10
2021/3/11
6
解题思路
解:(根据幂的定义) (3) (-3)m ÷ (-3)n
有m个(-3)
(-3) ● (-3) …… (-3)
= (-3) ● (-3) …… (-3)
= (-3) m-n
n个(-3)
2021/3/11
7
总结规律 ——幂的除法的一般规律
am ÷ a n
2021/3/11
2
每一滴可杀109个病毒 每升液体1012个病毒.
要把一升液体中所 有病毒全部杀死,
需要药剂多少滴?
除法运算:
1012
2021/3/11
÷ 109
= 103(滴)
3
做一做 计算下列各式,并说明理由(m>n)
(1) 108 ÷ 105 = (2) 10m ÷ 10n = (3) (-3)m ÷ (-3)n =
1.5 同底数幂的除法
2003年在广州地区流行
的“非典型肺炎”,经专家 的研究,发现是由一种“病 毒”引起的,现有一瓶含有 该病毒的液体,其中每升含 有1012个病毒。
医学专家进行了实验,
发现一种药物对它有特殊的 杀灭作用,每一滴这种药物, 可以杀死109个病毒。
要把一升液体中的所有
病毒全部杀死,需要这种药 剂多少滴?
(5)62m+1 ÷ 6 m = 62m+1-m= 6m+1
2021/3/11
13
习题 下面的计算是否正确?如有错误, 请改正:
(1) a6 ÷ a1 = a 错误,应等于a6-1 = a5
(2)b6 ÷ b3 = b2 错误,应等于b6-3 = b3 (3) a10 ÷a9 = a 正确.
北师大版七下数学1.3同底数幂的除法教案

北师大版七下数学1.3同底数幂的除法教案一. 教材分析《北师大版七下数学》1.3节主要介绍同底数幂的除法运算。
本节内容是在学习了同底数幂的乘法运算的基础上进行的,是指数运算的一个重要组成部分。
同底数幂的除法运算规则是:同底数幂相除,底数不变,指数相减。
本节内容通过实例讲解和练习,使学生掌握同底数幂的除法运算方法,并能灵活运用。
二. 学情分析学生在学习本节内容之前,已经学习了同底数幂的乘法运算,对指数运算有一定的了解。
但学生在运用规则时,容易出错,特别是对底数和指数的理解不够深入,容易混淆。
因此,在教学过程中,需要加强对学生的引导,让学生深刻理解同底数幂的除法运算规则,并通过大量练习,提高学生的运算能力。
三. 教学目标1.理解同底数幂的除法运算规则,能正确进行同底数幂的除法运算。
2.培养学生逻辑思维能力和运算能力。
3.培养学生独立思考和合作交流的能力。
四. 教学重难点1.同底数幂的除法运算规则的理解和运用。
2.指数的减法运算的准确性。
五. 教学方法1.采用实例讲解,让学生通过观察和分析,发现同底数幂的除法运算规则。
2.采用小组合作交流的方式,让学生在讨论中加深对运算规则的理解。
3.通过大量练习,提高学生的运算能力。
六. 教学准备1.准备相关的实例,用于讲解和引导学生发现运算规则。
2.准备练习题,用于巩固所学内容。
3.准备多媒体教学设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个实例,让学生计算两个同底数幂的除法运算,引导学生发现运算规则。
2.呈现(10分钟)讲解同底数幂的除法运算规则,并用多媒体展示,让学生深刻理解。
3.操练(15分钟)让学生进行同底数幂的除法运算练习,教师巡回指导,纠正错误。
4.巩固(10分钟)让学生进行小组合作交流,共同完成一些综合性的练习题,加深对运算规则的理解。
5.拓展(5分钟)引导学生思考同底数幂的除法运算在实际生活中的应用,让学生体会数学的实用性。
6.小结(5分钟)总结本节课所学内容,强调同底数幂的除法运算规则,提醒学生注意事项。
七年级数学下册《1.3.2 同底数幂的除法》教案 (新版)北师大版

4.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000007平方毫米,那么这个数用科学记数法表示为__________平方毫米.
5.1本100张纸的书大约厚0.9 cm,则一张纸约厚______m.
6.一种塑料颗粒是边长为1毫米的小正方体,它的体积是多少立方米(用科学记数法表示)?若用这种塑料颗粒制成一个边长为1米的正方体塑料块,要用多少个颗粒?
同底数幂的除法公式为am÷an=am-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?
从学生已有的知识入手,引入课题
新知探索
例题
精讲
合作探究
探究点:用科学记数法表示较小的数
【类型一】用科学记数法表示绝对值小于1的数
2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为()
A.3.5×104米B.3.5×10-5米
C.3.5×10-4米D.3.5×10-9米
2.一块10000 m2的足球场,它的百万分之一大约有 【】
A.一个大拇指头大B.一只手掌大
C.一张桌子大D.一张床大
3.1 ml的水大约可以滴10滴,1杯水约250 ml,则一滴水占一杯水的【】
A.4×10-4B.4×10-5
1.3.2同底数幂的除法
教学目标
1.理解并掌握科学记数法表示小于1的数的方法;
2.能将用科学记数法表示的数还原为原数.
教学重、难点
重点:理解并掌握科学记数法表示小于1的数的方法;
北师大版七年级册下数学1.3.1同底数幂的除法(教案)

2.案例分析:接下来,我们来看一个具体的案例。假设我们有2^5 / 2^2,通过同底数幂除法,我们可以直接得到2^3。这个案例展示了同底数幂除法在实际中的应用,以及它如何帮助我们解决问题。
-同底数幂除法的应用:通过典型例题,重点训练学生将同底数幂除法应用于实际问题的能力,如科学计数法、比例计算等。
举例:讲解同底数幂除法概念时,可举例2^5 / 2^2 = 2^(5-2) = 2^3,强调指数相减的重要性。
2.教学难点
-理解同底数幂除法法则:学生可能难以理解为什么底数相同、指数相减的幂可以相除,需要通过具体实例和图形直观展示。
本节课的核心素养目标旨在培养学生具备扎实的数学基础和良好的数学思维能力,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-同底数幂除法的概念:重点讲解同底数幂除法的定义,即a^m / a^n = a^(m-n),强调底数相同且指数相减的规律。
-同底数幂除法的运算性质:详细阐述同底数幂除法的运算性质,如负指数、零指数幂的特殊情况,以及如何与其他幂运算结合。
-难点2:讲解负指数和零指数幂时,可用2^0 = 1(任何数的零次幂都是1)和2^(-3) = 1 / 2^3(负指数表示倒数)来具体说明。
-难点3:针对高级运算,如(2^5 / 2^2) * (3^2 / 3^4),需要引导学生先进行同底数幂的除法运算,再进行乘法运算,即2^3 * 3^(-2) = 2^3 / 3^2。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5 同底数幂的除法
教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。
2.理解零指数幂和负指数幂的意义。
3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能
力;提高学生观察、归纳、类比、概括等能力。
4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素
养。
教学重点:会进行同底数幂的除法运算。
教学难点:同底数幂的除法法则的总结及运用。
教学方法:尝试练习法,讨论法,归纳法。
教学过程:
一、情境引入
活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
二、了解同底数幂除法的运算及应用
活动内容:活动1先让学生作“做一做”:
计算下列各式,并说明理由(m>n )
;1010)1(58÷ ;1010)2(n m ÷ ;)3()3)(3(n m -÷-
从中归纳出同底数幂除法的运算性质。
从上面的练习中你发现了什么规律? 。
猜一猜:()n m n m a a a n m >都是正整数,且,,0≠=÷。
三、同底数幂除法运算的应用
活动内容:例1计算:
;)1(47a a ÷ ;)())(2(36x x -÷- );())(3(4xy xy ÷
;)4(222b b m ÷+ ;)())(5(38m n n m -÷- .)())(6(24m m -÷-
例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。
例如用里克特震级表示地震是8级,说明地震的强度是7
10。
1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。
加利福尼亚地震强度是荷兰地震强度的多少倍?
(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答) 四、探索零指数幂和负整数指数幂的意义
活动内容:想一想:
10000=104 , 16=24
1000=10(), 8=2()
100=10() , 4=2()
10=10(), 2=2()
猜一猜:
1=10() 1=2()
0.1=10() 2
1 =2()
0.01=10() 4
1=2()
0.001=10() 8
1 =2()
例3 计算:用小数或分数分别表示下列各数:
五、练习与提高
活动内容:(一)基础题
1.下列计算中错误的有( )
5210)1(a a a =÷ 55)2(a a a a =÷
235)())(3(a a a -=-÷- 33)4(0=
A.1个
B.2个
C.3个
D.4个
2.计算()()2232a a -÷的结果正确的是( )
A.2a -
B.2a
C.-a
D.a
3.用科学记数法表示下列各数:
(1)0.000876 (2)-0.0000001
(二)能力题
4.计算:(1)()())2(2224y x x y y x -÷-÷-
(2)()()[]()()989y x x y y x y x --÷-÷-+
5.计算=÷÷3927m m
6.若b a y x ==3,3,求的y x -23的值
六、课堂小结
活动内容:师生互相交流本节课的内容以及应用和需要注意的问题。
七、布置作业课本P 24 习题1.7 知识技能 第1,2题
教学反思
4
203106.1)3(;87)2(10)1(---⨯⨯。